Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change
Abstract
:1. Introduction
2. Results
2.1. GHG Emissions Analysis
2.1.1. Direct Emissions
2.1.2. Total GHG Emissions
2.2. Yield and Its Components
2.3. Economic Profits Analysis Based on GHG Emission and Yield
3. Discussion
3.1. Soil Gases Emissions
3.1.1. N2O Emission
3.1.2. CO2 and CH4 Emissions
3.2. Direct Carbon Emissions
3.3. Indirect Carbon Emissions
3.4. Effects of N Management on Yield and Economic Profits
4. Materials and Methods
4.1. Experimental Sites
4.2. Experimental Design and Field Management
4.3. Measurements and Calculation
4.3.1. Crop Yield
4.3.2. GHG Sampling and Measurements
4.3.3. Carbon Dioxide Equivalent (CO2-eq) in Maize Life Cycle
Agricultural Inputs | Emission Coefficients (kg C per Unit Input) | References |
---|---|---|
N | 2.116 | Chen et al., 2015 [49] |
P2O5 | 0.636 | Chen et al., 2015 [49] |
K2O | 0.18 | Chen et al., 2015 [49] |
Herbicide | 6.3 | Lal, 2004 [61] |
Insecticide | 5.1 | Lal, 2004 [61] |
Diesel fuel | 0.94 | Lal, 2004 [61] |
Electricity for irrigation | 0.31 | Yuan et al., 2006 [62] |
Seed | 1.05 | West and Marland, 2002 [63] |
4.3.4. Agricultural Economy in Maize Life Cycle
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, W.; Chai, Q.; Fan, Z.L.; Hu, F.L.; Fan, H.; Guo, Y.; Zhao, C.; Yu, A.Z. Energy budgeting, carbon budgeting, and carbon footprints of straw and plastic film management for environmentally clean of wheat-maize intercropping system in northwestern China. Sci. Total Environ. 2022, 826, 154220. [Google Scholar] [CrossRef] [PubMed]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- Benbi, D.K. Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Sci. Total Environ. 2018, 644, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef]
- He, L.; Zhang, A.; Wang, X.; Li, J.; Hussain, Q. Effects of different tillage practices on the carbon footprint of wheat and maize production in the Loess Plateau of China. J. Clean. Prod. 2019, 234, 297–305. [Google Scholar] [CrossRef]
- Gong, H.; Li, J.; Sun, M.; Xi, X.; Ouyang, Z. Lowering carbon footprint of wheat-maize cropping system in north China plain: Through microbial fertilizer application with adaptive tillage. J. Clean. Prod. 2020, 268, 122255. [Google Scholar] [CrossRef]
- Gan, Y.T.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y.T. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas: A review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef]
- SBS (Department of Rural Social Economical Survey, State Bureau of Statistics of the People’s Republic of China). China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Cui, Z.; Chen, X.; Zhang, F. Current nitrogen management status and measures to improve the intensive wheat-maize system in China. Ambio 2010, 39, 376–384. [Google Scholar] [CrossRef]
- Ju, X.; Xing, G.; Chen, X.; Zhang, S.; Zhang, L.; Liu, X.; Cui, Z.; Yin, B.; Christie, P.; Zhu, Z.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Dong, W.; Zhang, Y.; Qin, S.; Hu, C. Review on greenhouse gas emission and reduction in wheat-maize double cropping system in the North China Plain. Chin. J. Eco-Agr. 2018, 26, 167–174. (In Chinese) [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zheng, X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 2012, 9, 839–850. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.; Li, T.; Sun, W.J.; Huang, Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environ. Sci. Technol. 2014, 48, 2589–2597. [Google Scholar] [CrossRef] [PubMed]
- Rejesus, R.M.; Hornbaker, R.H. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric. Ecosyst. Environ. 1999, 75, 41–53. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Eissa, M.A. Controlled-release N fertilizer to mitigate ammonia volatilization from double-cropping rice. Nutr. Cycl. Agroecosys. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, Y.C.; Fan, X.; Geng, Y. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield. Soil Sci. Soc. Am. J. 2012, 76, 2307–2317. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, D.L.; Schwenke, G.; Yang, B. The global warming potential of straw return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems. Environ. Pollut. 2019, 252, 835–845. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, M.; Shan, N.; Zhao, Q.; Li, H.; Wang, L. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems. Sci. Total Environ. 2019, 670, 1184–1189. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, H.; Fan, J.; Zhang, F.; Guo, J.; Liao, Z.; Zhuang, Q. Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crops Res. 2021, 265, 108125. [Google Scholar] [CrossRef]
- Hu, X.; Su, F.; Ju, X.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.; Jiang, R.; Zhang, F. Greenhouse gas emissions from a wheatemaize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 2013, 176, 198–207. [Google Scholar] [CrossRef]
- Zaman, M.; Saggar, S.; Blennerhassett, J.D.; Singh, J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol. Biochem. 2009, 41, 1270–1280. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Recio, J.; Vallejo, A.; Le-Noe, J.; Garnier, J.; Garcia-Marco, S.; Alvarez, J.M.; Sanz-Cobena, A. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Sci. Total Environ. 2018, 636, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Zhang, Z.; Gong, S.; Chen, X. Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the loess plateau of China. Biosyst. Eng. 2018, 167, 75–86. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Pan, J.; Liu, W.; Yang, G.; Xiao, X.; Zheng, H.; Tang, W.; Tang, H.; Zhou, L. Carbon footprint of different agricultural systems in China estimated by different evaluation metrics. J. Clean. Prod. 2019, 225, 939–948. [Google Scholar] [CrossRef]
- Ding, W.; Yagi, K.; Cai, Z.; Han, F. Impact of long-term application of fertilizers on N2O and NO production potential in an intensively cultivated Sandy Loam Soil. Water Air Soil Pollut. 2010, 212, 141–153. [Google Scholar] [CrossRef]
- Ding, W.; Chen, Z.; Yu, H.; Luo, J.; Yoo, G.; Xiang, J.; Zhang, H.; Yuan, J. Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate, N-(n-butyl) thiophosphoric triamide and dicyandiamide of a wheat cultivated soil under sub-humid monsoon conditions. Biogeosciences 2015, 12, 803–815. [Google Scholar] [CrossRef]
- Hu, N.; Wang, B.; Gu, Z.; Tao, B.; Zhang, Z.; Hu, S.; Zhu, L.; Meng, Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Xu, H.; Hosen, Y. Effects of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice cropping seasons. Plant Soil 2010, 335, 373–383. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Xie, B.; Mei, B.; Wang, R.; Butterbach-Bahl, K.; Zhu, J.; Yin, R. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice–wheat rotation. Soil Biol. Biochem. 2009, 41, 2131–2140. [Google Scholar] [CrossRef]
- Ju, X.; Xing, L.; Gao, Z.; Chen, X.; Su, F.; Kogge, M.; Römheld, V.; Christie, P.; Zhang, F. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions. Environ. Poll. 2011, 159, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Janssens, I.A.; Dieleman, W.; Luyssaert, L.; Subke, J.-A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Phillips, R.P.; Fahey, T.J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils. New Phytol. 2010, 176, 655–664. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Trofymow, J.A.; Roy, R.; Nesic, Z. Soil CO2 and N2O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-firstand. Geoderma 2010, 157, 118–125. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. USA 2006, 103, 10316–10321. [Google Scholar] [CrossRef]
- Chu, H.; Hosen, Y.; Yagi, K. NO, N2O, CH4 and CO2 fluxes in winter barley field of Japanese Andisol as affected by N fertilizer management. Soil. Biol. Biochem. 2007, 39, 330–339. [Google Scholar] [CrossRef]
- Xie, L.Y.; Ye, D.D.; Zhang, H.; Guo, L.P. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices. Chin. J. Agrometeorol. 2011, 32, 481–487. (In Chinese) [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zhang, J.; Xu, F.; Yue, S. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 2021, 280, 124478. [Google Scholar] [CrossRef]
- Badía, D.; Martí, C.; Aguirre, A.J. Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Sci. Total Environ. 2013, 465, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Yan, G.; Zheng, X.; Wang, R.; Liu, C.; Butterbach-Bahl, K. Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Sci. Total Environ. 2017, 590–591, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hu, M.; Shi, J.; Tian, X.; Wu, J. Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China. Sci. Total Environ. 2021, 767, 145347. [Google Scholar] [CrossRef]
- Sosulski, T.; Stępień, W.; Wąs, A.; Szymańska, M. N2O and CO2 emissions from bare soil: Effect of fertilizer management. Agriculture 2020, 10, 602. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J. A Definition of Carbon Footprint; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 1–11. [Google Scholar]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, G.; Wang, X.; Lu, F.; Ouyang, Z. Carbon footprint of main crop production in China: Magnitude, spatial-temporal pattern and attribution. Sci. Total Environ. 2018, 645, 1296–1308. [Google Scholar] [CrossRef]
- Chen, S.; Lu, F.; Wang, X.K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers. Acta Ecol. Sin. 2015, 35, 6371–6383. [Google Scholar] [CrossRef]
- Zhang, W.; Dou, Z.; He, P.; Ju, X.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Tan, Y.C.; Xu, C.; Liu, D.X.; Wu, W.L.; Rattan, L.; Meng, F.Q. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Res. 2017, 205, 135–146. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.P.; Cui, Z.L.; Zhang, W.F.; Zhang, F.S. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE 2014, 9, e98481. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, X.; Shi, Y.; Wu, W.; Meng, F. Effect of nitrification and urease inhibitor on carbon sequestration and greenhouse gas emissions in winter wheat and summer maize rotation system in North China. Trans. Chin. Soc. Agric. Eng. 2016, 32, 254–262. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, T.; Ma, Z.; Zhao, C.; Siddique, K.; Ju, X. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Res. 2019, 244, 107624. [Google Scholar] [CrossRef]
- Hu, Q.; Ma, X.; Pan, X.; Huang, B. Climate warming changed the planting boundaries of varieties of summer corn with different maturity levels in the North China Plain. J. Appl. Meteorol. Climatol. 2019, 58, 2605–2615. [Google Scholar] [CrossRef]
- Jiang, C.; Yu, W.; Ma, Q.; Xu, Y.; Zou, H. Alleviating global warming potential by soil carbon sequestration: A multi-level straw incorporation experiment from a maize cropping system in Northeast China. Soil Tillage Res. 2017, 170, 77–84. [Google Scholar] [CrossRef]
- Ruangcharus, C.; Kim, S.U.; Yoo, G.Y.; Choi, E.J.; Kumar, S.; Kang, N.; Hong, C.O. Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures. Environ. Pollut. 2021, 279, 116892. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Geng, Y.; Dong, H.; Xi, F.; Liu, Z. A review of the research on carbon footprint responding to climate change. China Popul. Resour. Environ. 2010, 20, 6–11. (In Chinese) [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Zhang, X.; Tian, G. Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China. Sustainability 2015, 7, 15772–15784. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Nie, Z.; Di, X.; Zuo, T. Life cycle inventories of fossil fuels in China (II): Final life cycle inventories. Mod. Chem. Ind. 2006, 26, 59–61. [Google Scholar]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
Year | Treatment | Number of Ears (667 m−1) | Number of Kernels per Ear (ear−1) | 1000-Kernals Weight (g) | Yield (kg ha−1) | Yield Increase Rate Compared with BF (%) |
---|---|---|---|---|---|---|
2017 | BF 1 | 4724.6 a 2 | 456.2 b | 348.7 a | 10,961.9 b | - |
SU | 4594.9 a | 500.4 ab | 366.6 a | 12,376.8 a | 12.9 | |
ER | 4706.0 a | 520.7 a | 370.4 a | 13,005.6 a | 18.7 | |
HF | 4446.7 a | 491.1 ab | 374.1 a | 12,042.5 ab | 9.9 | |
2018 | BF 1 | 4705.0 a | 465.3 b | 353.1 a | 9797.9 b | - |
SU | 4817.2 a | 521.7 a | 375.6 a | 12,131.9 a | 23.8 | |
ER | 4779.8 a | 525.0 a | 367.3 a | 11,761.3 a | 20.0 | |
HF | 4668.6 a | 511.2 ab | 375.1 a | 11,504.8 a | 17.4 | |
2019 | BF 1 | 4451.5 a | 536.7 a | 348.7 a | 10,646.0 b | - |
SU | 4444.7 a | 571.4 a | 375.7 a | 12,166.1 a | 14.3 | |
ER | 4348.6 a | 564.2 a | 374.7 a | 11,714.8 ab | 10.0 | |
HF | 4506.4 a | 554.0 a | 341.1 a | 10,869.8 b | 2.1 | |
2020 | BF | 4417.2 a | 479.7 b | 328.5 b | 9212.8 b | - |
SU | 4430.9 a | 538.4 a | 363.9 a | 10,813.6 a | 24.0 | |
ER | 4492.7 a | 521.4 ab | 359.7 ab | 10,635.7 a | 20.7 | |
HF | 4444.7 a | 523.6 ab | 345.1 ab | 10,246.6 a | 15.0 | |
Average | BF | 4517.1 a | 484.5 a | 343.8 a | 10,153.7 b | - |
SU | 4508.6 a | 532.8 a | 367.7 a | 11,867.2 a | 18.7 | |
ER | 4493.3 a | 532.8 a | 364.1 a | 11,777.7 a | 17.4 | |
HF | 4476.5 a | 520.7 a | 364.5 a | 11,155.6 ab | 11.1 |
Treatment | N | P2O5 | K2O | Others |
---|---|---|---|---|
BF a | 23.4 | 60 | 90 | - |
SU | 180 | 120 | 105 | - |
ER | 180 | 120 | 105 | DCD b: 21.75, HQ: 0.9 |
HF | 300 | 180 | 210 | - |
Agricultural Inputs | Amount | Unit Price |
---|---|---|
N | As shown in Table 2 | 367.4 US$ t−1 |
P2O5 | As shown in Table 2 | 765.5 US$ t−1 |
K2O | As shown in Table 2 | 459.3 US$ t−1 |
Herbicide | 2.0 kg ha−1 | 1148.3 US$ t−1 |
Insecticide | 0.6 kg ha−1 | 888.0 US$ t−1 |
Diesel fuel | 68 kg ha−1 | 1.2 US$ kg−1 |
Electricity for irrigation | 750 kWh ha−1 | 0.1 US$ kWh−1 |
Seed | 28.2 kg ha−1 | 3.1 US$ kg−1 |
Nitrification inhibitor | As shown in Table 2 | 1.2 US$ kg−1 |
Urease inhibitor | As shown in Table 2 | 1.7 US$ kg−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Hu, Q.; Pan, F.; Pan, X. Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change. Plants 2023, 12, 3749. https://doi.org/10.3390/plants12213749
He H, Hu Q, Pan F, Pan X. Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change. Plants. 2023; 12(21):3749. https://doi.org/10.3390/plants12213749
Chicago/Turabian StyleHe, Huayun, Qi Hu, Feifei Pan, and Xuebiao Pan. 2023. "Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change" Plants 12, no. 21: 3749. https://doi.org/10.3390/plants12213749
APA StyleHe, H., Hu, Q., Pan, F., & Pan, X. (2023). Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change. Plants, 12(21), 3749. https://doi.org/10.3390/plants12213749