Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mulberry Sample Preparation
2.2. Determination of the Content of Soluble Protein (SP), Sucrose, Glucose, and Fructose
2.3. Determination of the Content of Anthocyanidin, Total Flavonoids (TF), and Total Polyphenols (TP)
2.4. Determination of DNJ Content and VC Content
2.5. Determination of Total Antioxidant Activities
2.6. Quantitative Descriptive Analysis (QDA) for Mulberry Vegetable
2.7. Statistical Analysis and Pearson Correlation Coefficients (PCC)
3. Results
3.1. The Shape, Color, and Carbohydrates Profile in Tender Shoots and Leaves of Differential Mulberry Varieties
3.2. Polyphenolic Compound Content in Tender Shoots and Leaves of Differential Mulberry Varieties
3.3. DNJ and VC Content in Tender Shoots and Leaves of Differential Mulberry Varieties
3.4. Total Antioxidant Activities of Tender Shoots and Leaves in Differential Mulberry Varieties
3.5. Sensory Quality Character Indexes of Tender Shoots and Leaves in Differential Mulberry Varieties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuwahara, M.; Kim, H.-K.; Ozaki, M.; Nanba, T.; Chijiki, H.; Fukazawa, M.; Okubo, J.; Mineshita, Y.; Takahashi, M.; Shibata, S. Consumption of biscuits with a beverage of mulberry or barley leaves in the afternoon prevents dinner-induced high, but not low, increases in blood glucose among young adults. Nutrients 2020, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-S.; Ji, T.; Su, S.-L.; Zhu, Y.; Chen, X.-L.; Shang, E.-X.; Guo, S.; Qian, D.-W.; Duan, J.-A. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and P38 MAPK/NF-κB pathway. J. Ethnopharmacol. 2022, 283, 114713. [Google Scholar] [CrossRef]
- Maqsood, M.; Saeed, R.A.; Sahar, A.; Khan, M.I. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J. Food Biochem. 2022, 46, e14263. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 229, 125124. [Google Scholar] [CrossRef]
- AI-Khayri, J.M.; Sahana, G.R.; Nagella, P. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Harasym, J.; Oledzki, R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition 2014, 30, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Rio, D.D. Understanding the association between dietary antioxidants, redoxstatus and disease: Is the total antioxidant capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of the antioxidant capacity of food products: Methods, applications and limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Chen, C.; Razali, U.H.M.; Saikim, F.H.; Mahyudin, A.; Noor, N.Q.I.M. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods 2021, 3, 689. [Google Scholar] [CrossRef]
- Hu, X.Q.; Jiang, L.; Zhang, J.G.; Deng, W.; Wang, H.L.; Wei, Z.J. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Ind. Crop. Prod. 2013, 49, 782–784. [Google Scholar] [CrossRef]
- Thakur, K.; Zhang, Y.Y.; Mocan, A.; Zhang, F.; Zhang, G.J.; Wei, Z.J. 1-deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci. Technol. 2019, 89, 88–89. [Google Scholar] [CrossRef]
- Health Law Supervision and Dispatch. Available online: http://www.nhc.gov.cn/wjw/gfxwj/201304/e33435ce0d894051b15490aa3219cdc4.shtml (accessed on 11 March 2002).
- Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol. 2019, 83, 138–158. [Google Scholar] [CrossRef]
- Rohela, G.K.; Shukla, P.; Muttanna; Kumaer, R.; Chowdhury, S.R. Mulberry (Morus spp.): An ideal plant for sustainable development. Trees Forest. People 2020, 2, 10011. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitative of microgram quantities of protein utilizing the principle of protein-dye binding. Ana. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Yue, Z.C.; Zhong, X.M.; Lei, J.L.; Tao, P.; Li, B.Y. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chem. 2020, 312, 126028. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, S.U.; Lee, H.S.; Kim, I.; Ahn, M.Y.; Ryu, K.S. Determination of 1-deoxynojirimycin in Morus Alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 2003, 1, 93–99. [Google Scholar] [CrossRef]
- Cemeroglu, B. Food Analysis; Food Technology Society Publication: Ankara, Turkey, 2007; pp. 168–171. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berest, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Simultaneous automated measurement of total ‘antioxidant’ (reducing) capacity and ascorbic acid concentration. Redox Rep. 1997, 4, 233–238. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Room. ISO: Geneva, Switzerland, 2007.
- Stone, H.; Sidel, J.L.; Thomas, H.A. The Organization and Operation of a Sensory Evaluation Program. In Sensory Evaluation Practices, 4th ed.; Stone, H., Sidel, J.L., Eds.; Food Science and Technology, International Series: Amsterdam, The Netherlands, 2012; pp. 21–67. [Google Scholar]
- Sun, X.J.; Liu, J.; Liao, S.T.; Zhou, Y.X.; Shi, Y.; Liu, F.; Shen, W.Z.; Lin, G.Y. Comprehensive quality evaluation of dehydrated mulberry-leaf vegetable prepared by using fresh mulberry leaves of different mulberry varieties. Sci. Seric. 2015, 41, 534–541. [Google Scholar]
- Hoppu, U.; Puputti, S.; Sandell, M. Factors related to sensory properties and consumer acceptance of vegetables. Crit. Rev. Food Sci. 2021, 61, 1751–1761. [Google Scholar] [CrossRef]
- Towler, M.J.; Weathers, P.J. Variations in key artemisinic and other metabolites throughout plant development in Artemisia annua L. for potential therapeutic use. Ind. Crop. 2015, 67, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.G.; Guo, X.N.; Zhu, K.X.; Liu, Y. Nutritional evaluation and antioxidant activity of sesame sprouts. Food Chem. 2011, 3, 799–803. [Google Scholar] [CrossRef]
- Sun, B.; Liu, N.; Zhao, Y.T.; Yan, H.Z.; Wang, Q.M. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem. 2011, 3, 941–947. [Google Scholar]
- Zeng, W.; Tao, H.; Li, Y.B.; Wang, J.S.; Xia, C.C.; Li, S.W.; Wang, M.Y.; Wang, Q.M.; Miao, H.Y. The flavor of Chinese kale sprouts is affected by genotypic variation of glucosinolates and their breakdown products. Food Chem. 2021, 359, 129824. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.M.; Yuan, F.J.; Fu, X.J.; Zhu, D.H. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds. Food Chem. 2016, 196, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.N.; Liu, S.M.; Englyst, H.N. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr. 2007, 6, 19–39. [Google Scholar] [CrossRef]
- Meyers, B.; Brewer, M.S. Sweet taste in man: A review. J. Food Sci. 2008, 73, 81–114. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Dunkel, A.; Szwengiel, A.; Czaczyk, K.; Drożdżyńska, A.; Zawirska-Wojtasiak, R.; Jeleń, H.H. The relation between phytochemical composition and sensory traits of selected Brassica vegetables. LWT Food Sci. Technol. 2022, 156, 113028. [Google Scholar] [CrossRef]
- Braun, D.M. Phloem loading and unloading of sucrose: What a long, strange trip from source to sink. Annu. Rev. Plant Biol. 2022, 73, 553–584. [Google Scholar] [CrossRef]
- Zhou, Q.Q.; Sun, W.J.; Lai, Z.X. Differential expression of genes in purple-shoot tea tender leaves and mature leaves during leaf growth. J. Sci. Food Agr. 2016, 6, 1982–1989. [Google Scholar] [CrossRef] [PubMed]
- Favell, D.J. A comparison of the vitamin C content of fresh and frozen vegetables. Food Chem. 1998, 1, 59–64. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007, 2, 106–112. [Google Scholar] [CrossRef]
- Wang, X.L.; Cai, X.F.; Xu, C.X.; Zhao, Q.; Ge, C.H.; Dai, S.J.; Wang, Q.H. Diversity of nitrate, oxalate, vitamin C and carotenoid contents in different spinach accessions and their correlation with various morphological traits. J. Hortic. Sci. Biotech. 2017, 93, 409–415. [Google Scholar] [CrossRef]
- Lown, M.; Fuller, R.; Lightowler, H.; Fraser, A.; Gallagher, A.; Stuart, B.; Byrne, C.D.; Lewith, G. Mulberry extract to modulate blood glucose responses in normoglycaemic adults (mulberry): Study protocol for a randomised controlled trial. Trials 2015, 16, 486. [Google Scholar] [CrossRef]
- Tang, L.N.; Huang, K.; Xie, J.; Yu, D.; Sun, L.; Huang, Q.; Bi, Y.J. 1-deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Electron. J. Biotechnol. 2017, 30, 39–47. [Google Scholar] [CrossRef]
- Ma, Y.; Lv, W.; Gu, Y.; Yu, S. 1-deoxynojirimycin in mulberry (Morus indica L.) leaves ameliorates stable angina pectoris in patients with coronary heart disease by improving antioxidant and anti-inflammatory capacities. Front. Pharmacol. 2019, 10, 569. [Google Scholar] [CrossRef]
Varieties | Anthocyanidin (mg of CG/g of DW) | TF (mg of QE/g of DW) | TP (mg of GAE/g of DW) | |||
---|---|---|---|---|---|---|
Tender Shoots | Leaves | Tender Shoots | Leaves | Tender Shoots | Leaves | |
VM1 | 3.19 ± 0.30 bc | 3.30 ± 0.29 ab | 15.58 ± 0.80 g | 15.96 ± 0.95 d | 48.01 ± 1.75 abc | 44.94 ± 1.88 ab |
VM5 | 2.93 ± 0.31 bc | 3.01 ± 0.26 bc | 19.400 ± 0.67 e | 16.10 ± 0.71 d | 48.21 ± 1.80 ab | 39.92 ± 1.72 e |
VM7 | 2.44 ± 0.16 c | 2.42 ± 0.11 de | 16.68 ± 0.71 fg | 13.89 ± 0.85 e | 45.78 ± 3.50 abcd | 40.21 ± 2.06 e |
VM9 | 3.14 ± 0.45 a | 2.22 ± 0.12 ef | 19.13 ± 0.38 e | 17.91 ± 0.43 c | 47.77 ± 0.49 abc | 44.37 ± 2.19 abcd |
VM10 | 3.49 ± 0.33 b | 3.38 ± 0.25 a | 17.65 ± 0.68 f | 15.85 ± 0.31 d | 49.38 ± 1.98 a | 46.80 ± 0.46 a |
VM12 | 2.91 ± 0.31 d | 2.66 ± 0.13 cd | 24.59 ± 1.01 a | 19.06 ± 0.76 ab | 45.26 ± 3.55 bcd | 42.79 ± 3.44 abcde |
VM13 | 2.33 ± 0.16 d | 3.19 ± 0.15 ab | 24.59 ± 0.82 a | 17.33 ± 0.77 c | 43.40 ± 0.39 d | 40.45 ± 1.95 de |
VM16 | 3.07 ± 0.39 bc | 2.33 ± 0.26 de | 20.94 ± 0.92 d | 17.45 ± 0.43 c | 48.70 ± 0.76 ab | 41.86 ± 2.93 bcde |
VM18 | 3.58 ± 0.24 a | 1.86 ± 0.09 f | 22.80 ± 0.80 c | 19.35 ± 0.41 a | 47.68 ± 3.35 abcd | 42.15 ± 1.81 bcde |
VM19 | 3.35 ± 0.23 b | 3.00 ± 0.12 bc | 15.52 ± 0.81 g | 18.37 ± 0.66 abc | 49.34 ± 1.83 a | 41.38 ± 1.60 bcde |
VM22 | 3.74 ± 0.04 a | 3.08 ± 0.30 ab | 19.90 ± 1.12 de | 13.62 ± 0.62 e | 45.66 ± 3.53 abcd | 44.61 ± 4.37 abc |
VM23 | 2.59 ± 0.19 d | 3.28 ± 0.28 ab | 19.03 ± 0.34 e | 18.03 ± 0.34 bc | 44.21 ± 1.82 cd | 40.85 ± 1.90 cde |
Mean | 3.06 | 2.81 | 19.65 | 16.91 | 46.95 | 42.50 |
SD | 0.45 | 0.498 | 3.13 | 1.86 | 2.01 | 2.20 |
CV (%) | 14.56 | 17.72 | 15.93 | 11.01 | 4.29 | 5.16 |
Varieties | Tender Shoots | Leaves | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Color | Texture | Flavor | Taste | Score | Ranking | Color | Texture | Flavor | Taste | Score | Ranking | |
VM1 | 4.67 ± 0.65 c | 4.42 ± 0.67 bc | 4.42 ± 0.79 b | 3.33 ± 0.49 d | 0.45 ± 0.14 | 7 | 4.42 ± 0.70 b | 2.67 ± 0.65 d | 4.42 ± 0.79 e | 2.67 ± 0.65 b | 0.42 ± 0.08 | 7 |
VM5 | 4.50 ± 0.67 c | 3.17 ± 0.39 d | 2.25 ± 0.45 d | 1.83 ± 0.39 f | 0.14 ± 0.29 | 12 | 4.58 ± 0.79 b | 2.17 ± 0.39 e | 2.25 ± 0.452 f | 0.83 ± 0.25 d | 0.20 ± 0.25 | 12 |
VM7 | 6.75 ± 0.75 ab | 6.75 ± 0.75 a | 4.67 ± 0.78 b | 6.50 ± 0.80 a | 0.89 ± 0.19 | 3 | 4.17 ± 0.72 b | 4.33 ± 0.65 b | 4.92 ± 070 cd | 6.33 ± 0.78 a | 0.70 ± 0.23 | 4 |
VM9 | 4.58 ± 0.67 c | 4.17 ± 0.58 dc | 4.08 ± 0.67 bc | 2.83 ± 0.39 e | 0.38 ± 0.17 | 10 | 2.25 ± 0.45 c | 1.83 ± 0.39 e | 4.67 ± 0.78 d | 1.25 ± 0.45 d | 0.20 ± 0.24 | 11 |
VM10 | 2.33 ± 0.49 d | 4.58 ± 0.52 bc | 4.50 ± 0.67 b | 4.08 ± 0.52 bc | 0.41 ± 0.16 | 8 | 4.67 ± 0.78 b | 1.50 ± 0.52 f | 4.83 ± 0.72 d | 1.83 ± 0.72 c | 0.34 ± 0.25 | 8 |
VM12 | 4.75 ± 0.45 c | 4.50 ± 0.52 bc | 4.25 ± 0.87 b | 4.33 ± 0.49 b | 0.50 ± 0.10 | 5 | 4.58 ± 0.67 b | 3.67 ± 0.65 c | 6.08 ± 0.79 bc | 2.00 ± 0.60 c | 0.56 ± 0.27 | 5 |
VM13 | 6.33 ± 0.65 b | 4.83 ± 0.58 bc | 4.67 ± 0.78 b | 6.17 ± 0.72 a | 0.72 ± 0.22 | 4 | 6.50 ± 0.80 a | 4.33 ± 0.65 b | 6.67 ± 0.49 ab | 6.50 ± 0.67 a | 0.93 ± 0.07 | 3 |
VM16 | 1.25 ± 0.45 e | 4.25 ± 0.45 c | 4.58 ± 1.00 b | 2.58 ± 0.70 e | 0.32 ± 0.36 | 11 | 4.67 ± 0.89 b | 1.67 ± 0.49 f | 3.75 ± 0.75 e | 1.08 ± 0.29 d | 0.26 ± 0.22 | 9 |
VM18 | 4.50 ± 0.67 c | 4.00 ± 0.74 d | 3.58 ± 0.79 c | 3.83 ± 0.58 c | 0.39 ± 0.14 | 9 | 4.75 ± 0.89 b | 1.17 ± 039 f | 6.62 ± 0.58 b | 1.83 ± 0.58 c | 0.42 ± 0.43 | 6 |
VM19 | 6.92 ± 0.67 a | 6.42 ± 0.67 bc | 5.75 ± 0.75 a | 6.33 ± 0.52 a | 0.93 ± 0.05 | 2 | 6.58 ± 0.79 a | 4.42 ± 0.67 b | 6.25 ± 0.97 bc | 6.33 ± 0.49 a | 0.91 ± 0.42 | 2 |
VM22 | 6.83 ± 0.72 ab | 6.67 ± 0.99 b | 6.25 ± 0.87 a | 6.58 ± 0.45 a | 0.99 ± 0.01 | 1 | 6.75 ± 1.06 a | 5.00 ± 0.60 a | 6.75 ± 0.87 a | 6.67 ± 0.49 a | 1.00 ± 0.00 | 1 |
VM23 | 4.42 ± 0.67 c | 4.33 ± 0.49 bc | 4.33 ± 0.78 b | 3.75 ± 0.45 cd | 0.45 ± 0.11 | 6 | 4.67 ± 0.89 b | 1.25 ± 0.45 f | 3.33 ± 0.49 f | 2.17 ± 0.58 c | 0.26 ± 0.21 | 10 |
Mean | 4.82 | 4.84 | 4.53 | 4.35 | 0.55 | 4.88 | 2.83 | 5.05 | 3.29 | 0.52 | ||
SD | 1.75 | 1.14 | 1.05 | 1.66 | 0.27 | 1.24 | 1.42 | 1.46 | 2.39 | 0.30 | ||
CV (%) | 36.40 | 23.63 | 23.09 | 38.20 | 49.09 | 25.46 | 50.24 | 29.01 | 72.62 | 57.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhu, Y.; Lin, T.; Tao, H.; Chen, L.; Xu, Z.; Lv, Z.; Liu, P. Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control. Plants 2023, 12, 3748. https://doi.org/10.3390/plants12213748
Wei J, Zhu Y, Lin T, Tao H, Chen L, Xu Z, Lv Z, Liu P. Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control. Plants. 2023; 12(21):3748. https://doi.org/10.3390/plants12213748
Chicago/Turabian StyleWei, Jia, Yan Zhu, Tianbao Lin, Han Tao, Lei Chen, Zilong Xu, Zhiqiang Lv, and Peigang Liu. 2023. "Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control" Plants 12, no. 21: 3748. https://doi.org/10.3390/plants12213748
APA StyleWei, J., Zhu, Y., Lin, T., Tao, H., Chen, L., Xu, Z., Lv, Z., & Liu, P. (2023). Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control. Plants, 12(21), 3748. https://doi.org/10.3390/plants12213748