Molecular and Physiological Regulation of Secondary Metabolism in Vegetables 2.0

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (10 July 2024) | Viewed by 10220

Special Issue Editors


E-Mail Website
Guest Editor
Department of Horticulture, Zhejiang University, Hangzhou 310058, China
Interests: brassica vegetables; postharvest quality; glucosinolates; regulation; plant hormones
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Vegetables are closely related to daily human life. They not only decorate food with their colorful appearance but also guarantee the health of the people with their comprehensive and rich nutrition, especially bioactive compounds from secondary metabolism. Vegetables contain a variety of secondary metabolites, including carotenoids, flavonoids, glucosinolates, and anthocyanins, among others. These secondary metabolites are widely involved in growth and development, resistance against biotic and abiotic stresses, quality characteristics and formation, and other physiological processes of vegetable crops. Likewise, they can be influenced by intrinsic genetic factors and extrinsic environmental factors, as well as postharvest handlings. In model plants, great progress has been made in understanding the biosynthesis, degradation, and regulation of secondary metabolites; however, major gaps regarding vegetable crops remain in the literature. Today, the genomic sequence of an increasing number of vegetable crops has been explored, facilitating the elucidation of the regulatory mechanisms of secondary metabolites in vegetable crops together with other technologies, such as omics (transcriptomics, proteomics, metabolomics, epigenomics, etc.), gene editing technologies (ZFNs, TALENs, CRISPR, etc.), and bioinformatics. Therefore, in this Special Issue, articles (original research papers, perspectives, hypotheses, opinions, reviews, and methods) that focus on the regulatory mechanisms of secondary metabolism and their role in vegetable growth and development, as well as responses to environmental stresses, quality characteristics and changes at transcriptomic, proteomic, metabolomic, and epigenetic levels, are most welcome.

Prof. Dr. Bo Sun
Dr. Huiying Miao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • secondary metabolites
  • biosynthesis, degradation, and regulation
  • growth and development
  • biotic and abiotic stress responses
  • quality characteristics
  • postharvest
  • gene function
  • omics studies
  • gene editing
  • bioinformatics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4245 KiB  
Article
Photoperiodic Effect on Growth, Photosynthesis, Mineral Elements, and Metabolome of Tomato Seedlings in a Plant Factory
by Shaofang Wu, Rongguang Li, Chongxing Bu, Cuifang Zhu, Chen Miao, Yongxue Zhang, Jiawei Cui, Yuping Jiang and Xiaotao Ding
Plants 2024, 13(22), 3119; https://doi.org/10.3390/plants13223119 - 5 Nov 2024
Viewed by 483
Abstract
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three [...] Read more.
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three photoperiods (12 h, 16 h, and 20 h) were tested in a plant factory. Growth parameters, including plant height, stem diameter, fresh and dry weights of shoots and roots, photosynthetic characteristics, mineral content, and metabolome profiles, were analyzed under these conditions. The results indicated that prolonged light exposure enhanced plant growth, with the highest photosynthesis and chlorophyll content observed under a 20 h photoperiod. However, no significant correlation was observed between the photoperiod and the mineral element content, particularly for macro minerals. Metabolome analysis revealed that different photoperiods influenced the accumulation of metabolites, particularly in the lipid metabolism, amino acid metabolism, and membrane transport pathways. Long periods of light would enhance photosynthesis and metabolism, improving the rapid growth of tomato seedlings. Overall, this study provides a theoretical basis for understanding the responses of truss tomato cultivars to varying photoperiods in plant factories and proposes an optimizable method for accelerating the progress of tomato seedling cultivation. Full article
Show Figures

Figure 1

12 pages, 4405 KiB  
Article
Integrative Analyses of Metabolites and Transcriptome Reveal the Metabolic Pattern of Glucosinolates in Potherb Mustard (Brassica juncea var. multiceps)
by Jie Wang, Shunhao Yu, Xiliang Ren, Yating Wang, Zhongrui Wang, Qiufeng Meng, Yunping Huang and Yuhong Wang
Plants 2024, 13(17), 2481; https://doi.org/10.3390/plants13172481 - 5 Sep 2024
Viewed by 623
Abstract
Potherb mustard (Brassica juncea var. multiceps) is one of the most commonly consumed leafy vegetable mustards, either fresh or in pickled form. It is rich in glucosinolates, whose hydrolyzed products confer potherb mustard’s distinctive flavor and chemopreventive properties. In this study, [...] Read more.
Potherb mustard (Brassica juncea var. multiceps) is one of the most commonly consumed leafy vegetable mustards, either fresh or in pickled form. It is rich in glucosinolates, whose hydrolyzed products confer potherb mustard’s distinctive flavor and chemopreventive properties. In this study, the composition and content of glucosinolates, as well as the hydrolysis pattern of sinigrin were investigated in potherb mustard leaves of different varieties. Variations in the glucosinolate profile and accumulation were observed among the potherb mustard varieties studied, with sinigrin being the predominant one in all varieties, accounting for 81.55% to 97.27%. Sinigrin tended to be hydrolyzed to isothiocyanate (ITC) rather than epithionitrile (EPN) in potherb mustard, while 3-butenyl nitrile (SIN-NIT) could be hardly detected. Transcriptome analysis revealed a higher expression level of numerous genes involved in aliphatic glucosinolate biosynthesis in X11 compared to X57, corresponding to the higher aliphatic glucosinolate accumulation in X11 (91.07 µmol/g) and lower level in X57 (25.38 µmol/g). ESM1 is known to repress nitrile formation and favor isothiocyanate production during glucosinolate hydrolysis. In this study, all four ESM1s showed a higher expression level in X11 compared to X57, which may determine the hydrolysis pattern of sinigrin in potherb mustard. Altogether, our findings shed light on the glucosinolate metabolic pattern in potherb mustard, which will also facilitate the engineering of metabolic pathways at key checkpoints to enhance bioactive compounds for tailored flavor or pharmaceutical needs. Full article
Show Figures

Figure 1

15 pages, 4753 KiB  
Article
Variation in Nutritional Components and Antioxidant Capacity of Different Cultivars and Organs of Basella alba
by Yi Zhang, Wenjuan Cheng, Hongmei Di, Shihan Yang, Yuxiao Tian, Yuantao Tong, Huanhuan Huang, Victor Hugo Escalona, Yi Tang, Huanxiu Li, Fen Zhang, Bo Sun and Zhi Huang
Plants 2024, 13(6), 892; https://doi.org/10.3390/plants13060892 - 20 Mar 2024
Cited by 4 | Viewed by 2266
Abstract
Basella alba is a frequently consumed leafy vegetable. However, research on its nutritional components is limited. This study aimed to explore the variation in the nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Here, we primarily chose [...] Read more.
Basella alba is a frequently consumed leafy vegetable. However, research on its nutritional components is limited. This study aimed to explore the variation in the nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Here, we primarily chose classical spectrophotometry and high-performance liquid chromatography (HPLC) to characterize the variation in nutritional components and antioxidant capacity among different organs (inflorescences, green fruits, black fruits, leaves, and stems) of eight typical cultivars of Basella alba. The determination indices (and methods) included the total soluble sugar (anthrone colorimetry), total soluble protein (the Bradford method), total chlorophyll (the ethanol-extracting method), total carotenoids (the ethanol-extracting method), total ascorbic acid (the HPLC method), total proanthocyanidins (the p-dimethylaminocinnamaldehyde method), total flavonoids (AlCl3 colorimetry), total phenolics (the Folin method), and antioxidant capacity (the FRAP and ABTS methods). The results indicated that M5 and M6 exhibited advantages in their nutrient contents and antioxidant capacities. Additionally, the inflorescences demonstrated the highest total ascorbic acid and total phenolic contents, while the green and black fruits exhibited relatively high levels of total proanthocyanidins and antioxidant capacity. In a comparison between the green and black fruits, the green fruits showed higher levels of total chlorophyll (0.77–1.85 mg g−1 DW), total proanthocyanidins (0.62–2.34 mg g−1 DW), total phenolics (15.28–27.35 mg g−1 DW), and ABTS (43.39–59.16%), while the black fruits exhibited higher levels of total soluble protein (65.45–89.48 mg g−1 DW) and total soluble sugar (56.40–207.62 mg g−1 DW) in most cultivars. Chlorophyll, carotenoids, and flavonoids were predominantly found in the leaves of most cultivars, whereas the total soluble sugar contents were highest in the stems of most cultivars. Overall, our findings underscore the significant influence of the cultivars on the nutritional composition of Basella alba. Moreover, we observed notable variations in the nutrient contents among the different organs of the eight cultivars, and proanthocyanidins may contribute significantly to the antioxidant activity of the fruits. On the whole, this study provides a theoretical basis for the genetic breeding of Basella alba and dietary nutrition and serves as a reference for the comprehensive utilization of this vegetable. Full article
Show Figures

Figure 1

13 pages, 1619 KiB  
Article
Unravelling Glucoraphanin and Glucoerucin Metabolism across Broccoli Sprout Development: Insights from Metabolite and Transcriptome Analysis
by Jiansheng Wang, Yusen Shen, Xiaoguang Sheng, Huifang Yu, Mengfei Song, Qiaomei Wang and Honghui Gu
Plants 2024, 13(6), 750; https://doi.org/10.3390/plants13060750 - 7 Mar 2024
Cited by 1 | Viewed by 1123
Abstract
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g [...] Read more.
Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts. Full article
Show Figures

Figure 1

17 pages, 6987 KiB  
Article
Preliminary Comparisons of Tender Shoots and Young Leaves of 12 Mulberry Varieties as Vegetables and Constituents Relevant for Their Potential Use as Functional Food for Blood Sugar Control
by Jia Wei, Yan Zhu, Tianbao Lin, Han Tao, Lei Chen, Zilong Xu, Zhiqiang Lv and Peigang Liu
Plants 2023, 12(21), 3748; https://doi.org/10.3390/plants12213748 - 2 Nov 2023
Cited by 2 | Viewed by 1912
Abstract
Vegetables are essential for maintaining health and preventing diseases due to their nutrients and functional components. However, vegetables specifically designed for blood sugar control are limited. The mulberry tree (Morus) offers potential as a source of functional vegetables with blood-sugar-lowering properties, mainly attributed [...] Read more.
Vegetables are essential for maintaining health and preventing diseases due to their nutrients and functional components. However, vegetables specifically designed for blood sugar control are limited. The mulberry tree (Morus) offers potential as a source of functional vegetables with blood-sugar-lowering properties, mainly attributed to 1-Deoxynojirimycin (DNJ). This study compared the nutritional composition and DNJ content in various edible parts of twelve mulberry tree varieties. Sensory evaluations were also conducted to assess sensory attributes. Interestingly, DNJ was found to show a positive correlation with sensory evaluations. Furthermore, the sugar content, particularly sucrose, was significantly higher in tender shoots than leaves, indicating tender shoots as a preferable choice for development as a functional food for blood sugar control. Finally, VM 19 and VM 22 are considered as good candidates for the mulberry vegetable using varieties after sensory evaluation and combining with the DNJ content. These findings provide valuable insights for future research into vegetable selections for blood sugar management and support the potential commercialization of mulberry leaf vegetables as functional food options. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 2295 KiB  
Review
The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper (Capsicum annuum L.)
by Yuanling Yang, Chengan Gao, Qingjing Ye, Chenxu Liu, Hongjian Wan, Meiying Ruan, Guozhi Zhou, Rongqing Wang, Zhimiao Li, Ming Diao and Yuan Cheng
Plants 2024, 13(20), 2887; https://doi.org/10.3390/plants13202887 - 15 Oct 2024
Viewed by 855
Abstract
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it [...] Read more.
Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism. The findings of this study are expected to enhance comprehension of capsaicinoids metabolism and aid in the improvement of breeding and cultivation practices for high-quality pepper in the future. Full article
Show Figures

Figure 1

13 pages, 3285 KiB  
Review
Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato
by Yuanyuan Liu, Hanru Hu, Rujia Yang, Zhujun Zhu and Kejun Cheng
Plants 2023, 12(18), 3289; https://doi.org/10.3390/plants12183289 - 17 Sep 2023
Cited by 3 | Viewed by 2269
Abstract
Steroid glycoalkaloids (SGAs) are a class of cholesterol-derived metabolites commonly found in the Solanaceae plants. α-Tomatine, a well-known bitter-tasting compound, is the major SGA in tomato, accumulating extensively in all plant tissues, particularly in the leaves and immature green fruits. α-Tomatine exhibits diverse [...] Read more.
Steroid glycoalkaloids (SGAs) are a class of cholesterol-derived metabolites commonly found in the Solanaceae plants. α-Tomatine, a well-known bitter-tasting compound, is the major SGA in tomato, accumulating extensively in all plant tissues, particularly in the leaves and immature green fruits. α-Tomatine exhibits diverse biological activities that contribute to plant defense against pathogens and herbivores, as well as conferring certain medicinal benefits for human health. This review summarizes the current knowledge on α-tomatine, including its molecular chemical structure, physical and chemical properties, biosynthetic and metabolic pathways, and transcriptional regulatory mechanisms. Moreover, potential future research directions and applications of α-tomatine are also discussed. Full article
Show Figures

Figure 1

Back to TopTop