Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices
Abstract
:1. Introduction
2. Results
2.1. Stability Index Measurements and ANOVA
2.2. Heritability Estimations
2.3. Correlations between Traits
2.4. AMMI and GGE Biplots
3. Discussion
4. Materials and Methods
4.1. Establishment of Crops and Experimental Techniques
4.2. Measurements
4.3. Data Analysis
4.4. The Multi-Environment Evaluation AMMI Tool
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mejri, S.; Mabrouk, Y.; Voisin, M.; Delavault, P.; Simier, P.; Saidi, M.; Belhadj, O. Variation in Quantitative Characters of Faba Bean after Seed Irradiation and Associated Molecular Changes. Afr. J. Biotechnol. 2012, 11, 8383–8390. [Google Scholar]
- Cooper, J.W.; Wilson, M.H.; Derks, M.F.L.; Smit, S.; Kunert, K.J.; Cullis, C.; Foyer, C.H. Enhancing Faba Bean (Vicia faba L.) Genome Resources. J. Exp. Bot. 2017, 68, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Desoky, E.M.; Mansour, E.; Yasin, M.A.T.; El-Sobky, E.E.A.; Rady, M.M. Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span. J. Agric. Res. 2020, 2, e0802. [Google Scholar] [CrossRef]
- Ayed, M.H. Effect of Partially Replacing Soybean by Broad Beans “Vicia faba Var Minor” on Digestibility, Growth Performances and Carcass Characteristics in Broiler Chickens. Adv. Environ. Biol. 2011, 5, 2332–2335. [Google Scholar]
- Olaboro, G.; Marquardt, R.R.; Campbell, L.D.; Fröhlich, A.A. Purification, Identification and Quantification of an Egg-weight-depressing Factor (Vicine) in Fababeans (Vicia faba L.). J. Sci. Food Agric. 1981, 32, 1163–1171. [Google Scholar] [CrossRef]
- Grosjean, F.; Cerneau, P.; Bourdillon, A.; Bastianelli, D.; Peyronnet, C.; Duc, G. Valeur ali mentaire, pour le porc, de féveroles presque isogéniques, contenant ou non des tanins et à forte ou faible teneur en vicine et convicine. In Journe´es de la Recherche Porcine en France; ITP: Paris, France, 2001; pp. 205–210. [Google Scholar]
- Avramidou, E.; Ganopoulos, I.; Mylona, P.; Abraham, E.M.; Nianiou-Obeidat, I.; Osathanunkul, M.; Madesis, P. Comparative analysis of the genetic diversity of faba bean (Vicia faba L.). Sustainability 2023, 15, 1016. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for food and feed. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Loss, S.P.; Siddique, K.H.M. Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments. I. Seed yield and yield components. Field Crop Res. 1997, 52, 17–28. [Google Scholar] [CrossRef]
- Fox, P.N.; Crossa, J.; Ramagosa, I. Multi-environment testing and genotype x environment interaction. In Statistical Methods for Plant Variety Evaluation; Kempton, R.A., Fox, P.N., Eds.; Chapman & Hall: London, UK, 1997; pp. 117–138. [Google Scholar]
- Toker, C. Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.). Hereditas 2004, 140, 222–225. [Google Scholar] [CrossRef]
- Omrani, A.; Omrani, S.; Khodarahmi, M.; Shojaei, S.H.; Illés, Á.; Bojtor, C.; Mousavi, S.M.N.; Nagy, J. Evaluation of Grain Yield Stability in Some Selected Wheat Genotypes Using AMMI and GGE Biplot Methods. Agronomy 2022, 12, 1130. [Google Scholar] [CrossRef]
- Temesgen, T.; Keneni, G.; Sefera, T.; Jarso, M. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J. 2015, 3, 258–268. [Google Scholar] [CrossRef]
- Ipsilandis, C.; Tarazas, N. The ability to identify field bean (Vicia faba L.) varieties by isozyme analysis. Geoponika 1997, 371, 133–139. [Google Scholar]
- Ipsilandis, C. Analysis in four broad bean isozyme systems by starch gel electrophoresis. Geoponika 1998, 373, 5–10. [Google Scholar]
- Lyu, J.I.; Ramekar, R.; Kim, J.M.; Hung, N.N.; Seo, J.S.; Kim, J.-B.; Choi, I.-Y.; Park, K.-C.; Kwon, S.-J. Unraveling the complexity of faba bean (Vicia faba L.) transcriptome to reveal cold-stress-responsive genes using long-read isoform sequencing technology. Sci. Rep. 2021, 11, 21094. [Google Scholar] [CrossRef]
- Essa, S.M.; Wafa, H.A.; Mahgoub, E.-S.I.; Hassanin, A.A.; Al-Khayri, J.M.; Jalal, A.S.; El-Moneim, D.A.; ALshamrani, S.M.; Safhi, F.A.; Eldomiaty, A.S. Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters. Sustainability 2023, 15, 3291. [Google Scholar] [CrossRef]
- Abid, G.; Mingeot, D.; Udupa, S.M.; Muhovski, Y.; Watillon, B.; Sassi, K.; M’hamdi, M.; Souissi, F.; Mannai, K.; Barhoumi, F.; et al. Genetic Relationship and Diversity Analysis of Faba Bean (Vicia faba L. Var. Minor) Genetic Resources Using Morphological and Microsatellite Molecular Markers. Plant Mol. Biol. Rep. 2015, 33, 1755–1767. [Google Scholar] [CrossRef]
- Sabaghnia, N.; Karimizadeh, R.; Mohammadi, M. Graphic analysis of yield stability in new improved lentil (Lens culinaris Medik.) genotypes using nonparametric statistics. Acta Agric. Slovenica 2015, 103, 113–127. [Google Scholar] [CrossRef]
- Mekiso Halengo, M.; Jolobo, E.L.; Sultan, M.E.; Ebrahim, M.S.; Amza, S.M.; Endrias Asele, M. Adaptability evaluation and stability analysis of faba bean (Vicia faba L.) varieties in high altitude areas of southern Ethiopia. J. Sci. Dev. 2022, 10, 13–22. [Google Scholar]
- Singh, R.P.; Herrera-Foessel, S.; Huerta-Espino, J.; Singh, S.; Bhavani, S.; Lan, C.; Basnet, B.R. Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. J. Integr. Agric. 2014, 13, 255–261. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multienvironment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- De Leon, N.; Jannink, J.L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef]
- Kumar, S.; Ali, M. GE interaction and its breeding implications in pulses. Botanica 2006, 56, 31–36. [Google Scholar]
- Flores, F.; Hybl, M.; Knudsen, J.C.; Marget, P.; Muel, F.; Nadal, S.; Narits, L.; Raffiot, B.; Sass, O.; Solis, I.; et al. Adaptation of spring faba bean types across European climates. Field Crops Res. 2013, 145, 1–9. [Google Scholar] [CrossRef]
- Flores, F.; Moreno, M.T.; Cubero, J.I. A comparison of univariate and multivariate methods to analyze G x E interaction. Field Crops Res. 1998, 56, 271–286. [Google Scholar] [CrossRef]
- Elias, A.A.; Robbins, K.R.; Doerge, R.W.; Tuinstra, M.R. Half a century of studying genotype x environment interactions in plant breeding experiments. Crop Sci. 2016, 56, 2090–2105. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of a yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yang, R.C.; Crossa, J.; Cornelius, P.L.; Burgueño, J. Biplot analysis of genotype environment interaction: Proceed with caution. Crop Sci. 2009, 49, 1564–1576. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Assessment of interactions between yield components of common vetch cultivars in both conventional and low-input cultivation systems. Agriculture 2021, 11, 369. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. A Stability Analysis Using AMMI and GGE Biplot Approach on Forage Yield Assessment of Common Vetch in Both Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 567. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Yield components stability assessment of peas in conventional and low-input cultivation systems. Agriculture 2021, 11, 805. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Estimations on Trait Stability of Maize Genotypes. Agriculture 2021, 11, 952. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Stability, the Last Frontier: Forage Yield Dynamics of Peas under Two Cultivation Systems. Plants 2022, 11, 892. [Google Scholar] [CrossRef] [PubMed]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. A Comparative Study on Stability of Seed Characteristics in Vetch and Pea Cultivations. Agriculture 2023, 13, 1092. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Stability Dynamics of Main Qualitative Traits in Maize Cultivations across Diverse Environments regarding Soil Characteristics and Climate. Agriculture 2023, 13, 1033. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Yan, W. Analysis and handling of G × E in a practical breeding program. Crop Sci. 2016, 56, 2106–2118. [Google Scholar] [CrossRef]
- Papastylianou, P.; Vlachostergios, D.N.; Dordas, C.; Tigka, E.; Papakaloudis, P.; Kargiotidou, A.; Pratsinakis, E.; Koskosidis, A.; Pankou, C.; Kousta, A.; et al. Genotype x environment interaction analysis of faba bean (Vicia faba L.) for biomass and seed yield across different environments. Sustainability 2021, 13, 2586. [Google Scholar] [CrossRef]
- Haile, G.A.; Kebede, G.Y. Identification of Stable Faba Bean (Vicia faba L.) Genotypes for Seed Yield in Ethiopia Using GGE Model. J. Plant Sci. 2021, 9, 163–169. [Google Scholar] [CrossRef]
- Afeta, T.; Tesso, B.; Lule, D. GGE bi-plot analysis of multi-environment trial for grain yield stability of faba bean (Vicia faba L.) genotypes in the highlands of Oromia region, Ethiopia. J. Genet. Genom. Plant Breed. 2021, 5, 18–28. [Google Scholar]
- Abou-Khater, L.; Maalouf, F.; Jighly, A.; Rubiales, D.; Kumar, S. Adaptability and Stability of Faba Bean (Vicia faba L.) Accessions under Diverse Environments and Herbicide Treatments. Plants 2022, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Fasoula, V.A. Prognostic Breeding: A new paradigm for crop improvement. Plant Breed. Rev. 2013, 37, 297–347. [Google Scholar]
- Di Paolo, E.; Garofalo, P.; Rinaldi, M. Irrigation and nitrogen fertilization treatments on productive and qualitative traits of broad bean (Vicia faba var. minor L.) in a Mediterranean environment. Legume Res. 2015, 38, 209–218. [Google Scholar] [CrossRef]
- Gurmu, F.; Lire, E.; Asfaw, A.; Alemayehu, F.; Rezene, Y.; Ambachew, D. GGE-biplot analysis of grain yield of faba bean genotypes in southern Ethiopia. Electron. J. Plant Breed. 2012, 3, 898–907. [Google Scholar]
- Fasoulas, A.C. The Honeycomb Methodology of Plant Breeding; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki: Thessaloniki, Greece, 1988; p. 168. [Google Scholar]
- Kumar, P.; Bishnoi, S.; Kaushik, P. Genetic variability, heritability and genetic advance for seed yield and other agro-morphological traits in faba bean (Vicia faba L) genotypes of different origin. Biosci. Trends 2017, 10, 1246–1248. [Google Scholar]
- Alan, O.; Geren, H. Evaluation of heritability and correlation for seed yield and yield components in faba bean (Vicia faba L.). J. Agron. 2007, 6, 484–487. [Google Scholar]
- Ulukan, H.; Guler, M.; Keskin, S. A path coefficient analysis some yield and yield components in faba bean (Vicia faba L.) genotypes. Pak. J. Biol. Sci. 2003, 6, 1951–1955. [Google Scholar] [CrossRef]
- Bodner, G.; Kronberga, A.; Lepse, L.; Olle, M.; Vågen, I.M.; Rabante, L.; Fernández, J.A.; Ntatsi, G.; Balliu, A.; Rewald, B. Trait identification of faba bean ideotypes for Northern European environments. Eur. J. Agron. 2018, 96, 1–12. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). Approved Methods of the American Association of Cereal Chemists, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Fasoula, V.A. A novel equation paves the way for an everlasting revolution with cultivars characterized by high and stable crop yield and quality. In Proceedings of the 11th National Hellenic Conference in Genetics and Plant Breeding, Orestiada, Greece, 31 October–2 November 2006; pp. 7–14. [Google Scholar]
- Greveniotis, V.; Sioki, E.; Ipsilandis, C.G. Estimations of fiber trait stability and type of inheritance in cotton. Czech J. Genet. Plant Breed. 2018, 54, 190–192. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, H.; Dickey, D.A. Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 1997; p. 666. [Google Scholar]
- McIntosh, M.S. Analysis of Combined Experiments. Agron. J. 1983, 75, 153–155. [Google Scholar] [CrossRef]
- Johnson, H.W.; Robinson, H.E.; Comstock, R.E. Estimate of genetic and environmental variability in soybean. Agron. J. 1955, 47, 314–318. [Google Scholar] [CrossRef]
- Hanson, G.; Robinson, H.F.; Comstock, R.E. Biometrical studies on yield in segregating population of Korean Lespedeza. Agron. J. 1956, 48, 268–274. [Google Scholar] [CrossRef]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: New Delhi, India, 1977; p. 304. [Google Scholar]
- Koundinya, A.V.V.; Ajeesh, B.R.; Hegde, V.; Sheela, M.N.; Mohan, C.; Asha, K.I. Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Sci. Hortic. 2021, 281, 109949. [Google Scholar]
Source of Variation | Seed Yield (kg ha−1) | Thousand-Seed Weight (g) | Number of Pods per Plant | Plant Height (cm) | Earliness in Days after Sowing | Crude Protein Content (%) | Fat Content (%) | Ash Content (%) | Starch Content (%) | Crude Fiber Content (%) | Water Content (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | |
Environments (E) | 281,751.68 ** | 10,775.216 ** | 16.828 ** | 19.745 ** | 56.750 ** | 24.388 ** | 0.195 ** | 0.543 ** | 10.457 ** | 1.574 ** | 6.683 ** |
REPS/environments | 27,419.51 * | 1108.418 * | 0.956 * | 3.150 ns | 0.646 ns | 0.101 ** | 0.001 * | 0.001 ns | 0.123 ns | 0.004 ns | 0.015 ns |
Varieties (G) | 2,248,705.07 ** | 82,345.910 ** | 10.324 ** | 226.543 ** | 216.978 ** | 106.553 ** | 0.249 ** | 3.150 ** | 42.459 ** | 31.691 ** | 6.691 ** |
Environments × varieties (G × E) | 282,026.37 ** | 10,649.174 ** | 7.111 ** | 15.231 ** | 1.332 * | 0.079 * | 0.010 ** | 0.012 ** | 1.384 ** | 0.128 ** | 1.086 ** |
Error | 16,890.93 | 694.571 | 0.341 | 2.655 | 0.885 | 0.050 | 0.001 | 0.005 | 0.098 | 0.005 | 0.013 |
Environments | Seed Yield (kg ha−1) | Thousand-Seed Weight (g) | Number of Pods per Plant | Plant Height (cm) | Earliness in Days after Sowing | Crude Protein Content (%) | Fat Content (%) | Ash Content (%) | Starch Content (%) | Crude Fiber Content (%) | Water Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | Giannitsa | 56 | 35 | 171 | 691 | 1861 | 316 | 539 | 242 | 1880 | 112 | 313 |
Florina | 64 | 30 | 193 | 692 | 2216 | 364 | 524 | 250 | 1113 | 98 | 277 | |
Trikala | 38 | 40 | 141 | 707 | 3965 | 367 | 558 | 214 | 1441 | 115 | 289 | |
Kalambaka | 79 | 61 | 223 | 1685 | 2680 | 321 | 143 | 210 | 1734 | 131 | 290 | |
Low Input | Giannitsa | 144 | 107 | 154 | 1591 | 2116 | 412 | 135 | 258 | 1883 | 110 | 489 |
Florina | 115 | 80 | 394 | 1047 | 2658 | 300 | 90 | 280 | 1142 | 205 | 100 | |
Trikala | 113 | 68 | 321 | 2084 | 3479 | 424 | 190 | 231 | 1456 | 119 | 371 | |
Kalambaka | 332 | 224 | 519 | 1051 | 2401 | 355 | 207 | 236 | 1748 | 109 | 144 | |
Conventional and Low Input | Giannitsa | 80 | 52 | 156 | 902 | 1874 | 336 | 198 | 206 | 1653 | 100 | 345 |
Florina | 83 | 44 | 256 | 838 | 2304 | 300 | 142 | 217 | 1044 | 122 | 148 | |
Trikala | 53 | 49 | 186 | 1070 | 3060 | 357 | 230 | 191 | 1313 | 103 | 330 | |
Kalambaka | 120 | 95 | 312 | 1299 | 2127 | 317 | 170 | 185 | 1544 | 108 | 191 |
Genotypes | Seed Yield (kg ha−1) | Thousand-Seed Weight (g) | Number of Pods per Plant | Plant Height (cm) | Earliness in Days after Sowing | Crude Protein Content (%) | Fat Content (%) | Ash Content (%) | Starch Content (%) | Crude Fiber Content (%) | Water Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | Polycarpe | 132 | 92 | 175 | 838 | 2878 | 486 | 144 | 579 | 2331 | 640 | 445 |
Tanagra | 183 | 274 | 134 | 2035 | 4244 | 543 | 62 | 279 | 2075 | 953 | 179 | |
Ste1 | 192 | 88 | 315 | 1563 | 4589 | 538 | 106 | 571 | 2970 | 888 | 247 | |
Ste2 | 124 | 65 | 155 | 1555 | 3409 | 555 | 60 | 529 | 1945 | 547 | 180 | |
Low-input | Polycarpe | 120 | 76 | 336 | 1777 | 3231 | 663 | 83 | 631 | 2323 | 285 | 386 |
Tanagra | 70 | 43 | 208 | 1652 | 4367 | 773 | 77 | 323 | 2106 | 1004 | 96 | |
Ste1 | 193 | 138 | 546 | 1211 | 5086 | 651 | 93 | 637 | 2927 | 1606 | 259 | |
Ste2 | 171 | 139 | 148 | 1452 | 4643 | 547 | 113 | 565 | 1945 | 2632 | 150 | |
Conventional & Low-input | Polycarpe | 127 | 84 | 234 | 1126 | 2617 | 499 | 105 | 377 | 1977 | 326 | 420 |
Tanagra | 61 | 50 | 166 | 1634 | 3673 | 540 | 66 | 238 | 1791 | 436 | 126 | |
Ste1 | 160 | 86 | 398 | 1330 | 3960 | 518 | 100 | 397 | 2420 | 429 | 244 | |
Ste2 | 115 | 67 | 143 | 1378 | 3374 | 489 | 76 | 384 | 1701 | 551 | 158 |
Genotypes | Seed Yield (kg ha−1) | Thousand-Seed Weight (g) | Number of Pods per Plant | Plant Height (cm) | Earliness in Days after Sowing | Crude Protein Content (%) | Fat Content (%) | Ash Content (%) | Starch Content (%) | Crude Fiber Content (%) | Water Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Giannitsa | ||||||||||||
Conventional | Polycarpe | 401 | 355 | 107 | 5374 | 2269 | 686 | 966 | 1062 | 3719 | 416 | 409 |
Tanagra | 739 | 689 | 958 | 8975 | 2475 | 489 | 1497 | 946 | 3577 | 841 | 958 | |
Ste1 | 213 | 160 | 1415 | 753 | 4355 | 619 | 2280 | 960 | 3336 | 1473 | 457 | |
Ste2 | 98 | 49 | 913 | 881 | 3400 | 745 | 1017 | 1172 | 4102 | 451 | 716 | |
Low input | Polycarpe | 177 | 97 | 428 | 2733 | 2201 | 911 | 831 | 821 | 3604 | 7619 | 21,635 |
Tanagra | 829 | 1513 | 108 | 6211 | 3049 | 1482 | 710 | 1060 | 3481 | 10,536 | 2605 | |
Ste1 | 602 | 325 | 505 | 12,987 | 4387 | 1012 | 1937 | 1059 | 3252 | 5166 | 1368 | |
Ste2 | 122 | 100 | 450 | 9131 | 3861 | 826 | 818 | 1167 | 3945 | 5441 | 210 | |
Conventional and low input | Polycarpe | 260 | 163 | 163 | 2299 | 2110 | 758 | 681 | 470 | 2953 | 390 | 827 |
Tanagra | 702 | 608 | 198 | 4493 | 2649 | 646 | 382 | 521 | 2820 | 387 | 768 | |
Ste1 | 123 | 72 | 670 | 1525 | 3977 | 672 | 1957 | 540 | 2709 | 675 | 625 | |
Ste2 | 87 | 53 | 127 | 440 | 3496 | 666 | 302 | 589 | 3155 | 548 | 293 | |
Florina | ||||||||||||
Conventional | Polycarpe | 242 | 136 | 536 | 1048 | 2670 | 767 | 1929 | 800 | 3969 | 9552 | 2064 |
Tanagra | 1044 | 519 | 242 | 1536 | 2788 | 996 | 956 | 645 | 2843 | 993 | 1325 | |
Ste1 | 213 | 87 | 638 | 11,084 | 4308 | 731 | 2570 | 874 | 3527 | 1496 | 165 | |
Ste2 | 387 | 285 | 89 | 3143 | 4967 | 534 | 767 | 999 | 3330 | 1467 | 23,467 | |
Low input | Polycarpe | 43 | 28 | 589 | 1283 | 4207 | 665 | 628 | 952 | 3839 | 195 | 233 |
Tanagra | 426 | 301 | 1260 | 1605 | 3262 | 901 | 90 | 709 | 2962 | 9873 | 72 | |
Ste1 | 208 | 340 | 593 | 2423 | 4735 | 820 | 282 | 935 | 3429 | 1247 | 250 | |
Ste2 | 157 | 203 | 677 | 2901 | 7004 | 504 | 77 | 1172 | 3185 | 22,974 | 85 | |
Conventional and low input | Polycarpe | 78 | 50 | 594 | 801 | 3145 | 548 | 989 | 474 | 3061 | 352 | 445 |
Tanagra | 129 | 71 | 423 | 1611 | 3027 | 698 | 143 | 434 | 2379 | 615 | 146 | |
Ste1 | 138 | 79 | 617 | 4077 | 4166 | 671 | 524 | 500 | 2839 | 330 | 204 | |
Ste2 | 160 | 111 | 118 | 2377 | 5281 | 501 | 116 | 601 | 2666 | 684 | 161 | |
Trikala | ||||||||||||
Conventional | Polycarpe | 44 | 32 | 215 | 3000 | 5204 | 590 | 1154 | 821 | 3217 | 984 | 629 |
Tanagra | 102 | 580 | 88 | 2757 | 7005 | 957 | 876 | 654 | 3192 | 1616 | 2268 | |
Ste1 | 375 | 120 | 809 | 3615 | 12,111 | 648 | 561 | 944 | 4346 | 946 | 856 | |
Ste2 | 164 | 111 | 95 | 4395 | 6922 | 812 | 1030 | 825 | 3884 | 1924 | 1913 | |
Low input | Polycarpe | 515 | 334 | 1509 | 11,406 | 3135 | 1142 | 304 | 949 | 3136 | 11,010 | 698 |
Tanagra | 372 | 168 | 487 | 856 | 7330 | 1472 | 920 | 819 | 3058 | 12,544 | 752 | |
Ste1 | 90 | 72 | 1334 | 7241 | 7200 | 959 | 1440 | 1057 | 4144 | 24,018 | 1026 | |
Ste2 | 776 | 552 | 1821 | 11,629 | 7744 | 1002 | 645 | 769 | 3755 | 50,874 | 794 | |
Conventional and low input | Polycarpe | 87 | 62 | 314 | 4181 | 3224 | 656 | 371 | 488 | 2607 | 434 | 650 |
Tanagra | 24 | 26 | 129 | 1060 | 5314 | 870 | 304 | 474 | 2568 | 695 | 1159 | |
Ste1 | 155 | 96 | 813 | 2073 | 6270 | 671 | 714 | 562 | 3307 | 494 | 961 | |
Ste2 | 113 | 69 | 142 | 6786 | 4997 | 737 | 250 | 507 | 3056 | 752 | 922 | |
Kalambaka | ||||||||||||
Conventional | Polycarpe | 299 | 193 | 324 | 1526 | 6917 | 509 | 410 | 839 | 3234 | 728 | 1541 |
Tanagra | 131 | 188 | 254 | 2063 | 22,829 | 835 | 598 | 818 | 3930 | 1010 | 336 | |
Ste1 | 268 | 159 | 205 | 2624 | 15,935 | 784 | 258 | 1039 | 4085 | 1281 | 21,494 | |
Ste2 | 142 | 74 | 644 | 12,381 | 9478 | 817 | 813 | 1156 | 3957 | 2929 | 39,380 | |
Low input | Polycarpe | 172 | 113 | 311 | 1361 | 5437 | 771 | 290 | 914 | 3154 | 6250 | 244 |
Tanagra | 408 | 374 | 1838 | 4353 | 4815 | 979 | 383 | 906 | 3782 | 401 | 260 | |
Ste1 | 502 | 284 | 849 | 416 | 8523 | 825 | 541 | 1127 | 3960 | 12,136 | 376 | |
Ste2 | 439 | 323 | 1066 | 5802 | 6930 | 837 | 423 | 1343 | 3904 | 19,886 | 227 | |
Conventional and low input | Polycarpe | 208 | 142 | 332 | 1501 | 3964 | 585 | 280 | 449 | 2630 | 385 | 316 |
Tanagra | 83 | 109 | 477 | 2810 | 5022 | 773 | 457 | 448 | 3022 | 340 | 258 | |
Ste1 | 319 | 155 | 227 | 768 | 5875 | 707 | 364 | 540 | 3184 | 563 | 564 | |
Ste2 | 230 | 123 | 846 | 6631 | 5146 | 713 | 556 | 611 | 3063 | 2330 | 357 |
Traits | Min | Max | Mean | sd | GCV (%) | PCV (%) | H2 (%) | ||
---|---|---|---|---|---|---|---|---|---|
Seed yield (kg ha−1) | 2177.00 | 3908.00 | 2828.16 | 327.87 | 30,729.356 | 35,136.018 | 6.198 | 6.628 | 87.5 |
Thousand-seed weight (g) | 314.00 | 601.00 | 457.85 | 63.90 | 1120.2615 | 1286.6548 | 7.310 | 7.834 | 87.1 |
Number of pods per plant | 19.00 | 26.90 | 23.04 | 1.65 | 0.0502 | 0.1613 | 0.973 | 1.743 | 31.1 |
Plant height (cm) | 82.70 | 97.10 | 89.95 | 2.93 | 3.3018 | 3.5397 | 2.020 | 2.092 | 93.3 |
Earliness in days after sowing | 112.10 | 125.30 | 118.91 | 2.60 | 3.3695 | 3.3903 | 1.544 | 1.549 | 99.4 |
Crude protein content (%) | 23.93 | 31.64 | 27.80 | 1.66 | 1.6637 | 1.6649 | 4.639 | 4.641 | 99.9 |
Fat content (%) | 0.90 | 1.43 | 1.08 | 0.13 | 0.0037 | 0.0039 | 5.681 | 5.799 | 96.0 |
Ash content (%) | 2.96 | 4.31 | 3.54 | 0.27 | 0.0490 | 0.0492 | 6.247 | 6.259 | 99.6 |
Starch content (%) | 39.36 | 45.76 | 42.93 | 1.20 | 0.6412 | 0.6634 | 1.866 | 1.897 | 96.7 |
Crude fiber content (%) | 5.80 | 8.73 | 7.17 | 0.70 | 0.4932 | 0.4952 | 9.797 | 9.817 | 99.6 |
Water content (%) | 9.03 | 13.19 | 10.73 | 0.82 | 0.0876 | 0.1045 | 2.759 | 3.015 | 83.8 |
Seed Yield (kg ha−1) | Thousand-Seed Weight (g) | Number of Pods per Plant | Plant Height (cm) | Earliness in Days after Sowing | Crude Protein Content (%) | Fat Content (%) | Ash Content (%) | Starch Content (%) | Crude Fiber Content (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Thousand-seed weight (g) | 0.938 ** | |||||||||
Number of pods per plant | 0.020 | 0.059 | ||||||||
Plant height (cm) | 0.359 ** | 0.331 ** | −0.075 | |||||||
Earliness in days after sowing | 0.022 | −0.005 | −0.072 | −0.036 | ||||||
Crude protein content (%) | 0.291 ** | 0.258 ** | −0.099 | 0.261 ** | 0.178 ** | |||||
Fat content (%) | 0.029 | 0.020 | 0.132 * | 0.090 | 0.198 ** | 0.233 ** | ||||
Ash content (%) | −0.254 ** | −0.283 ** | −0.040 | −0.264 ** | 0.633 ** | −0.155 * | 0.033 | |||
Starch content (%) | −0.319 ** | −0.293 ** | 0.201 ** | −0.375 ** | −0.107 | −0.143 * | 0.073 | 0.255 ** | ||
Crude fiber content (%) | −0.345 ** | −0.415 ** | −0.030 | −0.358 ** | 0.153 * | −0.534 ** | −0.109 | 0.498 ** | 0.150 * | |
Water content (%) | 0.063 | 0.116 | −0.013 | 0.123 * | 0.111 | −0.340** | −0.224 ** | −0.081 | −0.629 ** | −0.044 |
Environments | Elevation (m) | Longitude | Latitude | Soil Texture | Planting Date | Harvesting Date |
---|---|---|---|---|---|---|
E1: Giannitsa | 10 | 22°39′ E | 40°77′ N | Clay | Middle November 2008 and middle November 2009 | Late June 2009 and late June 2010 |
E2: Florina | 705 | 21°22′ E | 40°46′ N | Sandy loam | Middle November 2008 and middle November 2009 | Late June 2009 and late June 2010 |
E3: Trikala | 120 | 21°64′ E | 39°55′ N | Sandy clay loam | Middle November 2008 and middle November 2009 | Late June 2009 and late June 2010 |
E4: Kalambaka | 190 | 21°65′ E | 39°64′ N | Silty clay | Middle November 2008 and middle November 2009 | Late June 2009 and late June 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants 2023, 12, 3769. https://doi.org/10.3390/plants12213769
Greveniotis V, Bouloumpasi E, Zotis S, Korkovelos A, Kantas D, Ipsilandis CG. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants. 2023; 12(21):3769. https://doi.org/10.3390/plants12213769
Chicago/Turabian StyleGreveniotis, Vasileios, Elisavet Bouloumpasi, Stylianos Zotis, Athanasios Korkovelos, Dimitrios Kantas, and Constantinos G. Ipsilandis. 2023. "Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices" Plants 12, no. 21: 3769. https://doi.org/10.3390/plants12213769
APA StyleGreveniotis, V., Bouloumpasi, E., Zotis, S., Korkovelos, A., Kantas, D., & Ipsilandis, C. G. (2023). Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants, 12(21), 3769. https://doi.org/10.3390/plants12213769