Foliar Application of Sulfur-Containing Compounds—Pros and Cons
Abstract
:1. Introduction
2. The Journey of the Sprayed Compounds from the Aerial Plant Surfaces to the Action Point within the Plant Tissues and Cells
2.1. From the Surface to the Vascular System
2.2. The Fate of the Foliar-Applied S-Containing Compounds
3. The Impact of the Atmospheric S on Foliage
4. S-Containing Mineral Compounds Applied as Foliar Sprays
4.1. Spraying with Sulfate Salts
4.2. The Foliar Application of Hydrogen Sulfide
5. S-Containing Metabolites Applied to Foliage by Spraying
5.1. Spraying with L-Cysteine
5.2. Spraying with Glutathione
5.3. Spraying with Methionine
5.4. Spraying with Alpha Lipoic Acid
5.5. Spraying with S-Methyl Methionine
Crop | Agricultural Situation | Compound | mM | mg L−1 (or %) | Foliar Application | Adjuvant | Reference |
---|---|---|---|---|---|---|---|
maize | salinity stress | Cys | 20 | alone or | [130] | ||
combined with | |||||||
FeSO4 & LiSO4 | |||||||
soybean | salinity stress | Cys | 0.17 | 20 | alone | [128] | |
0.33 | 40 | ||||||
broccoli | Se biofortification | Cys | 0.05 | combined | IAE | [131] | |
with Se | SiE | ||||||
soybean | salinity stress | GSH | 2 | alone | Tween-20 | [148] | |
oilseed rape | Zn biofortification | GSH | 100 | alone | Triton-X | [147] | |
hot pepper | GSH | 0.16 | 50 | alone | [146] | ||
0.33 | 100 | ||||||
wheat | GSH | 0.16 | 50 | combined | [149] | ||
0.33 | 100 | with AsA | |||||
chikpea | salinity stress | GSH | 0.16 | 50 | alone | [150] | |
0.33 | 100 | ||||||
0.49 | 150 | ||||||
wheat | salinity stress | GSH | 1 | combined with | [151] | ||
moringa leaf extract | |||||||
Brassica napus | Cd-polluted soil | GSH | 0.16 | 50 | [152] | ||
phytoremediation | GSH | 0.33 | 100 | ||||
cauliflower | drough stress | Met | 0.17 | 25 | alone | Tween-20 | [160] |
wheat | drough stress | Met | 4 | alone | [164] | ||
okra | Met | 0.03 | 5 | alone | Tween-20 | [165] | |
0.07 | 10 | ||||||
0.13 | 20 | ||||||
maize | salinity stress | Met | 0.03 | 5 | alone | [166] | |
0.07 | 10 | ||||||
tomato | salinity stress | Met | 0.67 | 0.01% | alone or combined | [167] | |
1.34 | 0.02% | with Phe | |||||
broccoli | Se biofortification | Met | 0.1 | combined with | IAE | [131] | |
0.1 | Cys, or Phe + Tyr | SiE | |||||
canola | salinity stress | LA | alone | [174] | |||
wheat | drough stress | LA | 0.02 | combined | [177] | ||
with Cys | |||||||
canola | salinity stress | SMM | 1 | alone | [187] |
6. S-Containing Non-Metabolites Applied as Foliar Sprays
6.1. Spraying with Thiourea
6.2. Spraying with Lignosulfonates
6.3. The Contribution of Dimethyl Sulfoxide as Additive in Spraying Solutions
6.4. S-Containing Spray Adjuvants
6.5. S-Containing Agrochemicals
6.6. Potential Contribution of ABC-Transporters and Glutathione S-Transferases to the Transport of the S-Containing Compounds
7. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández, V.; Sotiropoulos, T.; Brown, P. Foliar Fertilization: Scientific Principles and Field Practices, 1st ed.; International Fertilizer Industry Association (IFA): Paris, France, 2013. [Google Scholar]
- Fageria, N.K.; Barbosa Filho, M.P.; Moreira, A.; Guimarães, C.M. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Niu, J.; Liu, C.; Huang, K.; Liu, M.; Yan, D. Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Ishfaq, M.; Kiran, A.; ur Rehman, H.; Farooq, M.; Ijaz, N.H.; Nadeem, F.; Azeem, I.; Li, X.; Wakeel, A. Foliar nutrition: Potential and challenges under multifaceted agriculture. Environ. Exp. Bot. 2022, 200, 104909. [Google Scholar] [CrossRef]
- Alshaal, T.; El-Ramady, H. Foliar Application: From Plant Nutrition to Biofortification. Environ. Biodivers. Soil Secur. 2017, 1, 71–83. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Chorianopoulou, S.N.; Bouranis, D.L. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. Plants 2022, 11, 1979. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Fernández, V.; Eichert, T. Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization. Crit. Rev. Plant Sci. 2009, 28, 36–68. [Google Scholar] [CrossRef]
- Riederer, M.; Schneider, G. The effect of the environment on the permeability and composition of Citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 1990, 180, 154–165. [Google Scholar] [CrossRef]
- Fernández, V.; Ebert, G. Foliar iron fertilisation: A critical review. J. Plant Nutr. 2006, 28, 2113–2124. [Google Scholar] [CrossRef]
- Bondada, B.R.; Petracek, P.D.; Syvertsen, J.P.; Albrigo, L.G. Cuticular penetration characteristics of urea in citrus leaves. J. Hortic. Sci. Biotech. 2006, 81, 219–224. [Google Scholar] [CrossRef]
- Koch, K.; Ensikat, H.J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactnant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Phys. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Khan, A.S.; Malik, A.U.; Pervez, M.A.; Saleem, B.A.; Rajwana, I.A.; Shaheen, T.; Anwar, R. Foliar application of low biuret urea and fruit canopy position in the tree influence the leaf nitrogen status and physico-chemical characteristics of kinnow mandarin (Citrus reticulata blanco). Pak. J. Bot. 2009, 41, 73–85. [Google Scholar]
- Leonard, C.D. Use of dimethyl sulfoxide as a carrier for iron in nutritional foliar sprays applied to citrus. Ann. N. Y. Acad. Sci. 1967, 141, 148–158. [Google Scholar] [CrossRef]
- Lovatt, C.J. Timing citrus and avocado foliar nutrient applications to increase fruit set and size. HortTechnology 1999, 9, 607–612. [Google Scholar] [CrossRef]
- Hazen, J.L. Adjuvants—Terminology, classification, and chemistry. Weed Technol. 2000, 14, 773–784. [Google Scholar] [CrossRef]
- Haneklaus, S.; Bloem, E.; Schnug, E. Sulfur interaction in crop ecosystems. In Sulfur in Plants—An Ecological Perspective; Hawkesford, M.J., De Kok, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 17–58. [Google Scholar]
- McGrath, S.P.; Zhao, F.J.; Withers, P.J.A. Development of sulphur deficiency in crops and its treatment. In Proceedings of the Fertilizer Society; The Fertilizer Society: Peterborough, UK, 1996. [Google Scholar]
- Hawkesford, M.J. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J. Exp. Bot. 2000, 51, 131–138. [Google Scholar] [CrossRef]
- Rausch, T.; Wachter, A. Sulfur metabolism: A versatile platform for launching defence operations. Trends Plant Sci. 2005, 10, 503–509. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; De Kok, L.J. Managing sulphur metabolism in plants. Plant Cell Environ. 2006, 29, 382–395. [Google Scholar] [CrossRef]
- Bouranis, D.L.; Buchner, P.; Chorianopoulou, S.N.; Hopkins, L.; Protonotarios, V.E.; Siyiannis, V.F.; Hawkesford, M.J. Responses to sulfur limitation in maize. In Sulfur Assimilation and Abiotic Stress in Plants; Khan, N.A., Singh, S., Umar, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19. [Google Scholar] [CrossRef]
- Courbet, G.; Gallardo, K.; Vigani, G.; Brunel-Muguet, S.; Trouverie, J.; Christophe Salon, C.; Alain Ourry, A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. J. Exp. Bot. 2019, 70, 4183–4196. [Google Scholar] [CrossRef]
- Pandey, R.; Krishnapriya, V.; Bindraban, P.S. Biochemical nutrient pathways in plants applied as foliar spray: Phosphorus and iron. In VFRC Report 2013/1; Virtual Fertilizer Research Center: Washington, DC, USA, 2013; 23p. [Google Scholar]
- Haas, K.; Schoenherr, J. Composition of soluble cuticular lipids and water permeability of cuticular membranes from Citrus leaves. Planta 1979, 146, 339–403. [Google Scholar] [CrossRef] [PubMed]
- Jeffree, C.E. The fine structure of the plant cuticle. In Biology of the Plant Cuticle; Annual Plant Reviews; Riederer, M., Müller, C., Eds.; Blackwell Publishing: Oxford, UK, 2006; Volume 23, pp. 11–125. [Google Scholar]
- Orbovic, V.; Jifon, J.L.; Syvertsen, J.P. Foliar-applied surfactants and urea temporarily reduce carbon assimilation of grapefruit leaves. J. Amer. Soc. Hort. Sci. 2001, 126, 486–490. [Google Scholar] [CrossRef]
- Yeats, T.H.; Rose, J.K.C. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Schoenherr, J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 2006, 57, 2471–2491. [Google Scholar] [CrossRef] [PubMed]
- Franke, W. Ectodesmata and foliar absorption. Am. J. Bot. 1961, 48, 683–691. [Google Scholar] [CrossRef]
- Franke, W. Mechanism of foliar penetration of solutions. Ann. Rev. Plant Physiol. 1967, 18, 281–301. [Google Scholar] [CrossRef]
- Kannan, S. Foliar fertilization for sustainable crop production. Sustain. Agric. Revolut. 2010, 4, 371–402. [Google Scholar]
- Maier-Maercker, U. Peristomatal transpiration and stomatal movement: A controversial view. III. Visible effects of peristomatal transpiration on the epidermis. Z. Fur Pflanzenphysiol. 1979, 91, 225–238. [Google Scholar] [CrossRef]
- Farvardin, A.; González-Hernández, A.I.; Llorens, E.; García-Agustín, P.; Scalschi, L.; Vicedo, B. The Apoplast: A Key Player in Plant Survival. Antioxidants 2020, 9, 604. [Google Scholar] [CrossRef]
- Grignon, C.; Sentenac, H. pH and ionic conditions in the apoplast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991, 42, 103–128. [Google Scholar] [CrossRef]
- Mühling, K.H.; Sattelmacher, B. Apoplastic ion concentration of intact leaves of field bean (Vicia faba) as influenced by ammonium and nitrate nutrition. J. Plant Physiol. 1995, 147, 81–86. [Google Scholar] [CrossRef]
- Cram, W.J. Negative feedback regulation of transporting cells. The maintenance of turgor, volume and nutrient supply. In Transport in Plants II. Encyclopedia of Plant Physiology; Lüttge, U., Pitman, M.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 2, pp. 284–316. [Google Scholar]
- Yu, Q.; Tang, C.; Kuo, J. A critical review on methods to measure apoplastic pH in plants. Plant Soil 2000, 219, 29–40. [Google Scholar] [CrossRef]
- Sattelmacher, B. The apoplast and its significance for plant mineral nutrition. New Phytol. 2001, 149, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Felle, H.H.; Hanstein, S. The apoplastic pH of the substomatal cavity of the Vicia faba leaves and its regulation responding to different stress factors. J. Exp. Bot. 2002, 53, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Geilfus, C.M.; Muhling, K.H. Real-time imaging of leaf apoplastic pH dynamics in response to NaCl stress. Front. Plant Sci. 2011, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Physiological limits to zinc bio-fortification of edible crops. Front. Plant Sci. 2011, 2, 80. [Google Scholar] [CrossRef]
- Fujita, T.; Noguchi, K.; Terashima, I. Apoplastic mesophyll signals induce rapid stomatal responses to CO2 in Commelina communis. New Phytol. 2013, 199, 395–406. [Google Scholar] [CrossRef]
- Sauter, J.J.; van Cleve, B. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 1994, 8, 297–304. [Google Scholar] [CrossRef]
- Oparka, K.J.; Santa Cruz, S. The great escape: Phloem transport and unloading of macromolecules. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 323–347. [Google Scholar] [CrossRef]
- Herschbach, C.; Gessler, A.; Rennenberg, H. Long-distance transport and plant internal cycling of N-and S-compounds. In Progress in Botany; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 73, pp. 161–188. [Google Scholar]
- De Schepper, V.; Swaef, T.D.; Bauweraerts, I.; Steppe, K. Phloem transport: A review of mechanisms and controls. J. Exp. Bot. 2013, 64, 4839–4850. [Google Scholar] [CrossRef] [PubMed]
- Herschbach, C. Significance of Long-Distance Transport. In Molecular Physiology and Ecophysiology of Sulfur, Proceedings of the International Plant Sulfur Workshop; De Kok, L.J., Hawkesford, M.J., Rennenberg, H., Saito, K., Schnug, E., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.R.; Helariutta, Y.; He, X.Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The plant vascular system: Evolution, development and functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef] [PubMed]
- Rennenberg, H.; Herschbach, C. A detailed view on sulphur metabolism at the cellular and whole plant level illustrates challenges in metabolite flux analyses. J. Exp. Bot. 2014, 65, 5711–5724. [Google Scholar] [CrossRef] [PubMed]
- Gessler, A.; Kopriva, S.; Rennenberg, H. Regulation of nitrate uptake at the whole-tree level: Interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol. 2004, 24, 1313–1321. [Google Scholar] [PubMed]
- Schachtman, D.P.; Goodger, J.Q.D. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008, 13, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Gojon, A.; Nacry, P.; Davidian, J.C. Root uptake regulation: A central process for NPS homeostasis in plants. Curr. Opin. Plant Biol. 2009, 12, 328–338. [Google Scholar] [CrossRef]
- Liu, T.Y.; Chang, C.Y.; Chiou, T.J. The long-distance signaling of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Goodger, J.Q.D.; Schachtmann, D.P. Re-examining the role of ABA as the primary longdistance signal produced by water-stressed roots. Plant Signal. Behav. 2010, 5, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Chiou, T.J.; Lin, S.I. Signaling network in sensing phosphate availability in plants. Annu. Rev. Plant Biol. 2011, 62, 185–206. [Google Scholar] [CrossRef]
- Kehr, J. Systemic regulation of mineral homeostasis by microRNAs. Front. Plant Sci. 2013, 4, 145. [Google Scholar] [CrossRef]
- Cao, M.J.; Wang, Z.; Zhao, Q.; Mao, J.L.; Speiser, A.; Wirtz, M.; Hell, R.; Zhu, J.K.; Xiang, C.B. Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J. 2014, 77, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Malcheska, F.; Honsel, A.; Wildhagen, H.; Dürr, J.; Larisch, C.; Rennenberg, H.; Herschbach, C. Differential expression of specific sulfate transporters underlies seasonal and spatial patterns of sulfate allocation in trees. Plant Cell Environ. 2013, 36, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Herschbach, C.; Rennenberg, H. Sulfur nutrition of deciduous trees. Naturwissenschaften 2001, 88, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Kreuzwieser, J.; Schupp, R.; Sauter, J.J.; Rennenberg, H. Thiol and amino acid composition of the xylem sap of poplar trees (Populus × canadensis ‘Robusta’). Can. J. Bot. 1994, 72, 347–351. [Google Scholar] [CrossRef]
- Bourgis, F.; Roje, S.; Nuccio, M.L.; Fisher, D.B.; Tarczynski, M.C.; Li, C.; Herschbach, C.; Rennenberg, H.; Pimenta, M.J.; Shen, T.L.; et al. S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 1999, 11, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Zhang, L.; Grant, J.; Cooper, P.; Tegeder, M. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol. 2010, 154, 1886–1896. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.G.; Nour-Eldin, H.H.; Fuller, V.L.; Olsen, C.E.; Burow, M.; Halkier, B.A. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 2013, 25, 3133–3145. [Google Scholar] [CrossRef]
- Rennenberg, H.; Schmitz, K.; Bergmann, L. Long-distance transport of sulfur in Nicotiana tabacum. Planta 1979, 147, 57–62. [Google Scholar] [CrossRef]
- Burgener, M.; Suter, M.; Jones, S.; Brunold, C. Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves. Plant Physiol. 1998, 116, 1315–1322. [Google Scholar] [CrossRef]
- Takahashi, H. Sulfate transport systems in plants: Functional diversity and molecular mechanisms underlying regulatory coordination. J. Exp. Bot. 2019, 70, 4075–4087. [Google Scholar] [CrossRef]
- Gigolashvili, T.; Kopriva, S. Transporters in plant sulfur metabolism. Front. Plant Sci. 2014, 5, 442. [Google Scholar] [CrossRef] [PubMed]
- Andreae, M.O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 1990, 30, 1–29. [Google Scholar] [CrossRef]
- Tolocka, M.P.; Turpin, B. Contribution of organosulfur compounds to organic aerosol mass. Environ. Sci. Technol. 2012, 46, 7978–7983. [Google Scholar] [CrossRef]
- Fuentes-Lara, L.O.; Medrano-Macías, J.; Pérez-Labrada, F.; Rivas-Martínez, E.N.; García-Enciso, E.L.; González-Morales, S.; Juárez-Maldonado, A.; Rincón-Sánchez, F.; Benavides-Mendoza, A. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules 2019, 24, 2282. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency, Acid Rain. Available online: https://www.epa.gov/acidrain (accessed on 25 September 2023).
- Weber, J.N.; Kaufholdt, D.; Minner-Meinen, R.; Bloem, E.; Shahid, A.; Rennenberg, H.; Haensch, R. Impact of wildfires on SO2 detoxification mechanisms in leaves of oak and beech trees. Environ. Pollut. 2021, 272, 116389. [Google Scholar] [CrossRef] [PubMed]
- Baillie, C.K.; Kaufholdt, D.; Karpinski, L.H.; Schreiber, V.; Hänsch, S.; Evers, C.; Bloem, E.; Schnug, E.; Kreuzwieser, J.; Herschbach, C.; et al. Detoxification of volcanic sulfur surplus in planta: Three different strategies of survival. Environ. Exp. Bot. 2016, 126, 44–54. [Google Scholar] [CrossRef]
- Baillie, C.K.; Meinen, R.; Kaufholdt, D.; Hänsch, S.; Schmidt, N.; Zwerschke, D.; Kojima, M.; Takebayashi, Y.; Sakakibara, H.; Bloem, E.; et al. Apoplastic peroxidases enable an additional sulphite detoxification strategy and act as first line of defence upon exposure to sulphur containing gas. Environ. Exp. Bot. 2019, 157, 140–150. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Kesselmeier, J.; Schnug, E. Sulfur Fertilization and Fungal Infections Affect the Exchange of H2S and COS from Agricultural Crops. J. Agric. Food Chem. 2012, 60, 7588–7596. [Google Scholar] [CrossRef]
- Jing, W.; Wang, L.; Li, D.; Bao, X.; Shi, Y. Carbonyl sulfide (COS) and carbon disulfide (CS2) exchange fluxes between cotton fields and the atmosphere in the arid area in Xinjiang, China. Environ. Geochem. Health 2019, 41, 2195–2207. [Google Scholar] [CrossRef]
- Alkier, A.C.; Racz, G.J.; Soper, R.J. Effects of foliar and soil applied nitrogen and soil nitrogen level on the protein content of Neepawa wheat. Can. J. Soil Sci. 1972, 52, 301–309. [Google Scholar] [CrossRef]
- Poole, W.D.; Randall, G.W.; Ham, G.E. Foliar fertilization of soybean: I. Effect of fertilizer sources, rates and frequency of application. Agron. J. 1983, 75, 195–200. [Google Scholar] [CrossRef]
- Girma, K.; Martin, K.L.; Freeman, K.W.; Mosali, J.; Teal, R.K.; Raun, W.R.; Moges, S.M.; Arnall, D.B. Determination of optimum rate and growth for foliar applied phosphorus in corn. Commun. Soil Sci. Plant Anal. 2007, 38, 1137–1154. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- de Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Lawson, P.G.; Daum, D.; Czaudema, R.; Meuser, H.; Harling, J.W. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 2015, 6, 450. [Google Scholar] [CrossRef] [PubMed]
- Phattarakul, N.; Rerkasem, B.; Li, L.J.; Wu, L.H.; Zou, C.Q.; Ram, H.; Sohu, V.S.; Kang, B.S.; Surek, H.; Kalayci, M.; et al. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 2012, 361, 131–141. [Google Scholar] [CrossRef]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef]
- Garcia-Banuelos, M.L.; Sida-Arreola, J.P.; Sanches, E. Biofortification—Promising approach to increasing the content of iron and zinc in staple food crops. J. Elem. 2014, 19, 865–888. [Google Scholar]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Sotiropoulos, T.E.; Therios, I.N. Mobility of Iron and Manganese within Two Citrus Genotypes after Foliar Applications of Iron Sulfate and Manganese Sulfate. J. Plant Nutr. 2007, 30, 1385–1396. [Google Scholar] [CrossRef]
- Mortvedt, J.J. Iron sources and management practices for correcting iron chlorosis problems. J. Plant Nutr. 1986, 9, 961–974. [Google Scholar] [CrossRef]
- Rodriguez-Lucena, P.; Tomasi, T.; Pinton, R.; Hernández-Apaolaza, L.; Lucena, J.J.; Cesco, S. Evaluation of 59Fe-lignosulfonates complexes as Fe-sources for plants. Plant Soil 2009, 325, 53–63. [Google Scholar] [CrossRef]
- Carrasco, J.; Kovács, K.; Czech, V.; Fodor, F.; Lucena, J.J.; Vértes, A.; Hernández-Apaolaza, L. Influence of pH, Iron Source, and Fe/Ligand Ratio on Iron Speciation in Lignosulfonate Complexes Studied Using MössbauerSpectroscopy. Implications on Their Fertilizer Properties. J. Agric. Food Chem. 2012, 60, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, Z.; Rouached, H.; Rakha, A. Combating Mineral Malnutrition through Iron and Zinc Biofortification of Cereals. Compr. Rev. Food Sci. Food Saf. 2014, 13, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Afzal, J.; Wang, X.; Saleem, M.-H.; Sun, X.; Hussain, S.; Khan, I.; Rana, M.-S.; Ahmed, S.; Awan, S.-A.; Fiaz, S.; et al. Application of ferrous sulfate alleviates negative impact of cadmium in rice (Oryza sativa L.). Biocell 2021, 45, 1631–1649. [Google Scholar] [CrossRef]
- Bashir, A.; Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Ishaque, W.; Riaz, M.A.; Maqbool, A. Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environ. Sci. Pollut. Res. 2018, 25, 20691–20699. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Deng, S.; Zhou, Y.; Long, J.; Ding, D.; Du, H.; Lei, M.; Chen, C.; Tie, B.Q. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. Environ. Sci. Pol. Res. 2021, 28, 7828–7839. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Watanabe-Takahashi, A.; Smith Frank, W.; Blake-Kalff, M.; Hawkesford, M.J.; Saito, K. The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J. 2000, 23, 171–182. [Google Scholar] [CrossRef]
- Kataoka, T.; Watanabe-Takahashi, A.; Hayashi, N.; Ohnishi, M.; Mimura, T.; Buchner, P.; Hawkesford, M.J.; Yamaya, T.; Takahashi, H. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 2004, 16, 2693–2704. [Google Scholar] [CrossRef]
- Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 2011, 62, 157–184. [Google Scholar] [CrossRef]
- Dürr, J.; Bücking, H.; Mult, S.; Wildhagen, H.; Palme, K.; Rennenberg, H.; Ditengou, F.; Herschbach, C. Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO42− storage and mobilization. Plant Mol. Biol. 2010, 72, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Stuiver, C.E.E.; De Kok, L.J. Atmospheric H2S as sulphur source for sulphur deprived Brassica oleracea L. and Hordeum vulgare L. In Sulphur Metabolism in Higher Plants: Molecular, Ecophysiological and Nutritional Aspects, 1st ed.; Cram, W.J., De Kok, L.J., Stulen, I., Brunold, C., Rennenberg, H., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1997; pp. 292–294. [Google Scholar]
- Stulen, I.; Posthumus, F.S.; Amâncio, S.; Masselink-Beltman, I.; Müller, M.; De Kok, L.J. Mechanism of H2S phytotoxicity. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects, 1st ed.; Brunold, C., Rennenberg, H., De Kok, L.J., Davidian, J.C., Eds.; Paul Haupt: Bern, Switzerland, 2000; pp. 381–382. [Google Scholar]
- Ausma, T.; Parmar, S.; Hawkesford, M.J.; De Kok, L.J. Impact of atmospheric H2S, salinity and anoxia on sulfur metabolism in Zea mays. In Sulfur Metabolism in Higher Plants: Fundamental, Environmental and Agricultural Aspects, 1st ed.; De Kok, L.J., Hawkesford, M.J., Haneklaus, S.H., Schnug, E., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 93–101. [Google Scholar]
- Ausma, T.; De Kok, L.J. Atmospheric H2S: Impact on plant functioning. Front. Plant Sci. 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Ausma, Τ.; De Kok, L.J. Regulation of Sulfate Uptake and Assimilation in Barley (Hordeum vulgare) as Affected by Rhizospheric and Atmospheric Sulfur Nutrition. Plants 2020, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- De Kok, L.J.; Stahl, K.; Rennenberg, H. Fluxes of atmospheric hydrogen sulfide to plant shoots. New Phytol. 1989, 112, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Corpas, F.J.; Palma, J.M. H2S signaling in plants and applications in agriculture. J. Adv. Res. 2020, 24, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Gun, J.; Modestov, A.; Kamyshny, A.; Ryzkov, D.; Gitis, V.; Goifman, A.; Lev, O.; Hultsch, V.; Grischek, T.; Worch, E. Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions. Microchim. Acta 2004, 46, 229. [Google Scholar] [CrossRef]
- Huo, J.; Huang, D.; Zhang, J.; Fang, H.; Wang, B.; Wang, C.; Liao, W. Hydrogen sulfide: A gaseous molecule in postharvest freshness. Front. Plant Sci. 2018, 9, 1172. [Google Scholar] [CrossRef] [PubMed]
- Corpas, F.J.; González-Gordo, S.; Cañas, A.; Palma, J.M. Nitric oxide and hydrogen sulfide in plants: Which comes first? J. Exp. Bot. 2019, 70, 4391–4404. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, C.; Wang, N.; Wei, L.; Li, W.; Yao, Y.; Liao, W. Roles of small-molecule compounds in plant adventitious root development. Biomolecules 2019, 9, 420. [Google Scholar] [CrossRef]
- Montesinos-Pereira, D.; de la Torre-González, A.; Blasco, B.; Ruiz, J.M. Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L. ‘Bronco’). Sci. Hortic. 2018, 235, 349–356. [Google Scholar] [CrossRef]
- Khan, M.N.; AlZuaibr, F.M.; Al-Huqail, A.A.; Siddiqui, M.H.; Ali, H.M.; Al-Muwayhi, M.A.; Al-Haque, H.N. Hydrogen sulfide-mediated activation of O-Acetylserine (Thiol) Lyase and l/d-Cysteine Desulfhydrase enhance dehydration tolerance in Eruca sativa Mill. Int. J. Mol. Sci. 2018, 19, 3981. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Sun, L.; Yang, G.; Pei, Y. Hydrogen sulfide regulates energy production to delay leaf senescence induced by drought stress in Arabidopsis. Front. Plant Sci. 2018, 9, 1722. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xiao, T.; Zhou, H.; Xie, Y.; Shen, W. Hydrogen sulfide: A versatile regulator of environmental stress in plants. Acta Physiol. Plant. 2016, 38, 16. [Google Scholar] [CrossRef]
- Chen, J.; Shang, Y.-T.; Wang, W.-H.; Chen, X.-Y.; He, E.-M.; Zheng, H.-L.; Shangguan, Z. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front. Plant Sci. 2016, 7, 1173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, L.-Y.; Hu, K.-D.; He, Y.-D.; Wang, S.-H.; Luo, J.-P. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J. Integr. Plant Biol. 2008, 50, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Manganaris, G.A.; Papadopoulos, I.; Fotopoulos, V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J. Exp. Bot. 2013, 64, 1953–1966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiao, H.; Jiang, C.-X.; Wang, S.-H.; Wei, Z.-J.; Luo, J.-P.; Jones, R.L. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant. 2010, 32, 849–857. [Google Scholar] [CrossRef]
- Da-Silva, C.J.; Modolo, L.V. Hydrogen sulfide: A new endogenous player in an old mechanism of plant tolerance to high salinity. Acta Bot. Bras. 2018, 32, 150–160. [Google Scholar] [CrossRef]
- Hancock, J.T. Hydrogen sulfide and environmental stresses. Environ. Exp. Bot. 2019, 161, 50–56. [Google Scholar] [CrossRef]
- Alvarez, C.; Bermudez, A.; Romero, M.; Gotor, L.C.; Garcia, C.I. Cysteine homeostasis plays an essential role in plant immunity. New Phytol. 2012, 193, 165–177. [Google Scholar] [CrossRef]
- Azarakhsh, M.; Asrar, R.Z.; Mansouri, H. Effects of seed and vegetative stage cysteine treatments on oxidative stress response molecules and enzymes in Ocimum basilicum L. under cobalt stress. J. Soil Sci. Plant Nutr. 2015, 15, 651–662. [Google Scholar] [CrossRef]
- Kharma, A.; Grman, M.; Misak, A.; Domínguez-Álvarez, E.; Nasim, M.; Ondrias, K.; Chovanec, M.; Jacob, C. Inorganic polysulfides and related reactive sulfur–selenium species from the perspective of chemistry. Molecules 2019, 24, 1359. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lancaster, J.R. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013, 35, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Predmore, B.L.; Lefer, D.J.; Gojon, G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox Signal. 2012, 17, 119–140. [Google Scholar] [CrossRef]
- Sadak, M.S.; Asmaa, R.; El-Hameid, A.; Zaki, F.S.A.; Dawood, M.G.; El-Awadi, M.E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 2020, 44, 1. [Google Scholar] [CrossRef]
- Couturier, J.; Chibani, K.; Jacquot, J.P.; Rouhier, N. Cysteine-based redox regulation and signaling in plants. Front. Plant Sci. 2013, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Perveen, S.; Iqbal, N.; Saeed, M.; Zafar, S.; Arshad, Z. Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid DTC) under salt stress. Braz. J. Bot. 2018, 41, 805–815. [Google Scholar] [CrossRef]
- Bouranis, D.L.; Stylianidis, G.P.; Manta, V.; Karousis, E.N.; Tzanaki, A.; Dimitriadi, D.; Bouzas, E.A.; Siyiannis, V.F.; Constantinou-Kokotou, V.; Chorianopoulou, S.N.; et al. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. Plants 2023, 12, 1272. [Google Scholar] [CrossRef]
- Miranda, M.; Borisjuk, L.; Tewes, A.; Heim, U.; Sauer, N.; Wobus, U.; Weber, H. Amino acid permeases in developing seeds of Vicia faba L.: Expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J. 2001, 28, 61–71. [Google Scholar] [CrossRef]
- Tegeder, M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012, 15, 315–321. [Google Scholar] [CrossRef]
- Yao, X.; Nie, J.; Bai, R.; Sui, X. Amino Acid Transporters in Plants: Identification and Function. Plants 2020, 9, 972. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.E.; Droux, M.; Martin, J.; Douce, R. Localization of ATP Sulfurylase and O-Acetylserine (thiol) lyase in Spinach leaves. Plant Physiol. 1990, 94, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.P.; Wirtz, M.; Hell, R. Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana. Plant Cell Physiol. 2014, 55, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Herschbach, C.; Rennenberg, H. Long-distance transport of S-35-sulphur in 3-year-old beech trees (Fagus sylvatica). Physiol. Plant. 1995, 95, 379–386. [Google Scholar] [CrossRef]
- Tabe, L.M.; Droux, M. Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol. 2001, 126, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Kopriva, S.; Koprivova, A. Sulfate assimilation and glutathione synthesis in C-4 plants. Photosynth. Res. 2005, 86, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Imalay, J.A. Pathways of oxidative damage. Annu. Rev. Microbiol. 2003, 57, 395–418. [Google Scholar] [CrossRef]
- Pompella, V.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003, 66, 1499–1503. [Google Scholar] [CrossRef]
- Hossain, M.A.; Munné-Bosch, S.; Burritt, D.J.; Diaz-Vivancos, P.; Fujita, M.; Lorence, A. Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef]
- Ha, S.B.; Smith, A.P.; Howden, R.; Dietrich, M.W.; Bugg, S.; O’Connel, M.J.; Goldsbrough, P.B.; Cobbett, C.S. Phytochelatin synthesis genes from Arabidopsis and the yeast Schizosaccharomyces Pombe. Plant Cell 1999, 11, 1153–1164. [Google Scholar] [CrossRef]
- Rouhier, N.; Lemaire, S.D.; Jacquot, J.P. The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol. 2008, 59, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Ghoname, A.A.; Dawoo, M.G.; Sadak, M.S.; Hegazi, A.M.A. Improving nutritional quality of hot pepper (Capsicum annuum L.) plant via foliar application application with arginine or tryptophan or glutathione. J. Biol. Chem. Environ. Sci. 2010, 5, 409–429. [Google Scholar]
- Nakamura, S.; Wongkaew, A.; Nakai, Y.; Rai, H.; Ohkama-Ohtsu, N. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape. Plant Sci. 2019, 283, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Akram, S.; Siddiqui, M.N.; Hussain, B.M.N.; Al Bari, M.A.; Mostofa, M.G.; Hossain, M.A.; Tran, L.-S.P. Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J. Plant Growth Regul. 2017, 36, 877–888. [Google Scholar] [CrossRef]
- El-Awadi, M.E.; El-Lethy, S.R.; El-Rokiek, K.G. Effect of the Two Antioxidants; Glutathione and Ascorbic Acid on Vegetative Growth, Yield and Some Biochemical Changes in Two Wheat Cultivars. J. Plant Sci. 2014, 2, 215–221. [Google Scholar] [CrossRef]
- Sadak, M.S.; Abd Elhamid, E.M.; Ahmed, M.M.R.M. Glutathione Induced Antioxidant Protection Against Salinity Stress in Chickpea (Cicer arietinum L.) Plant. Egypt. J. Bot. 2017, 57, 293–302. [Google Scholar]
- Rehman, H.; Alharby, H.F.; Bamagoos, A.A.; Abdelhamid, M.T.; Rady, M.M. Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol. Biochem. 2021, 158, 43–52. [Google Scholar] [CrossRef]
- Jung, H.I.; Kong, M.S.; Lee, B.R.; Kim, T.H.; Chae, M.J.; Lee, E.J.; Jung, G.B.; Lee, C.H.; Sung, J.K.; Kim, Y.H. Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate-glutathione homeostasis in rice seedlings. Front. Plant Sci. 2019, 10, 1089. [Google Scholar] [CrossRef]
- Wachter, A.; Wolf, S.; Steininger, H.; Bogs, J.; Rausch, T. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 2005, 41, 15–30. [Google Scholar] [CrossRef]
- Zechmann, B.; Mauch, F.; Sticher, L.; Muller, M. Subcellular Immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J. Exp. Bot. 2008, 59, 4017–4027. [Google Scholar] [CrossRef]
- Bogs, J.; Bourbouloux, A.; Cagnac, O.; Wachter, A.; Rausch, T.; Delrot, S. Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: Evidence for regulation by heavy metal exposure. Plant Cell Environ. 2003, 26, 1703–1711. [Google Scholar] [CrossRef]
- Cagnac, O.; Bourbouloux, A.; Chakrabarty, D.; Zhang, M.Y.; Delrot, S. AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol. 2004, 135, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Bourbouloux, A.; Cagnac, O.; Srikanth, C.V.; Rentsch, D.; Bach-hawat, A.K.; Delrot, S. A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol. 2004, 134, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Tate, S.S.; Griffith, O.W. Gamma-glutamyl transpeptidase. Methods Enzymol. 1981, 77, 237–253. [Google Scholar] [PubMed]
- Ferretti, M.; Destro, T.; Tosatto, S.C.; LaRocca, N.; Rascio, N.; Masi, A. Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytol. 2009, 181, 115–126. [Google Scholar] [CrossRef] [PubMed]
- EL-Bauome, H.A.; Abdeldaym, E.A.; Abd El-Hady, M.A.M.; Darwish, D.B.E.; Alsubeie, M.S.; El-Mogy, M.M.; Basahi, M.A.; Al-Qahtani, S.M.; Al-Harbi, N.A.; Alzuaibr, F.M.; et al. Exogenous Proline, Methionine, and Melatonin Stimulate Growth, Quality, and Drought Tolerance in Cauliflower Plants. Agriculture 2022, 12, 1301. [Google Scholar] [CrossRef]
- Mehak, G.; Akram, N.A.; Ashraf, M.; Kaushik, P.; El-Sheikh, M.A.; Ahmad, P. Methionine-induced regulation of growth, secondary metabolites and oxidative defense system in sunflower (Helianthus annuus L.) plants subjected to water deficit stress. PLoS ONE 2021, 16, e0259585. [Google Scholar] [CrossRef]
- Merwad, A.-R.M.A.; Desoky, E.-S.M.; Rady, M.M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 2018, 228, 132–144. [Google Scholar] [CrossRef]
- You, J.; Zhang, Y.; Liu, A.; Li, D.; Wang, X.; Dossa, K.; Zhou, R.; Yu, J.; Zhang, Y.; Wang, L.; et al. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol. 2019, 19, 267. [Google Scholar] [CrossRef]
- Maqsood, M.F.; Shahbaz, M.; Kanwal, S.; Kaleem, M.; Shah, S.M.R.; Luqman, M.; Iftikhar, I.; Zulfiqar, U.; Tariq, A.; Naveed, S.A.; et al. Methionine Promotes the Growth and Yield of Wheat under Water Deficit Conditions by Regulating the Antioxidant Enzymes, Reactive Oxygen Species, and Ions. Life 2022, 12, 969. [Google Scholar] [CrossRef]
- Zulqadar, S.A.; Arshad, M.; Naveed, M.; Hussain, A.; Nazir, Q.; Rizwan, M. Response of okra (Abelmoschus esculentus L.) to soil and foliar application of L-methionine. Soil Environ. 2015, 34, 180–186. [Google Scholar]
- Shahid, S.; Kausar, A.; Ashraf, M.Y.; Akhtar, N.; Nazli, Z.I.H. Enhancement in growth, nutrients uptake and yield in maize by foliar application of methionine under salinity stress. Pak. J. Bot. 2021, 53, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Almas, H.I.; -un-Nisa, Z.; Anwar, S.; Kausar, A.; Farhat, F.; Munawar, M.; Khalizadieh, R. Exogenous Application of Methionine and Phenylalanine Confers Salinity Tolerance in Tomato by Concerted Regulation of Metabolites and Antioxidants. J. Soil Sci. Plant Nutr. 2021, 21, 3051–3064. [Google Scholar] [CrossRef]
- Navari-Izzo, F.; Quartacci, M.F.; Sgherri, C. Lipoic Acid: A unique antioxidant in the detoxification of activated oxygen species. Plant Physiol. Biochem. 2002, 40, 463–470. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, X.; Jiang, L.; Tang, H. Research and Application of Lipoic Acid in Plants. IOP Conf. Ser. Earth Environ. Sci. 2017, 108, 042100. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Acket, S.; Troncoso-Ponce, M.A.; Garcés, R.; Thomasset, B.; Venegas-Calerón, M.; Salas, J.J.; Martínez-Force, E.; Moreno-Pérez, A.J. Characterization of Helianthus annuus Lipoic Acid Biosynthesis: The Mitochondrial Octanoyltransferase and Lipoyl Synthase Enzyme System. Front. Plant Sci. 2021, 12, 781917. [Google Scholar] [CrossRef]
- Cronan, J.E. Advances in synthesis of biotin and assembly of lipoic acid. Curr. Opin. Chem. Biol. 2018, 47, 60–66. [Google Scholar] [CrossRef]
- Gueguen, V.; Macherel, D.; Jaquinod, M.; Douce, R.; Bourguignoni, J. Fatty Acid and Lipoic Acid Biosynthesis in Higher Plant Mitochondria. J. Biol. Chem. 2000, 275, 5016–5025. [Google Scholar] [CrossRef]
- Gorcek, Z.; Erdal, S. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. J. Sci. Food Agric. 2015, 95, 2811–2817. [Google Scholar] [CrossRef]
- Yıldız, M.; Akcalı, N.; Terzi, H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid. J. Plant Physiol. 2015, 179, 90–99. [Google Scholar] [CrossRef]
- D’Amico, M.L.; Navari-Izzo, F.; Sgherri, C.; Izzo, R. The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% sea water. Plant Physiol. Biochem. 2004, 42, 329–334. [Google Scholar] [CrossRef]
- Perez-Lopez, U.; Robredo, A.; Lacuesta, M.; Sgherri, C.; Mena-Petite, A.; Navari-Izzo, F.; Munoz-Ruedaa, A. Lipoic acid and redox status in barley plants subjected to salinity and elevated CO2. Physiol. Plant. 2010, 139, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Elkelish, A.; El-Mogy, M.M.; Niedbała, G.; Piekutowska, M.; Atia, M.A.M.; Hamada, M.M.A.; Shahin, M.; Mukherjee, S.; El-Yazied, A.A.; Shebl, M.; et al. Roles of Exogenous-Lipoic Acid and Cysteine in Mitigation of Drought Stress and Restoration of Grain Quality in Wheat. Plants 2021, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- Szego, D.; Kosa, E.; Horvath, E. Role of S-methylmethionine in the plant metabolism. Acta Agron. Hung. 2007, 55, 491–508. [Google Scholar] [CrossRef]
- Ranocha, P.; McNeil, S.D.; Ziemak, M.J.; Li, C.; Tarczynski, M.C.; Hanson, A.D. The S-methylmethionine cycle in angiosperms: Ubiquity, antiquity and activity. Plant J. 2001, 25, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Ludmerszki, E.; Páldi, K.; Rácz, I.; Szigeti, Z.; RudnóY, S. The promising role of exogenous s-methylmethionine in agriculture, in the case of maize cultivation. Appl. Ecol. Environ. Res. 2014, 12, 777–785. [Google Scholar] [CrossRef]
- Fodorpataki, L.; Molnar, K.; Tompa, B.; Plugaru, S.R.C. Priming with vitamin U enhances cold tolerance of lettuce (Lactuca sativa L.). Not. Bot. Hortic. Agrobot. 2019, 47, 592–598. [Google Scholar] [CrossRef]
- Ogawa, S.; Mitsuya, S. S-methylmethionine is involved in the salinity tolerance of Arabidopsis thaliana plants at germination and early growth stages. Physiol. Plant. 2012, 144, 13–19. [Google Scholar] [CrossRef]
- Ko, S.; Eliot, A.C.; Kirsch, J.F. S-methylmethionine is both a substrate and an inactivator of 1-aminocyclopropane-1-carboxylate synthase. Arch. Biochem. Biophys. 2004, 421, 85–90. [Google Scholar] [CrossRef]
- Rudnoy, S.; Majlath, I.; Pal, M.; Paldi, K.; Racz, I.; Janda, T. Interactions of S-methylmethionine and UV-B can modify the defence mechanisms induced in maize. Acta Physiol. Plant. 2015, 37, 148. [Google Scholar] [CrossRef]
- Páldi, K.; Rácz, I.; Szigeti, Z.; Rudnóy, S. S-methylmethionine alleviates the cold stress by protection of the photosynthetic apparatus and stimulation of the phenylpropanoid pathway. Biol. Plant. 2014, 58, 189–194. [Google Scholar] [CrossRef]
- García-García, A.L.; García-Machado, F.J.; Borges, A.A.; Morales-Sierra, S.; Boto, A.; Jiménez-Arias, D. Pure Organic Active Compounds Against Abiotic Stress: A Biostimulant Overview. Front. Plant Sci. 2020, 11, 575829. [Google Scholar] [CrossRef] [PubMed]
- Fodorpataki, L.; Molnar, K.; Tompa, B.; Bartha, C. Exogenous S-methylmethionine alleviates salinity stress by modulation of physiological processes in canola (Brassica napus). Intl. J. Agric. Biol. 2021, 25, 11–19. [Google Scholar] [CrossRef]
- Garg, B.K.; Burman, U.; Kathju, S. Influence of thiourea on photosynthesis, nitrogen metabolism and yield of cluster bean (Cyamopsis tetragonoloba (L.) Taub.) under rainfed conditions of Indian arid zone. Plant Growth Regul. 2006, 48, 237–245. [Google Scholar]
- Esashi, Y.; Katoh, H.; Leopold, A.C. Dormancy and impotency of cocklebur seeds: IV. Effects of gibberellic acid, benzyladenine, thiourea, and potassium nitrate on the growth of embryonic axis and cotyledon segments. Plant Physiol. 1977, 59, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Basra, S.M.A.; Farooq, M. Thiourea: A Molecule with Immense Biological Significance for Plants. Int. J. Agric. Biol. 2017, 19, 911–920. [Google Scholar] [CrossRef]
- Waqas, M.A.; Kaya, C.; Riaz, A.; Farooq, M.; Nawaz, I.; Wilkes, A.; Li, Y. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Front. Plant Sci. 2019, 10, 1336. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ramaswamy, N.K.; Mukopadhyaya, R.; Jincy, M.G.C.; D’Souza, S.F. Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea. Ann. Bot. 2009, 103, 403–410. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ramaswamy, N.K.; Suprasanna, P.; D’souza, S.F. Genome-wide analysis of thiourea-modulated salinity stress-responsive transcripts in seeds of Brassica juncea: Identification of signalling and effector components of stress tolerance. Ann. Bot. 2010, 106, 663–674. [Google Scholar] [CrossRef]
- Pandey, M.; Srivastava, A.K.; Suprasanna, P.; D’Souza, S.F. Thiourea mediates alleviation of UV-B stress-induced damage in the Indian mustard (Brassica juncea L.). J. Plant Interact. 2012, 7, 143–150. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Sönmez, O. Promotive effect of exogenously applied thiourea on key physiological parameters and oxidative defense mechanism in salt-stressed Zea mays L. Plants. Turk. J. Bot. 2015, 39, 786–795. [Google Scholar] [CrossRef]
- Vineeth, T.V.; Kumar, P.; Krishna, G.K. Bioregulators protected photosynthetic machinery by inducing expression of photorespiratory genes under water stress in chickpea. Photosynthetica 2016, 54, 234–242. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Sablok, G.; Hackenberg, M.; Deshpande, U.; Suprasanna, P. Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea. Sci. Rep. 2017, 7, 45490. [Google Scholar] [CrossRef] [PubMed]
- Wakchaure, G.C.; Minhas, P.S.; Meena, K.K.; Singh, N.P.; Hegade, P.M.; Sorty, A.M. Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio-regulators. Agric. Water Manag. 2018, 199, 1–10. [Google Scholar] [CrossRef]
- Kaya, C.; Sarioğlu, A.; Akram, N.A.; Ashraf, M. Thiourea-mediated Nitric Oxide Production Enhances Tolerance to Boron Toxicity by Reducing Oxidative Stress in Bread Wheat (Triticum aestivum L.) and Durum Wheat (Triticum durum Desf.) Plants. J. Plant Growth Regul. 2019, 38, 1094–1109. [Google Scholar] [CrossRef]
- Hassanein, R.A.; Amin, A.A.E.S.; Rashad, E.S.M.; Ali, H. Effect of thiourea and salicylic acid on antioxidant defense of wheat plants under drought stress. Int. J. ChemTech Res. 2015, 7, 346–354. [Google Scholar]
- Amin, A.A.; Abd El-Kader, A.A.; Abouziena, H.F.; El-Awadi, M.; Gharib, F.A. Effects of benzoic acid and thiourea on growth and productivity of wheat (Triticum aestivum L.) plants. Int. Sci. Res. J. 2016, 72, 1032–1037. [Google Scholar]
- Zain, M.; Khan, I.; Chattha, M.U.; Qadri, R.W.K.; Anjum, S.A.; Hassan, M.U.; Mahmood, A.; Ilyas, M. Foliar applied thiourea at different growth stages modulated late sown wheat. Pak. J. Sci. 2017, 69, 39–43. [Google Scholar]
- Seleiman, M.F.; Kheir, A.M.S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 2018, 193, 538–546. [Google Scholar] [CrossRef]
- Waraich, E.A.; Hussain, A.; Ahmad, Z.; Ahmad, M.; Barutçular, C. Foliar application of sulfur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. J. Plant Nutr. 2022, 45, 369–379. [Google Scholar] [CrossRef]
- Sher, A.; Wang, X.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Nasrullah, M.; Bibi, Y.; Manaf, A.; Fiaz, S.; Qayyum, A. Exogenous Application of Thiourea for Improving the Productivity and Nutritional Quality of Bread Wheat (Triticum aestivum L.). Agronomy 2021, 11, 1432. [Google Scholar] [CrossRef]
- Wurzer, G.K.; Hettegger, H.; Bischof, R.H.; Fackler, K.; Potthast, A.; Rosenau, T. Agricultural utilization of lignosulfonates. Holzforschung 2022, 76, 155–168. [Google Scholar] [CrossRef]
- Ruwoldt, J. A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces 2020, 3, 622–648. [Google Scholar] [CrossRef]
- Rodríguez-Lucena, P.; Hernandez-Apaolaza, L.; Lucena, J.J. Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. J. Plant Nutr. Soil Sci. 2010, 173, 120–126. [Google Scholar] [CrossRef]
- Rodriguez-Lucena, P.; Benedicto, A.; Lucena, J.J.; Rodrıguez-Castrillon, J.A.; Moldovan, M.; Alonso, I.G.; Hernandez-Apaolaza, L. Use of the stable isotope 57Fe to track the efficacy of the foliar application of lignosulfonate/Fe3+ complexes to correct Fe deficiencies in cucumber plants. J. Sci. Food Agric. 2011, 91, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Minnocci, A.; Francini, A.; Romeo, S.; Sgrignuoli, A.D.; Povero, G.; Sebastiani, L. Zn-localization and anatomical changes in leaf tissues of green beans (Phaseolus vulgaris L.) following foliar application of Zn-lignosulfonate and ZnEDTA. Sci. Hortic. 2018, 231, 15–21. [Google Scholar] [CrossRef]
- Kumar, B.; Gangwar, M.S.; Rathore, V. Effect of dimethyl sulfoxide (DMSO) on zinc availability (L-value), growth and metabolic activities of rice plants. Plant Soil 1976, 45, 235–246. [Google Scholar] [CrossRef]
- Bajaj, Y.P.S.; Rathore, V.S.; Wittwer, S.H.; Adams, M.W. Effect of dimethyl sulfoxide on 65Zn uptake, respiration and RNA and protein metabolism in bean tissues. Am. J. Bot. 1970, 57, 794–799. [Google Scholar] [CrossRef]
- Charnel, A. Effect of dimethyl sulfoxide on penetration and migration of 59Fe applied to maize leaves. Physiol. Plant. 1972, 26, 170–174. [Google Scholar]
- Schönherr, J.; Fernández, V.; Schreiber, L. Rates of Cuticular Penetration of Chelated FeIII: Role of Humidity, Concentration, Adjuvants, Temperature, and Type of Chelate. J. Agric. Food Chem. 2005, 53, 4484–4492. [Google Scholar] [CrossRef]
- Singh, Z.; Khan, A.S. Surfactant and Nutrient Uptake in Citrus. In Advances in Citrus Nutrition; Srivastava, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 157–167. [Google Scholar]
- Ruidas, S.; Karmakar, S.; Purkait, A.; Gangopadhyay, A.; Saha, R.; Mukherjee, K.; Mondal, P.; Hazra, D.K. Preparation, optimization, and testing of biostimulant formulations as stress management tools and foliar applications on brinjal and onion for growth and yield. Chem. Pap. 2022, 76, 6141–6152. [Google Scholar] [CrossRef]
- Maurer, A.R.; Ormrod, D.P.; Adedipe, N.O. Yield Response of Peas to Foliar Application of Dimethyl Sulfoxide and Cycocel. Hortscience 1969, 4, 301–302. [Google Scholar] [CrossRef]
- Colwell, C.E.; Rixon, W.E. Consideration in the use of nonionic surface-active agents. Am. Dyestuff Rep. 1961, 50, 39–42. [Google Scholar]
- Parr, J.F.; Norman, A.G. Considerations in the use of surfactants in plant systems: A review. Bot. Gaz. 1965, 126, 86–96. [Google Scholar] [CrossRef]
- Nelson, P.V.; Garlich, H.H. Relationship of chemical classification and hydrophile-lipophile balance of surfactants to enhancement of foliar uptake of iron. J. Agric. Food Chem. 1969, 17, 148–152. [Google Scholar] [CrossRef]
- Cross, J. Anionic surfactants—An introduction. In Anionic surfactants. Analytical Chemistry; Cross, J., Ed.; Marcel Deker: New York, NY, USA, 1998; pp. 1–33. [Google Scholar]
- Corkill, J.M.; Goodman, J.F.; Ottewill, R.H. Micellization of homogenous non-ionic detergents. Trans. Faraday Soc. 1961, 57, 1627–1636. [Google Scholar] [CrossRef]
- Bloem, E.; Haneklaus, S.; Schnug, E. Significance of Sulfur Compounds in the Protection of Plants Against Pests and Diseases. J. Plant Nutr. 2005, 28, 763–784. [Google Scholar] [CrossRef]
- Huber, D.M.; Haneklaus, S. Managing Nutrition to Control Plant Disease. Landbauforsch. Völkenrode 2007, 57, 313–322. [Google Scholar]
- Bloem, E.; Haneklaus, S.; Schnug, E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Front. Plant Sci. 2015, 5, 779. [Google Scholar] [CrossRef]
- Lamberth, C. Sulfur chemistry in crop protection. J. Sulfur Chem. 2004, 25, 39–62. [Google Scholar] [CrossRef]
- Devendar, P.; Yang, G.F. Sulfur-Containing Agrochemicals. Top. Curr. Chem. 2017, 375, 82. [Google Scholar] [CrossRef]
- Do, T.H.T.; Martinoia, E.; Lee, Y.; Hwang, J.U. 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants. Plant Physiol. 2021, 187, 1876–1892. [Google Scholar] [CrossRef]
- Kanga, J.; Parka, J.; Choia, H.; Burlab, B.; Kretzschmarb, T.; Leea, Y.; Martinoia, E. Plant ABC Transporers. In The Arabidopsis Book; American Society of Plant Biologists: Rockville, MD, USA, 2011; p. e0153. [Google Scholar]
- Hwang, J.-U.; Song, W.-Y.; Hong, D.; Ko, D.; Yamaoka, Y.; Jang, S.; Yim, S.; Lee, E.; Khare, D.; Kim, K.; et al. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol. Plant. 2016, 9, 338–355. [Google Scholar] [CrossRef]
- Hernández Estévez, I.; Rodríguez-Hernández, M. Plant Glutathione S-transferases: An overview. Plant Gene 2020, 23, 100233. [Google Scholar] [CrossRef]
Crop | Agricultural Situation | Compound | mg L−1 (or %) | Foliar Application | Adjuvant | Reference |
---|---|---|---|---|---|---|
canola | heat stress | TU | 500 | alone | [204] | |
wheat | bread | TU | 500 | alone | [205] | |
nutritional quality | 1000 | |||||
wheat | late sowing | TU | 300 | alone | [202] | |
600 | ||||||
wheat | B toxicity | TU | 200 | combined with NO | [199] | |
400 | ||||||
rice | Zn-deficient soil | DMSO | 0.001% | alone | [211] | |
0.01% | ||||||
0.1% | ||||||
maize | DMSO | 0.5% | combined with FeSO4 | Tween-20 | [214] | |
1% | ||||||
brinjal | DMSO | combined with GA | Ca alkylbenzene | [216] | ||
sulfonate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouranis, D.L.; Chorianopoulou, S.N. Foliar Application of Sulfur-Containing Compounds—Pros and Cons. Plants 2023, 12, 3794. https://doi.org/10.3390/plants12223794
Bouranis DL, Chorianopoulou SN. Foliar Application of Sulfur-Containing Compounds—Pros and Cons. Plants. 2023; 12(22):3794. https://doi.org/10.3390/plants12223794
Chicago/Turabian StyleBouranis, Dimitris L., and Styliani N. Chorianopoulou. 2023. "Foliar Application of Sulfur-Containing Compounds—Pros and Cons" Plants 12, no. 22: 3794. https://doi.org/10.3390/plants12223794
APA StyleBouranis, D. L., & Chorianopoulou, S. N. (2023). Foliar Application of Sulfur-Containing Compounds—Pros and Cons. Plants, 12(22), 3794. https://doi.org/10.3390/plants12223794