Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy
Abstract
:1. Introduction
2. Results
2.1. Fungal Isolates
2.2. Pathogenicity Test
2.3. Phylogenetic Analyses
2.4. Morphology
3. Discussion
4. Materials and Methods
4.1. Fungal Isolates
4.2. Pathogenicity Test
4.3. Statistical Analyses
4.4. DNA Extraction, PCR and Sequencing
4.5. Phylogenetic Analyses
4.6. Morphology
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/%3F%23data#data/QCL/visualize (accessed on 21 July 2023).
- Coltivazioni: Cereali, Legumi, Radici Bulbi e Tuberi. Available online: http://dati.istat.it/Index.aspx?QueryId=33702 (accessed on 21 July 2023).
- Munkvold, G.; White, D. Compendium of Corn Diseases; AACC International: St. Paul, MN, USA, 2016. [Google Scholar]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium Pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium Diseases of Maize Associated with Mycotoxin Contamination of Agricultural Products Intended to Be Used for Food and Feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of Toxigenic Fungi and Their Associated Mycotoxins for Some Mediterranean Crops. In Epidemiology of Mycotoxin Producing Fungi; Springer: Dordrecht, The Netherlands, 2003; pp. 645–667. [Google Scholar]
- Zargaryan, N.Y.; Kekalo, A.Y.; Nemchenko, V.V. Infection of Grain Crops with Fungi of the Genus Fusarium. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 36, p. 04008. [Google Scholar]
- Desjardins, A.E. Fusarium mycotoxins: Chemistry, Genetics, and Biology; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2006. [Google Scholar]
- Leyva-Madrigal, K.Y.; Larralde-Corona, C.P.; Apodaca-Sánchez, M.A.; Quiroz-Figueroa, F.R.; Mexia-Bolaños, P.A.; Portillo-Valenzuela, S.; Ordaz-Ochoa, J.; Maldonado-Mendoza, I.E. Fusarium Species from the Fusarium fujikuroi Species Complex Involved in Mixed Infections of Maize in Northern Sinaloa, Mexico. J. Phytopathol. 2015, 163, 486–497. [Google Scholar] [CrossRef]
- Duan, C.; Qin, Z.; Yang, Z.; Li, W.; Sun, S.; Zhu, Z.; Wang, X. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China. Toxins 2016, 8, 186. [Google Scholar] [CrossRef]
- Wilke, A.L.; Bronson, C.R.; Tomas, A.; Munkvold, G.P. Seed Transmission of Fusarium verticillioides in Maize Plants Grown under Three Different Temperature Regimes. Plant Dis. 2007, 91, 1109–1115. [Google Scholar] [CrossRef]
- Kedera, C.J.; Leslie, J.F.; Claflin, L.E. Systemic Infection of Corn by Fusarium Moniliforme. Phytopathology 1992, 82, 1138. [Google Scholar]
- Munkvold, G.P.; McGee, D.C.; Carlton, W.M. Importance of Different Pathways for Maize Kernel Infection by Fusarium Moniliforme. Phytopathology 1997, 87, 209–217. [Google Scholar] [CrossRef]
- Okello, P.N.; Petrović, K.; Kontz, B.; Mathew, F.M. Eight Species of Fusarium Cause Root Rot of Corn (Zea Mays) in South Dakota. Plant Health Prog. 2019, 20, 38–43. [Google Scholar] [CrossRef]
- Yilmaz, N.; Sandoval-Denis, M.; Lombard, L.; Visagie, C.M.; Wingfield, B.D.; Crous, P.W. Redefining Species Limits in the Fusarium fujikuroi Species Complex. Persoonia-Mol. Phylogeny Evol. Fungi 2021, 46, 129–162. [Google Scholar] [CrossRef]
- Lombard, L.; Sandoval-Denis, M.; Lamprecht, S.C.; Crous, P.W. Epitypification of Fusarium oxysporum–Clearing the Taxonomic Chaos. Persoonia-Mol. Phylogeny Evol. Fungi 2019, 43, 1–47. [Google Scholar] [CrossRef]
- Wang, M.M.; Crous, P.W.; Sandoval-Denis, M.; Han, S.L.; Liu, F.; Liang, J.M.; Duan, W.J.; Cai, L. Fusarium and Allied Genera from China: Species Diversity and Distribution. Persoonia-Mol. Phylogeny Evol. Fungi 2022, 48, 1–53. [Google Scholar] [CrossRef]
- Han, S.L.; Wang, M.M.; Ma, Z.Y.; Raza, M.; Zhao, P.; Liang, J.M.; Gao, M.; Li, Y.J.; Wang, J.W.; Hu, D.M. Fusarium Diversity Associated with Diseased Cereals in China, with an Updated Phylogenomic Assessment of the Genus. Stud. Mycol. 2023, 104, 87–148. [Google Scholar] [CrossRef] [PubMed]
- Geiser, D.M.; del Mar Jiménez-Gasco, M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- O’Donnell, K.; Ward, T.J.; Robert, V.A.; Crous, P.W.; Geiser, D.M.; Kang, S. DNA Sequence-Based Identification of Fusarium: Current Status and Future Directions. Phytoparasitica 2015, 43, 583–595. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.-S.; McCormick, S.P.; Busman, M.; Aoki, T. DNA Sequence-Based Identification of Fusarium: A Work in Progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef]
- Leslie, J.F. Introductory Biology of Fusarium Moniliforme. In Fumonisins in Food; Jackson, L.S., DeVries, J.W., Bullerman, L.B., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1996; pp. 153–164. [Google Scholar] [CrossRef]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A Multigene Phylogeny of the Gibberella fujikuroi Species Complex: Detection of Additional Phylogenetically Distinct Species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Murillo-Williams, A.; Munkvold, G.P. Systemic Infection by Fusarium verticillioides in Maize Plants Grown Under Three Temperature Regimes. Plant Dis. 2008, 92, 1695–1700. [Google Scholar] [CrossRef]
- Nezhad, A.S.; Nourollahi, K. Population Genetic Structure of Fusarium verticillioides the Causal Agent of Corn Crown and Root Rot in Ilam Province Using Microsatellite Markers. J. Crop Prot. 2020, 9, 157–170. [Google Scholar]
- Bugnicourt, F. Une Espèce Fusarienne Nouvelle, Parasite Du Riz. Rev. Génerale Bot. 1952, 59, 13–18. [Google Scholar]
- PARRA, M.Ä.; Gómez, J.; Aguilar, F.W.; Martínez, J.A. Fusarium Annulatum Causes Fusarium Rot of Cantaloupe Melons in Spain. Phytopathol. Mediterr. 2022, 61, 269–277. [Google Scholar] [CrossRef]
- Mirghasempour, S.A.; Studholme, D.J.; Chen, W.; Cui, D.; Mao, B. Identification and Characterization of Fusarium Nirenbergiae Associated with Saffron Corm Rot Disease. Plant Dis. 2022, 106, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Özer, G.; Paulitz, T.C.; Imren, M.; Alkan, M.; Muminjanov, H.; Dababat, A.A. Identity and Pathogenicity of Fungi Associated with Crown and Root Rot of Dryland Winter Wheat in Azerbaijan. Plant Dis. 2020, 104, 2149–2157. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Cigelnik, E.; Nirenberg, H.I. Molecular Systematics and Phylogeography of the Gibberella fujikuroi Species Complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- Wulff, E.G.; Sørensen, J.L.; Lübeck, M.; Nielsen, K.F.; Thrane, U.; Torp, J. Fusarium spp. Associated with Rice Bakanae: Ecology, Genetic Diversity, Pathogenicity and Toxigenicity. Environ. Microbiol. 2010, 12, 649–657. [Google Scholar] [CrossRef]
- Husna, A.; Zakaria, L.; Nor, N.M.I.M. Fusarium Commune Associated with Wilt and Root Rot Disease in Rice. Plant Pathol. 2020, 70, 123–132. [Google Scholar] [CrossRef]
- Mezzalama, M.; Guarnaccia, V.; Martino, I.; Tabone, G.; Gullino, M.L. First Report of Fusarium Commune Causing Root and Crown Rot on Maize in Italy. Plant Dis. 2021, 105, 4156. [Google Scholar] [CrossRef]
- Xi, K.; Haseeb, H.A.; Shan, L.; Guo, W.; Dai, X. First Report of Fusarium Commune Causing Stalk Rot on Maize in Liaoning Province, China. Plant Dis. 2019, 103, 773. [Google Scholar] [CrossRef]
- Skovgaard, K.; Rosendahl, S.; O’Donnell, K.; Nirenberg, H.I. Fusarium Commune Is a New Species Identified by Morphological and Molecular Phylogenetic Data. Mycologia 2003, 95, 630–636. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Laurence, M.; Walsh, J.L.; Shuttleworth, L.; Robinson, D.M.; Johansen, R.M.; Petrovic, T.; Vu, H.; Burgess, L.W.; Summerell, B.; Liew, E.C.Y. Six Novel Species of Fusarium from Natural Ecosystems in Australia. Fungal Divers. 2015, 77, 349–366. [Google Scholar] [CrossRef]
- Maymon, M.; Sharma, G.; Hazanovsky, M.; Erlich, O.; Pessach, S.; Freeman, S.; Tsror, L. Characterization of Fusarium Population Associated with Wilt of Jojoba in Israel. Plant Pathol. 2021, 70, 793–803. [Google Scholar] [CrossRef]
- Aiello, D.; Fiorenza, A.; Leonardi, G.R.; Vitale, A.; Polizzi, G. Fusarium nirenbergiae (Fusarium oxysporum Species Complex) Causing the Wilting of Passion Fruit in Italy. Plants 2021, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Maryani, N.; Lombard, L.; Poerba, Y.S.; Subandiyah, S.; Crous, P.W.; Kema, G.H.J. Phylogeny and Genetic Diversity of the Banana Fusarium Wilt Pathogen Fusarium oxysporum f. sp. Cubense in the Indonesian Centre of Origin. Stud. Mycol. 2019, 92, 155–194. [Google Scholar] [CrossRef] [PubMed]
- Summerell, B.A. Resolving Fusarium: Current Status of the Genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Crous, P.W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K.A.; Schroers, H.-J.; Chaverri, P.; Gené, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; et al. Fusarium: More than a Node or a Foot-Shaped Basal Cell. Stud. Mycol. 2021, 98, 100116. [Google Scholar] [CrossRef]
- Moparthi, S.; Burrows, M.; Mgbechi-Ezeri, J.; Agindotan, B. Fusarium spp. Associated With Root Rot of Pulse Crops and Their Cross-Pathogenicity to Cereal Crops in Montana. Plant Dis. 2021, 105, 548–557. [Google Scholar] [CrossRef]
- Gaige, A.R.; Todd, T.; Stack, J.P. Interspecific Competition for Colonization of Maize Plants Between Fusarium Proliferatum and Fusarium verticillioides. Plant Dis. 2020, 104, 2102–2110. [Google Scholar] [CrossRef]
- Xi, K.; Shan, L.; Yang, Y.; Zhang, G.; Zhang, J.; Guo, W. Species Diversity and Chemotypes of Fusarium Species Associated With Maize Stalk Rot in Yunnan Province of Southwest China. Front. Microbiol. 2021, 12, 652062. [Google Scholar] [CrossRef]
- Shin, J.-H.; Han, J.-H.; Lee, J.K.; Kim, K.S. Characterization of the Maize Stalk Rot Pathogens Fusarium Subglutinans and F. Temperatum and the Effect of Fungicides on Their Mycelial Growth and Colony Formation. Plant Pathol. J. 2014, 30, 397–406. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Sayed, S.R.M.; Rady, A.M. Antagonistic Activity of Trichoderma Harzianum and Trichoderma Viride Strains against Some Fusarial Pathogens Causing Stalk Rot Disease of Maize, in Vitro. J. King Saud Univ.—Sci. 2021, 33, 101363. [Google Scholar] [CrossRef]
- Cheng, X.; Ji, X.; Ge, Y.; Li, J.; Qi, W.; Qiao, K. Characterization of Antagonistic Bacillus Methylotrophicus Isolated From Rhizosphere and Its Biocontrol Effects on Maize Stalk Rot. Phytopathology 2019, 109, 571–581. [Google Scholar] [CrossRef]
- Summerell, B.A.; Salleh, B.; Leslie, J.F. A Utilitarian Approach to Fusarium Identification. Plant Dis. 2003, 87, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Warham, E.J.; Butler, L.D.; Sutton, B.C. Seed Testing of Maize and Wheat: A Laboratory Guide; CIMMYT: Batan, Mexico, 1996. [Google Scholar]
- Bilgi, V.N.; Bradley, C.A.; Khot, S.D.; Grafton, K.F.; Rasmussen, J.B. Response of Dry Bean Genotypes to Fusarium Root Rot, Caused by Fusarium Solani f. sp. Phaseoli, under Field and Controlled Conditions. Plant Dis. 2008, 92, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.; Lee, S.; Rouf Mian, M.A.; Jun, T.-H.; McHale, L.K.; Michel, A.P.; Dorrance, A.E. Identification and Mapping of Quantitative Trait Loci (QTL) Conferring Resistance to Fusarium Graminearum from Soybean PI 567301B. Theor. Appl. Genet. 2015, 128, 827–838. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple Evolutionary Origins of the Fungus Causing Panama Disease of Banana: Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic Relationships among Ascomycetes: Evidence from an RNA Polymerse II Subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E. Two Divergent Intragenomic rDNA ITS2 Types within a Monophyletic Lineage of the Fungus Fusarium Are Nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Aiello, D.; Polizzi, G.; Crous, P.W.; Sandoval-Denis, M. Soilborne Diseases Caused by Fusarium and Neocosmospora spp. on Ornamental Plants in Italy. Phytopathol. Mediterr. 2019, 58, 127–137. [Google Scholar] [CrossRef]
- Weir, B.S.; Johnston, P.R.; Damm, U. The Colletotrichum Gloeosporioides Species Complex. Stud. Mycol. 2012, 73, 115–180. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Rooney, A.P.; Proctor, R.H.; Brown, D.W.; McCormick, S.P.; Ward, T.J.; Frandsen, R.J.N.; Lysøe, E.; Rehner, S.A.; Aoki, T.; et al. Phylogenetic Analyses of RPB1 and RPB2 Support a Middle Cretaceous Origin for a Clade Comprising All Agriculturally and Medically Important Fusaria. Fungal Genet. Biol. FG B 2013, 52, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Mai, Z.; Lin, J.; Nie, L.; Maharachchikumbura, S.S.N.; You, C.; Xiang, M.; Hyde, K.D.; Manawasinghe, I.S. Co-Infection of Fusarium aglaonematis sp. Nov. and Fusarium elaeidis Causing Stem Rot in Aglaonema modestum in China. Front. Microbiol. 2022, 13, 930790. [Google Scholar] [CrossRef]
- Moreira Costa, M.; Melo, M.; Carmo, F.; Moreira, G.; Guimarães, E.; Rocha, F.; Costa, S.; Abreu, L.; Pfenning, L. Fusarium Species from Tropical Grasses in Brazil and Description of Two New Taxa. Mycol. Prog. 2021, 20, 61–72. [Google Scholar] [CrossRef]
- Lombard, L.; van Doorn, R.; Groenewald, J.Z.; Tessema, T.; Kuramae, E.E.; Etolo, D.W.; Raaijmakers, J.M.; Crous, P.W. Fusarium Diversity Associated with the Sorghum-Striga Interaction in Ethiopia. Fungal Syst. Evol. 2022, 10, 177–215. [Google Scholar] [CrossRef]
- Vermeulen, M.; Rothmann, L.A.; Swart, W.J.; Gryzenhout, M. Fusarium casha sp. Nov. and F. curculicola sp. Nov. in the Fusarium fujikuroi Species Complex Isolated from Amaranthus cruentus and Three Weevil Species in South Africa. Diversity 2021, 13, 472. [Google Scholar] [CrossRef]
- Laraba, I.; Kim, H.-S.; Proctor, R.H.; Busman, M.; O’Donnell, K.; Felker, F.C.; Aime, M.C.; Koch, R.A.; Wurdack, K.J. Fusarium xyrophilum, sp. Nov., a Member of the Fusarium fujikuroi Species Complex Recovered from Pseudoflowers on Yellow-Eyed Grass (Xyris spp.) from Guyana. Mycologia 2020, 112, 39–51. [Google Scholar] [CrossRef]
- Proctor, R.H.; Van Hove, F.; Susca, A.; Stea, G.; Busman, M.; van der Lee, T.; Waalwijk, C.; Moretti, A.; Ward, T.J. Birth, Death and Horizontal Transfer of the Fumonisin Biosynthetic Gene Cluster during the Evolutionary Diversification of Fusarium. Mol. Microbiol. 2013, 90, 290–306. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Guarnaccia, V.; Polizzi, G.; Crous, P.W. Symptomatic Citrus Trees Reveal a New Pathogenic Lineage in Fusarium and Two New Neocosmospora Species. Persoonia 2018, 40, 1–25. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.; Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.; Sullivan, J. Phylogeny Inference Based on Parsimony and Other Methods with PAUP. In The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny; Cambridge University Press: Cambridge, UK, 2009; Volume 7, pp. 160–206. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Mark, P.; Ayres, D.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.; Huelsenbeck, J. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Nylander, J.A.A.; Ronquist, F.; Huelsenbeck, J.P.; Nieves-Aldrey, J.L. Bayesian Phylogenetic Analysis of Combined Data. Syst. Biol. 2004, 53, 47–67. [Google Scholar] [CrossRef]
- Fisher, N.L.; Burgess, L.W.; Toussoun, T.A.; Nelson, P.E. Carnation Leaves as a Substrate and for Preserving Cultures of Fusarium Species. Phytopathology 1982, 72, 151–153. [Google Scholar] [CrossRef]
Isolate Code | Origin | Hybrid | FAO Class | Symptomatic Portion | Year of Isolation |
---|---|---|---|---|---|
DB19LUG07 | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Root | 2019 |
DB19LUG16 | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Root | 2019 |
DB19LUG20 | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Root | 2019 |
DB19LUG25 | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Root | 2019 |
2.1 | Livorno Ferraris (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
2.2 | Livorno Ferraris (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
8.1 | Cigliano (VC)—Italy | - | - | Root | 2019 |
8.2 | Cigliano (VC)—Italy | - | - | Root | 2019 |
9 | USA | PR32B10 | 600–132 days | Seed | 2019 |
10.1 | France | P0423 | 400–116 days | Seed | 2019 |
10.2 | France | P0423 | 400–116 days | Seed | 2019 |
11 | Italy | unknown | unknown | Seed | 2019 |
12 | Italy | SY ANTEX | 600–130 days | Seed | 2019 |
18 | Turkey | DKC6752 | 600–128 days | Seed | 2019 |
19 | Romania | DKC5830 | 500–x days | Seed | 2019 |
21 | Crescentino (VC)—Italy | P1547 | 600–130 days | Stem | 2019 |
23 | Crescentino (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
24 | Crescentino (VC)—Italy | P1916 | 600–130 days | Root | 2019 |
26 | Crescentino (VC)—Italy | P1916 | 600–130 days | Stem | 2019 |
28 | Crescentino (VC)—Italy | P1916 | 600–130 days | Root | 2019 |
29 | Cigliano (VC)—Italy | P1517W | 600–128 days | Root | 2019 |
30 | Cigliano (VC)—Italy | P1517W | 600–128 days | Root | 2019 |
31 | Cigliano (VC)—Italy | P1517W | 600–128 days | Stem | 2019 |
32 | Cigliano (VC)—Italy | P1517W | 600–128 days | Stem | 2019 |
35.1.4 | Cigliano (VC)—Italy | P1517W | 600–128 days | Root | 2019 |
36 | Cigliano (VC)—Italy | P1517W | 600–128 days | Stem | 2019 |
40 | Cigliano (VC)—Italy | P1517W | 600–128 days | Root | 2019 |
41 | Cigliano (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
44 | Cigliano (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
50 | Cigliano (VC)—Italy | P1547 | 600–130 days | Root | 2019 |
51 | Cigliano (VC)—Italy | Unknown | Unknown | Stem | 2019 |
55.2.1 | Cigliano (VC)—Italy | Unknown | Unknown | Crown | 2019 |
56.1.2 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
56.2.2 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
56.2.3 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
56.2.4 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
56.2.5 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
57.2.1 | Cigliano (VC)—Italy | Unknown | Unknown | Root | 2019 |
1.RI (Pta 1.1) | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Crown | 2020 |
1.RI (Pta 1.2) | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Crown | 2020 |
1.RII (Pta 3.2) | San Zenone degli Ezzelini (VI)—Italy | Unknown | Unknown | Crown | 2020 |
ID Sample | Severity Index of Root and Crown Rot (Number of Plants) | Disease Index | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | (DI) 0–100 | ||
DB19LUG07 | 0 | 3 | 3 | 0 | 0 | 50.0 | abcde |
DB19LUG16 | 0 | 6 | 0 | 0 | 0 | 40.0 | cdefg |
DB19LUG20 | 4 | 2 | 0 | 0 | 0 | 13.3 | gh |
DB19LUG25 | 3 | 3 | 0 | 0 | 0 | 20.0 | gh |
2.1 | 0 | 0 | 0 | 4 | 2 | 86.7 | a |
2.2 | 0 | 0 | 0 | 3 | 3 | 90.0 | a |
8.1 | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
8.2 | 3 | 3 | 0 | 0 | 0 | 20.0 | fgh |
9 | 0 | 0 | 0 | 6 | 0 | 80.0 | ab |
10.1 | 0 | 0 | 2 | 0 | 4 | 86.7 | a |
10.2 | 0 | 0 | 1 | 2 | 3 | 86.7 | a |
11 | 3 | 3 | 0 | 0 | 0 | 20.0 | efgh |
12 | 0 | 3 | 0 | 0 | 3 | 70.0 | abc |
18 | 2 | 3 | 0 | 0 | 1 | 36.7 | efgh |
19 | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
21 | 2 | 4 | 0 | 0 | 0 | 26.7 | efgh |
23 | 2 | 4 | 0 | 0 | 0 | 26.7 | efgh |
24 | 0 | 3 | 0 | 0 | 3 | 70.0 | abc |
26 | 0 | 4 | 2 | 0 | 0 | 46.7 | bcdef |
28 | 3 | 3 | 0 | 0 | 0 | 20.0 | efgh |
29 | 0 | 6 | 0 | 0 | 0 | 40.0 | cdefg |
30 | 3 | 3 | 0 | 0 | 0 | 20.0 | efgh |
31 | 2 | 4 | 0 | 0 | 0 | 26.7 | efgh |
32 | 4 | 2 | 0 | 0 | 0 | 13.3 | gh |
35.1.4 | 0 | 1 | 1 | 2 | 2 | 76.7 | abc |
36 | 3 | 3 | 0 | 0 | 0 | 20.0 | efgh |
40 | 0 | 4 | 2 | 0 | 0 | 46.7 | bcdef |
41 | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
44 | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
50 | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
51 | 2 | 2 | 2 | 0 | 0 | 33.3 | defgh |
55.2.1 | 0 | 1 | 1 | 2 | 2 | 76.7 | abc |
56.1.2 | 0 | 0 | 0 | 4 | 2 | 86.7 | a |
56.2.2 | 0 | 0 | 2 | 2 | 2 | 80.0 | ab |
56.2.3 | 0 | 0 | 0 | 3 | 3 | 90.0 | a |
56.2.4 | 0 | 0 | 2 | 2 | 2 | 80.0 | ab |
56.2.5 | 0 | 0 | 2 | 4 | 0 | 73.3 | abc |
57.2.1 | 0 | 0 | 0 | 4 | 2 | 86.7 | a |
1.RI (Pta 1.1) | 2 | 2 | 0 | 0 | 2 | 46.7 | cdefg |
1.RI (Pta 1.2) | 0 | 2 | 2 | 0 | 2 | 66.7 | abcd |
1.RII (Pta 3.2) | 3 | 3 | 0 | 0 | 0 | 20.0 | efgh |
Healthy control | 6 | 0 | 0 | 0 | 0 | 0.0 | h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanna, M.; Martino, I.; Guarnaccia, V.; Mezzalama, M. Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy. Plants 2023, 12, 3857. https://doi.org/10.3390/plants12223857
Sanna M, Martino I, Guarnaccia V, Mezzalama M. Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy. Plants. 2023; 12(22):3857. https://doi.org/10.3390/plants12223857
Chicago/Turabian StyleSanna, Martina, Ilaria Martino, Vladimiro Guarnaccia, and Monica Mezzalama. 2023. "Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy" Plants 12, no. 22: 3857. https://doi.org/10.3390/plants12223857
APA StyleSanna, M., Martino, I., Guarnaccia, V., & Mezzalama, M. (2023). Diversity and Pathogenicity of Fusarium Species Associated with Stalk and Crown Rot in Maize in Northern Italy. Plants, 12(22), 3857. https://doi.org/10.3390/plants12223857