Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System
Abstract
:1. Introduction
2. Results
2.1. Variation in Rice Growth Parameters
2.2. Total Cd and Exchangeable Cd Content in Soil under Different Cultivation Modes
2.3. Inter-Root Soil pH Variation under Different Cultivation Modes
2.4. Cd Content in Various Parts of Rice under Different Cultivation Modes
2.5. Cd Content in Rice Grain and Bran under Different Cultivation Modes
2.6. Cd Content in Solanum nigrum L. under Different Cultivation Modes
2.7. Accumulation and Dynamic of Cd in Soil–Rice System under Different Cultivation Modes
3. Discussion
3.1. Effects of Intercropping and Cultivation Mode on Rice Growth
3.2. Effects of Intercropping System and Cultivation Mode on Rice Cd Uptake
3.3. Effects of Intercropping and Cultivation Mode on Inter-Root Soil pH
3.4. Effects of Intercropping and Cultivation Mode on Inter-Root Soil Exchangeable Cd
3.5. Effects of Intercropping and Cultivation Mode on Cd Accumulation and Mobility in Soil Plant System
4. Materials and Methods
4.1. Site Description and Experimental Materials
4.2. Experimental Design
4.3. Sampling Methods and Sample Conservation
4.3.1. Plant Sampling and Preservation Methods
4.3.2. Soil Sample Sampling and Preservation Methods
4.4. Measurement Methods
4.4.1. Determination of Cd Content in Various Parts of Rice and Solanum nigrum L.
4.4.2. Determination of Soil pH
4.4.3. Determination of Soil Exchangeable Cd Content
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kama, R.; Liu, Y.; Song, J.; Hamani, A.K.M.; Zhao, S.; Li, S.; Diatta, S.; Yang, F.; Li, Z. Treated Livestock Wastewater Irrigation Is Safe for Maize (Zea mays) and Soybean (Glycine max) Intercropping System Considering Heavy Metals Migration in Soil—Plant System. Int. J. Environ. Res. Public Health 2023, 20, 3345. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.S.; Kapri, A.; Goel, R. Heavy Metal Pollution: Source, Impact, and Remedies. In Biomanagement of Metal-Contaminated Soils; Khan, M.S., Zaidi, A., Goel, R., Musarrat, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 1–28. [Google Scholar]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.Z.u.; Zafar, M.; Waris, A.A.; Rizwan, M.; Ali, S.; Sabir, M.; Usman, M.; Ayub, M.A.; Ahmad, Z. Residual effects of frequently available organic amendments on cadmium bioavailability and accumulation in wheat. Chemosphere 2020, 244, 125548. [Google Scholar] [CrossRef] [PubMed]
- El-Tohory, S.; Zeng, W.; Huang, J.; Moussa, M.G.; Dong, L.; Mohamed, A.; Khalifa, O.; Saleem, M.H.; Zhran, M.; Salama, M.A.; et al. Effect of intercropping and biochar application on cadmium removal capacity by corchorus olitorius and Zea mays. Environ. Technol. Innov. 2023, 29, 103033. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Zeng, L.; Lin, X.; Zhou, F.; Qin, J.; Li, H. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicol. Environ. Saf. 2019, 167, 520–530. [Google Scholar] [CrossRef]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Mo, Q.; Li, Y.; Meng, D.; Li, H. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Ecotoxicol. Environ. Saf. 2023, 259, 115004. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Guo, J.; Zheng, G.; Chen, T.; Meng, X.; He, M.; Ma, C. Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil. Sci. Total Environ. 2023, 879, 163034. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.Z.u.; Rizwan, M.; Ali, S.; Ok, Y.S.; Ishaque, W.; Saifullah; Nawaz, M.F.; Akmal, F.; Waqar, M. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicol. Environ. Saf. 2017, 143, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Zou, R.; Wang, L.; Guo, W.; Zhang, D.; Fan, H. Effect of different forms of N fertilizers on the hyperaccumulator Solanum nigrum L. and maize in intercropping mode under Cd stress. RSC Adv. 2018, 8, 40210–40218. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.; Zia-ur-Rehman, M.; Naeem, A.; Khalid, M.U.; Rizwan, M.; Ali, S.; Umair, M.; Sohail, M.I. Chapter 18-Solanum nigrum L.: A Novel Hyperaccumulator for the Phyto-Management of Cadmium Contaminated Soils. In Cadmium Toxicity and Tolerance in Plants; Hasanuzzaman, M., Prasad, M.N.V., Fujita, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 451–477. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Zia-ur-Rehman, M.; Bani Mfarrej, M.F.; Usman, M.; Azhar, M.; Rizwan, M.; Alharby, H.F.; Bamagoos, A.A.; Alshamrani, R.; Ahmad, Z. Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. Environ. Pollut. 2023, 329, 121682. [Google Scholar] [CrossRef] [PubMed]
- Mudare, S.; Kanomanyanga, J.; Jiao, X.; Mabasa, S.; Lamichhane, J.R.; Jing, J.; Cong, W.-F. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: A meta-analysis. Agron. Sustain. Dev. 2022, 42, 81. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Li, J.; Zhang, M.; Zhou, S.; Wang, Z.; Zhang, Y. Does maize hybrid intercropping increase yield due to border effects? Field Crops Res. 2017, 214, 283–290. [Google Scholar] [CrossRef]
- Fahong, W.; Xuqing, W.; Sayre, K. Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crops Res. 2004, 87, 35–42. [Google Scholar] [CrossRef]
- Du, X.; He, W.; Wang, Z.; Xi, M.; Xu, Y.; Wu, W.; Gao, S.; Liu, D.; Lei, W.; Kong, L. Raised bed planting reduces waterlogging and increases yield in wheat following rice. Field Crops Res. 2021, 265, 108119. [Google Scholar] [CrossRef]
- Shi, M.; Paudel, K.P.; Chen, F.-b. Mechanization and efficiency in rice production in China. J. Integr. Agric. 2021, 20, 1996–2008. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Tong, W.; Hussain, B.; Hamid, Y.; Lu, M.; He, Z.; Yang, X. Cataloging of Cd Allocation in Late Rice Cultivars Grown in Polluted Gleysol: Implications for Selection of Cultivars with Minimal Risk to Human Health. Int. J. Environ. Res. Public Health 2020, 17, 3632. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Thobakgale, T.; Li, Y.; Liu, L.; Su, Q.; Cang, B.; Bai, C.; Li, J.; Song, Z.; Wu, M.; et al. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction. Sci. Rep. 2021, 11, 7189. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Mandal, K.G.; Mohanty, R.K.; Ambast, S.K. Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management. Agric. Water Manag. 2018, 206, 67–77. [Google Scholar] [CrossRef]
- Deng, X.; Chen, Y.; Yang, Y.; Peng, L.; Si, L.; Zeng, Q. The implications of planting mode on cadmium uptake and remobilization in rice: Field experiments across growth stages. Front. Environ. Sci. Eng. 2021, 15, 137. [Google Scholar] [CrossRef]
- Han, J.; Luo, Y.; Yang, L.; Liu, X.; Wu, L.; Xu, J. Acidification and salinization of soils with different initial pH under greenhouse vegetable cultivation. J. Soils Sediments 2014, 14, 1683–1692. [Google Scholar] [CrossRef]
- Takarina, N.; Tjiong, G.P. Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm. Makara J. Sci. 2017, 21, 77–81. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Qin, H. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J. Geochem. Explor. 2019, 200, 159–166. [Google Scholar] [CrossRef]
- Kama, R.; Liu, Y.; Zhao, S.; Hamani, A.K.M.; Song, J.; Cui, B.; Aidara, M.; Liu, C.; Li, Z. Combination of intercropping maize and soybean with root exudate additions reduces metal mobility in soil-plant system under wastewater irrigation. Ecotoxicol. Environ. Saf. 2023, 266, 115549. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Tong, Y.W. Chapter 2-Phytoremediation of metals: Bioconcentration and translocation factors. In Current Developments in Biotechnology and Bioengineering; Sharma, P., Pandey, A., Tong, Y.W., Ngo, H.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 19–37. [Google Scholar]
Cultivation Mode | Rice Dry Weight | ||
---|---|---|---|
RDW | SDW | LDW | |
dry intercropping | 2.02 ± 0.34 ab | 29.96 ± 11.37 a | 14.58 ± 2.11 a |
dry monoculture | 3.89 ± 0.15 a | 11.64 ± 4.86 b | 5.91 ± 0.88 bc |
intercropping high-bed and low-ditch planting system | 1.05 ± 0.14 c | 11.39 ± 0.55 b | 6.06 ± 0.86 b |
flooding monoculture | 1.11 ± 0.27 b | 7.72 ± 0.90 c | 4.38 ± 0.27 c |
Cultivation Mode | Plants | Treatments | pH |
---|---|---|---|
Dry cultivation | rice | dry intercropping | 4.49 ± 0.04 ab |
dry monoculture | 4.31 ± 0.08 ab | ||
Solanum nigrum L. | dry intercropping | 4.52 ± 0.05 a | |
dry monocropping | 4.38 ± 0.01 ab | ||
Flood cultivation and High bed and low ditch planting system | rice | high-bed and low-ditch intercropping | 6.53 ± 0.06 b |
flooding monoculture | 6.69 ± 0.04 ab | ||
Solanum nigrum L. | high-bed and low-ditch intercropping | 6.75 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kama, R.; Ma, Q.; Nabi, F.; Aidara, M.; Huang, P.; Li, Z.; He, J.; Diatta, S.; Li, H. Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System. Plants 2023, 12, 4027. https://doi.org/10.3390/plants12234027
Kama R, Ma Q, Nabi F, Aidara M, Huang P, Li Z, He J, Diatta S, Li H. Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System. Plants. 2023; 12(23):4027. https://doi.org/10.3390/plants12234027
Chicago/Turabian StyleKama, Rakhwe, Qingguang Ma, Farhan Nabi, Maimouna Aidara, Peiyi Huang, Zhencheng Li, Juxi He, Sekouna Diatta, and Huashou Li. 2023. "Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System" Plants 12, no. 23: 4027. https://doi.org/10.3390/plants12234027
APA StyleKama, R., Ma, Q., Nabi, F., Aidara, M., Huang, P., Li, Z., He, J., Diatta, S., & Li, H. (2023). Hyperaccumulator Solanum nigrum L. Intercropping Reduced Rice Cadmium Uptake under a High-Bed and Low-Ditch Planting System. Plants, 12(23), 4027. https://doi.org/10.3390/plants12234027