Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers
Abstract
:1. Introduction
2. Results
2.1. Analyses of the Repetitive DNA Sequences Identified in the Genome of C. officinalis
2.2. BLAST Analysis of the Identified SatDNAs
2.3. Chromosomal Structural Variations
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Genomic DNA Extraction and Sequencing
4.3. Sequence Analysis and Identification of DNA Repeats
4.4. Chromosome Slide Preparation
4.5. FISH Procedure
4.6. Chromosome Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ao, C. Comparative anatomy of bisexual and female florets, embryology in Calendula officinalis (Asteraceae), a naturalized horticultural plant. Sci. Hortic. 2007, 114, 214–219. [Google Scholar] [CrossRef]
- Khalid, A.K.; Silva, J.A. Biology of Calendula officinalis Linn. Focus on pharmacology, biological activities and agronomic practices. Med. Aromat. Plant Sci. Biotech. 2012, 6, 12–27. [Google Scholar]
- Shah, P.J.; Williamson, M.T. Synergistic activity of Calendula officinalis petal extract with cefotaxime on esbl producing Escherichia coli. Int. J. Pharm. Biol. Sci. 2018, 8, 419–425. [Google Scholar]
- Hiller, K.; Melzig, M.F. Lexikon der heilpflanzen und drogen; Akademischer Verlag, Spektrum: Heidelberg, Germany, 2010; pp. 106–107. [Google Scholar]
- Haensel, R.; Sticher, O. Pharmakognosie-Phytopharmazie. Ueberarbeitete und Aktialisierte Auflage; Heidelberg Springer: Heidelberg, Germany, 2007; pp. 1151–1155. [Google Scholar]
- Bissa, S.; Bohra, A. Antibacterial potential of pot marigold. J. Microbiol. Antimicrob. 2011, 3, 51–54. [Google Scholar]
- Suzuki, R.; Noguchi, R.; Ota, T.; Abe, M.; Miyashita, K.; Kawada, T. Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids 2001, 36, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Chardigny, J.M.; Hasselwander, O.; Genty, M.; Kraemer, K.; Ptock, A.; Sebedio, J.L. Effect of conjugated FA on feed intake, body composition, and liver FA in mice. Lipids 2003, 38, 895–902. [Google Scholar] [CrossRef]
- Yasui, Y.; Hosokawa, M.; Kohno, H.; Tanaka, T.; Miyashita, K. Growth inhibition and apoptosis induction by 450 all-trans-conjugated linolenic acids on human colon cancer cells. Anticancer Res. 2006, 26, 1855–1860. [Google Scholar]
- Cruceriu, D.; Balacescu, O.; Rakosy, E. Calendula officinalis: Potential roles in cancer treatment and palliative care. Integr. Cancer Ther. 2018, 17, 1068–1078. [Google Scholar] [CrossRef]
- Khouchlaa, A.; Baaboua, A.E.; Moudden, H.E.; Lakhdar, F.; Bakrim, S.; Menyiy, N.E.; Belmehdi, O.; Harhar, H.; Omari, N.E.; Balahbib, A.; et al. Traditional uses, bioactive compounds, and pharmacological investigations of Calendula arvensis L.: A Comprehensive review. ADV Pharmacol. Pharm. Sci. 2023, 2023, 2482544. [Google Scholar] [CrossRef]
- Gonçalves, A.; Castro, S.; Paiva, J.; Santos, C.; Silveira, P. Taxonomic revision of the genus Calendula (Asteraceae) in the Iberian Peninsula and the Balearic Islands. Phytotaxa 2018, 352, 1. [Google Scholar] [CrossRef]
- Heyn, C.C.; Joel, A. Reproductive relationships between annual species of Calendula (Compositae). Plant Syst. Evol. 1983, 143, 311–329. [Google Scholar] [CrossRef]
- Nora, S.; Castro, S.; Loureiro, J.; Gonçalves, A.C.; Oliveira, H.; Castro, M.; Santos, C.; Silveira, P. Flow cytometric and karyological analyses of Calendula species from Iberian Peninsula. Plant Syst. Evol. 2013, 299, 853–864. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Ouhammoud, A.; Amirouche, R.; Santos, C.; Figueiredo, E.; Silveira, P. A taxonomic revision of Calendula (Asteraceae) in Morocco, including some taxa from Algeria and Tunisia. Phytotaxa 2023, 605, 1–83. [Google Scholar] [CrossRef]
- Norlindh, T. Studies in the Calenduleae. II. Phytogeography and interrelation. Bot. Not. 1946, 4, 471–506. [Google Scholar]
- Meusel, H.; Ohle, H. Zur taxonomie und cytologie der gattung Calendula. Österr Bot. Z. 1966, 113, 191–210. [Google Scholar] [CrossRef]
- Heyn, C.C.; Dagan, O.; Nachman, B. The annual Calendula species: Taxonomy and relationships. Israel J. Bot. 1974, 23, 1201–1969. [Google Scholar]
- Ohle, H. Beiträge zur taxonomie der gattung Calendula L. II. Taxonomische revision der südeuropäischen perennierenden Calendula-Sippen. Feddes Repert. 1974, 85, 245–283. [Google Scholar] [CrossRef]
- Ohle, H. Beiträge zur taxonomie und evolution der gattung Calendula L. III. Revision der marokkanischen perennierenden Sippen unter Berücksichtigung einiger marokkanischer Annueller Mit 6 Tafeln und 4 Abbildungen. Feddes Repert 1975, 86, 1–17. [Google Scholar] [CrossRef]
- Ohle, H. Beiträge zur taxonomie und evolution der gattung Calendula L. IV. Revision der algerisch-tunesischen perennierenden Calendula-sippen unter berücksichtigung einiger marokkanisch-algerischer Annueller und der marokkanischen undsüdeuropäischen perennierende Taxa Mit 5 Tafeln und 3 Abbildungen. Feddes Repert. 1975, 86, 525–541. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Oliveira, H.; Loureiro, J.; Castro, S.; Fidalgo, M.E.; Riberiro, T.; Ouhammoud, A.; Amirouche, R.; Morais-Cecilio, L.; Paulo, C.S. Contribution to the knowledge of genome size variation in Calendula L. (Asteraceae) with special focus on the SW Mediterranean region. Plant Biosyst. 2023, 157, 312–324. [Google Scholar] [CrossRef]
- Darlington, C.D.; Wylie, A.P. Chromosome Atlas of Flowering Plants; The Macmillan Company: New York, NY, USA, 1955. [Google Scholar]
- Nordenstam, B. Calenduleae. In Asteraceae: Cladistics and Classification; Bremer, K., Ed.; Timber Press: Portland, OR, USA, 1994; pp. 365–376. [Google Scholar]
- Nordenstam, B.; Kallersjo, M. Calenduleae. In Systematics, Evolution and Biogeography of the Compositae; Funk, V.A., Susanna, A., Stuessy, T., Bayer, R.B., Eds.; International Association for Plant Taxonomy (IAPT): Vienna, Austria, 2009; Volume 527. [Google Scholar]
- Vogt, R.; Oberprieler, C. Chromosome numbers of North African phanerogams. VIII. More counts in Compositae . Willdenowia 2008, 38, 497–519. [Google Scholar] [CrossRef]
- Baciu, A.-D.; Pamfil, D.; Mihalte, L.; Sestras, A.F.; Sestras, R.E. Phenotypic variation and genetic diversity of Calendula officinalis (L.). Bulgar J. Agricult Sci. 2013, 19, 143–151. [Google Scholar]
- Fallahi, M.; Mohammadi, A.; Miri, S.M. The natural variation in six populations of Calendula officinalis L.: A karyotype study. J. Genet. Resour. 2020, 6, 34–40. [Google Scholar] [CrossRef]
- Soliman, M.I. Genetic diversity of achene heteromorphism in Egyptian Calendula micrantha Tineo et Guss. Asian J. Plant Sci. 2003, 2, 782–789. [Google Scholar] [CrossRef]
- Soliman, M.I.; Rizk, R.M.H.; Rizk, R.M.A. The impact of seed polymorphism of plant genetic resources on the collection strategy of gene banks. Glob. J. Biotech. Biochem. 2008, 3, 47–55. [Google Scholar]
- Murín, A. Karyotaxonomy of some medicinal and aromatic plants. Thaiszia J. Bot. 1997, 7, 75–88. [Google Scholar]
- Probatova, N.S.; Rudyka, E.G.; Shatalova, S.A. Chromosome numbers in some plant species from the environs of Vladivostok city (Primorsky Region). Bot. Zhurn. 2001, 91, 168–172. [Google Scholar]
- Chen, R.Y.; Song, W.Q.; Li, X.L.; Li, M.; Lin, S.; Liang, G. Chromosome Atlas of Major Economic Plants Genome in China; Science Press: Beijing, China, 2003; pp. 330–430. [Google Scholar]
- Samatadze, T.E.; Zoshchuk, S.A.; Hazieva, F.M.; Yurkevich, O.Y.; Svistunova, N.Y.; Morozov, A.I.; Amosova, A.V.; Muravenko, O.V. Phenotypic and molecular cytogenetic variability in calendula (Calendula officinalis L.) cultivars and mutant lines obtained via chemical mutagenesis. Sci. Rep. 2019, 9, 9155. [Google Scholar] [CrossRef]
- Rice, A.; Glick, L.; Abadi, S.; Einhorn, M.; Kopelman, N.M.; Salman-Minkov, A.; Mayzel, J.; Chay, O.; Mayrose, I. The chromosome counts database (CCDB)—A community resource of plant chromosome numbers. New Phytol. 2015, 206, 19–26. [Google Scholar] [CrossRef]
- Garcia, S.; Panero, J.L.; Siroky, J.; Kovarik, A. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 2010, 10, 176. [Google Scholar] [CrossRef]
- Mallick, P.K. Karyomorphology, meiotic behaviours and pollen fertility of Calendula officinalis L. (Calenduleae-Asteraceae). Int. J. Appl. Sci. Biotechnol. 2021, 9, 75–79. [Google Scholar] [CrossRef]
- Esmaeili, G.; Laere, K.V.; Muylle, H.; Leus, L. Artificial chromosome doubling in allotetraploid Calendula officinalis. Front. Plant Sci. 2020, 11, 622. [Google Scholar] [CrossRef]
- Clavijo, E.R. The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta Oecologica-Int. J. Ecol. 2005, 28, 119–126. [Google Scholar] [CrossRef]
- Plume, O. Hybridization, Genome Duplication, and Chemical Diversification in the Evolution of Calendula L. (Compositae). Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2015. [Google Scholar]
- Liu, Q.; Li, X.; Zhou, X.; Li, M.; Zhang, F.; Schwarzacher, T.; Heslop-Harrison, J.S. The repetitive DNA landscape in Avena (Poaceae): Chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biol. 2019, 19, 226. [Google Scholar] [CrossRef]
- McCann, J.; Macas, J.; Novák, P.; Stuessy, T.F.; Villasenor, J.L.; Weiss-Schneweiss, H. Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect Melampodium (Asteraceae). Front. Plant Sci. 2020, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Kirov, I.; Kolganova, E.; Dudnikov, M.; Yurkevich, O.Y.; Amosova, A.V.; Muravenko, O.V. A pipeline NanoTRF as a new tool for De Novo satellite DNA identification in the raw nanopore sequencing reads of plant genomes. Plants 2022, 11, 2103. [Google Scholar] [CrossRef] [PubMed]
- Muravenko, O.V.; Yurkevich, O.Y.; Kalnyuk, J.V.; Samatadze, T.E.; Zoshchuk, S.A.; Amosova, A.V. Integration of repeatomic and cytogenetic data on satellite DNA for the genome analysis in the genus Salvia (Lamiaceae). Plants 2022, 11, 2244. [Google Scholar] [CrossRef] [PubMed]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Suprun, N.A.; Suslina, S.N.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Integration of genomic and cytogenetic data on tandem DNAs for analyzing the genome diversity within the genus Hedysarum L. (Fabaceae). Front. Plant Sci. 2022, 13, 865958. [Google Scholar] [CrossRef] [PubMed]
- Galindo-González, L.; Mhiri, C.; Deyholos, M.K.; Grandbastien, M.A. LTR-retrotransposons in plants: Engines of evolution. Gene 2017, 626, 14–25. [Google Scholar] [CrossRef]
- Luo, X.; Chen, S.; Zhang, Y. PlantRep: A database of plant repetitive elements. Plant Cell Rep. 2022, 41, 1163–1166. [Google Scholar] [CrossRef]
- Argentin, J.; Bolser, D.; Kersey, P.J.; Flicek, P. Comparative analysis of repeat content in plant genomes, large and small. Front. Plant Sci. 2023, 14, 1103035. [Google Scholar] [CrossRef] [PubMed]
- Heslop-Harrison, J.S. Comparative genome organization in plants: From sequence and markers to chromatin and chromosomes. Plant Cell 2000, 12, 617–636. [Google Scholar] [CrossRef] [PubMed]
- Bennetzen, J.L.; Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 2014, 65, 505–530. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-F.; Su, T.; Cheng, G.-Q.; Wang, B.-X.; Li, X.; Deng, C.-L.; Gao, W.-J. Chromosome Evolution in Connection with Repetitive Sequences and Epigenetics in Plants. Genes 2017, 8, 290. [Google Scholar] [CrossRef]
- Makałowski, W.; Gotea, V.; Pande, A.; Makałowska, I. Transposable elements: Classification, identification, and their use as a tool for comparative genomics. In Evolutionary Genomics. Methods in Molecular Biology; Anisimova, M., Ed.; Humana: New York, NY, USA, 2019; Volume 1910, pp. 170–270. [Google Scholar] [CrossRef]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- SanMiguel, P.; Tikhonov, A.; Jin, Y.-K.; Motchoulskaia, N.; Zakharov, D.; Melake-Berhan, A.; Springer, P.S.; Edwards, K.J.; Lee, M.; Avramova, Z.; et al. Nested retrotransposons in the inter-genic regions of the maize genome. Science 1996, 274, 765–768. [Google Scholar] [CrossRef]
- Vitte, C.; Panaud, O. LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenet. Genome Res. 2005, 110, 91–107. [Google Scholar] [CrossRef]
- Baucom, R.; Estill, J.; Chaparro, C.; Upshaw, N.; Jogi, A.; Deragon, J.-M.; Westerman, R.P.; SanMiguel, P.J.; Bennetzen, J.L. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 2009, 5, e1000732. [Google Scholar] [CrossRef]
- Shcherban, A.B. Repetitive DNA sequences in plant genomes. Russ. J. Genet. Appl. Res. 2014, 5, 159–167. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Gao, L.-I. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 2017, 7, 1875–1885. [Google Scholar] [CrossRef]
- Moreno-Aguilar, M.F.; Inda, L.A.; Sánchez-Rodríguez, A.; Arnelas, I.; Catalán, P. Evolutionary Dynamics of the Repeatome Explains Contrasting Differences in Genome Sizes and Hybrid and Polyploid Origins of Grass Loliinae Lineages. Front. Plant Sci. 2022, 13, 901733. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zheng, Z.; Li, Y.; Hu, H.; Wang, Z.; Du, X. Which factors contribute most to genome size variation within angiosperms? Ecol. Evol. 2021, 11, 2660–2668. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Novák, P.; Hoštáková, N.; Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 2019, 10, 1. [Google Scholar] [CrossRef]
- Amosova, A.V.; Yurkevich, O.Y.; Bolsheva, N.L.; Samatadze, T.E.; Zoshchuk, S.A.; Muravenko, O.V. Repeatome analyses and satellite DNA chromosome patterns in Deschampsia sukatschewii, D. cespitosa and D. antarctica (Poaceae). Genes 2022, 13, 762. [Google Scholar] [CrossRef]
- Becher, H.; Powell, R.F.; Brown, M.R.; Metherell, C.; Pellicer, J.; Leitch, I.J.; Twyford, A.D. The nature of intraspecific and interspecific genome size variation in taxonomically complex eyebrights. Ann. Bot. 2021, 128, 639–651. [Google Scholar] [CrossRef]
- Cuadrado, A.; Cardoso, M.; Jouve, N. Physical organization of simple sequence repeats (SSRs) in Triticeae: Structural, functional and evolutionary implications. Cytogenet. Genome Res. 2008, 120, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Liu, R.; Yu, F. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae). Comp. Cytogenet. 2016, 10, 465–481. [Google Scholar] [CrossRef]
- Mehrotra, S.; Goyal, V. Repetitive sequences in plant nuclear DNA: Types, distribution, evolution and function. Genom. Proteom. Bioinform. 2014, 12, 164–171. [Google Scholar] [CrossRef]
- McStay, B. Nucleolar organizer regions: Genomic ‘dark matter’ requiring illumination. Genes Dev. 2016, 30, 1598–1610. [Google Scholar] [CrossRef]
- Macas, J.; Mészáros, T.; Nouzová, M. PlantSat: A specialized database for plant satellite repeats. Bioinformatics 2002, 18, 28–35. [Google Scholar] [CrossRef]
- Plohl, M.; Petrovi’c, V.; Luchetti, A.; Ricci, A.; Šatovi´c, E.; Passamonti, M.; Mantovani, B. Long-term conservation vs high sequence divergence: The case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 2010, 104, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA in plants: More than Just Rubbish. Cytogenet. Genome Res. 2015, 146, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Raina, S.N. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet. Genome Res. 2005, 109, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Oberprieler, C.; Vogt, R. Chromosome numbers of North African phanerogams. II. Willdenowia 1993, 23, 211–238. [Google Scholar]
- Diaz Lifante, Z.; Luque, T.; Santa Barbara, C. Chromosome numbers of plants collected during Iter Mediterraneum. Bocconea 1992, 3, 229–250. [Google Scholar]
- Dalgaard, V. Chromosome studies in flowering plants from Macaronesia. An. Jard. Bot. Madr. 1986, 43, 83–111. [Google Scholar]
- Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A galaxybased web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 2013, 29, 792. [Google Scholar] [CrossRef]
- Novak, P.; Robledillo, L.A.; Koblizkova, A.; Vrbova, I.; Neumann, P.; Macas, J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acid. Res. 2017, 45, e111. [Google Scholar] [CrossRef]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A.M. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef]
- Gerlach, W.L.; Bedbrook, J.R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979, 7, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, W.L.; Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980, 8, 4851–4855. [Google Scholar] [CrossRef] [PubMed]
Repeat Name | Genome Proportion (%) |
---|---|
Retrotransposons (Class I) | 20.91 |
Ty1 Copia | 13.84 |
Angela | 4.21 |
Bianca | 0.19 |
SIRE | 8.88 |
TAR | 0.24 |
Unclassified Ty1 copia elements | 0.32 |
Ty3-Gypsy | 5.80 |
Non-chromovirus Athila | 0.24 |
Non-chromovirus Tat-Retand | 0.19 |
Chromovirus Tekay | 5.37 |
LINE | 0.01 |
Unclassified LTR elements | 1.26 |
Transposons (Class II) | 0.81 |
Cacta | 0.07 |
hAT | 0.02 |
MuDR_Mutator | 0.03 |
PIF_Harbinger | 0.39 |
Helitron | 0.30 |
rDNA | 3.20 |
Unclassified repeats | 10.73 |
DNA satellite | 3.92 |
Organelle | 14.18 |
Putative satellites | 4 high confident |
6 low confident |
Tandem Repeat/ Genome Proportion, % | Repeat Length, bp | BLAST Homology with Other Identified Cal Repeats | BLAST Homology (Available NCBI Data) |
---|---|---|---|
Cal 2/1.2 | 90 | 88.9% identity with Cal 5, 94% with Cal 80 | not found |
Cal 5/1.1 | 136 | 88.9% identity with Cal 2, 84.9% with Cal 80 | not found |
Ca 43/0.51 | 267 | not found | Glycine max cultivar Williams 82 chromosome 19/88.1%; CP126444.1 Glycine max cultivar Williams 82 chromosome 17/86.4%; CP126442.1 |
Cal 80/0.25 | 90 | 94% identity with Cal 2, 84.9% with Cal 5 | not found |
Cal 39/0.54 | 14 | not found | not found |
Cal 101/0.1 | 90 | not found | Syngnathus acus genome assembly chromosome 9/91.7%; OX411224.1 |
Cal 103/0.093 | 32 | not found | not found |
Cal 109/0.074 | 1893 | not found | Pulicaria dysenterica genome assembly chromosome 6/80%; OX359293.1 Pulicaria dysenterica genome assembly chromosome 7/85.5%; OX359294.1 Patella depressa genome assembly chromosome 3/85.7%; OX419717.1 |
Cal 163/0.019 | 83 | not found | Aphis gossypii genome assembly chromosome 3/96.3%; OU899036.1 Cantharis lateralis genome assembly chromosome 5/92.5%; OY720628.1 Harmonia axyridis genome assembly chromosome 3/88.4%; OU611929.1 |
Cal 187/0.013 | 375 | not found | Pulicaria dysenterica genome assembly chromosome 5/70.4%; OX359292.1 Pulicaria dysenterica genome assembly chromosome 9/69.2%; OX359296.1 Solea solea genome assembly chromosome 8/92.3%; OY282541.1 |
Oligonucleotide Probes | Sequences of the Oligonucleotide Probes |
---|---|
Cal 2 | ATAAGTATCCATTTTAAACCGTAATAGGTGTCCATAACCCATACGAATGGCCC |
Cal 39 | GCTCAAGGCTCAAG |
Ca 43 | AAAGGCCATAACTTTTGGCTCGGGTCTCCGTTT |
Cal 101 | AAATCACGAAGCACATGTGCTTCATAAAGCCAAGCACAT |
Cal 103 | ACATATAGTCAAGATTAATCATCGATGATTAA |
Cal 109 | CTAACAATCTCCCCCTATCTGATGATAACAAATGAATATGTTTAA |
Cal 163 | CGTTAAATTCAATATTTTTCTGGAATTTTCCAAGATTCCTTGAATTTATAACCTTAAATATGTATT |
Cal 187 | CAAGTGGGAGGGAAAACGTATAAGAGCACCAAGGTGTTTGGAAATGAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samatadze, T.E.; Yurkevich, O.Y.; Khazieva, F.M.; Basalaeva, I.V.; Savchenko, O.M.; Zoshchuk, S.A.; Morozov, A.I.; Amosova, A.V.; Muravenko, O.V. Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers. Plants 2023, 12, 4056. https://doi.org/10.3390/plants12234056
Samatadze TE, Yurkevich OY, Khazieva FM, Basalaeva IV, Savchenko OM, Zoshchuk SA, Morozov AI, Amosova AV, Muravenko OV. Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers. Plants. 2023; 12(23):4056. https://doi.org/10.3390/plants12234056
Chicago/Turabian StyleSamatadze, Tatiana E., Olga Yu. Yurkevich, Firdaus M. Khazieva, Irina V. Basalaeva, Olga M. Savchenko, Svyatoslav A. Zoshchuk, Alexander I. Morozov, Alexandra V. Amosova, and Olga V. Muravenko. 2023. "Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers" Plants 12, no. 23: 4056. https://doi.org/10.3390/plants12234056
APA StyleSamatadze, T. E., Yurkevich, O. Y., Khazieva, F. M., Basalaeva, I. V., Savchenko, O. M., Zoshchuk, S. A., Morozov, A. I., Amosova, A. V., & Muravenko, O. V. (2023). Genome Studies in Four Species of Calendula L. (Asteraceae) Using Satellite DNAs as Chromosome Markers. Plants, 12(23), 4056. https://doi.org/10.3390/plants12234056