Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice
Abstract
:1. Introduction
2. Results
2.1. Weather Conditions
2.2. Grain Yield
2.3. Yield Components
2.4. Leaf Area Index, Specific Leaf Weight, and Effective Leaf Area Ratio
2.5. IR, IP, IPAR, and RUE
2.6. Grain Yield and Yield Component Analysis
2.7. Relationship between IP, IPAR, TDW, RUE, and Grain Yield
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Test Material
4.2. Experimental Design and Crop Management
4.3. Sampling and Measurements
4.4. Measurement of IR and RUE
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, S.; Saud, S.; Akhter, A.; Bajwa, A.A.; Hassan, S.; Battaglia, M.; Adnan, M.; Wahid, F.; Datta, R.; Babur, E.; et al. Bio-based integrated pest management in rice: An agro-ecosystems friendly approach for agricultural sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 94–102. [Google Scholar] [CrossRef]
- Raza, M.A.; Gul, H.; Wang, J.; Yasin, H.S.; Ruijun, Q.; Khalid, M.H.B.; Naeem, M.; Feng, L.Y.; Iqbal, N.; Gitari, H.; et al. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. J. Clean. Prod. 2021, 308, 127282. [Google Scholar] [CrossRef]
- Fuglie, K. Climate change upsets agriculture. Nat. Clim. Chang. 2021, 11, 294–295. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; Zhang, Z.T.; Huang, C.F.; Chen, X.; Wang, F. Climate change effects on agricultural production: The regional and sectoral economic consequences in China. Earth’s Future 2022, 10, 11. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.L.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.Y.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Global Rice Science Partnership. Rice Agri-Food System CRP, RICE; International Rice Research Institute: Los Baños, Philippines, 2016. [Google Scholar]
- Li, W.X.; Dai, L.; Wang, L.H.; Fang, B.H.; Wang, X.H. Carbon and nitrogen metabolism and yield composition in multi-panicle and large-panicle super rice varieties at young panicle differentiation stage. Acta Agric. Boreali-Sin. 2022, 37, 103–112. Available online: http://www.hbnxb.net/EN/10.7668/hbnxb.20193168 (accessed on 3 September 2023). (In Chinese).
- Peng, J.M.; Yuan, L.P.; Chen, L.X.; Xiao, L.M.; Xu, Q.S.; Wu, Z.H. Cultivation techniques of super hybrid rice yielded over 13.5 t/hm2 on a 100-mu scale at Longhui, Hunan. Hybrid Rice 2011, 26, 49–50. (In Chinese) [Google Scholar]
- Cassman, K.G.; Peng, S.B.; Olk, D.C.; Ladha, J.K.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Long, X.; Wang, R.Q.; Sun, Y.J.; Ma, J. Characteristics of population development and yield formation of rice under triangle-planted system of rice intensification at different nitrogen application amounts. Chin. J. Rice Sci. 2010, 24, 162–168. Available online: http://www.ricesci.cn/EN/0.3969/j.issn.1001-7216.2010.02.10 (accessed on 10 September 2023). (In Chinese).
- Yuan, L.P. Hybrid rice breeding for super high yield. Hybrid Rice 1997, 12, 10–12. [Google Scholar]
- Tu, X.; Deng, X.L.; Zhu, M.H.; Li, X.Y.; Jing, P.P.; Dai, Q.G. Source-sink characteristics of three plant types in different panicles varieties of rice. Acta Agric. Nucl. Sin. 2018, 32, 1425–1434. Available online: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2018.07.1425 (accessed on 3 September 2023).
- Meng, T.Y.; Wei, H.H.; Li, C.; Dai, Q.G.; Xu, K.; Hou, Z.Y.; Wei, H.Y.; Guo, B.W.; Zhang, H.C. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage. J. Integr. Agric. 2016, 15, 1751–1762. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, X.Y.; Dai, Q.G.; Zhang, H.C.; Yin, X.Y. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res. 2018, 215, 23–38. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Xia, Y.S.; Shi, J.; Zhang, N.M. Progress in research on determination factors for super-high-yield rice in special eco-site of Yunnan province. Acta Agric. Boreali-Sin. 2014, 30, 14–17. Available online: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.2013-2888 (accessed on 3 September 2023). (In Chinese).
- Jiang, Y.H.; Xu, K.; Zhao, K.; Sun, J.J.; Wei, H.H.; Xu, J.W.; Wei, H.Y.; Guo, B.W.; Huo, Z.Y.; Dai, Q.G.; et al. Canopy structure and photosynthetic characteristics of yongyou series of indica-japonica hybrid rice under high-yielding cultivation condition. Acta Agron. Sin. 2015, 41, 286–296. Available online: https://zwxb.chinacrops.org/CN/10.3724/SP.J.1006.2015.00286 (accessed on 15 September 2023). (In Chinese). [CrossRef]
- Fu, J.; Huang, Z.H.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res. 2011, 123, 170–182. [Google Scholar] [CrossRef]
- Yuan, L.P. Progress in breeding of super hybrid rice. Chin. J. Agric. 2018, 8, 71–73. Available online: http://nxxb.caass.org.cn/EN/10.11923/j.issn.2095-4050.cjas2018-1-080 (accessed on 15 September 2023). (In Chinese). [CrossRef]
- National Rice Data Center. China Rice Varieties and Pedigree Database. 2023. Available online: http://www.ricedata.cn/variety/ (accessed on 16 February 2023).
- Peng, J.M. Research on panicle-rice type super hybrid rice. Hybrid Rice 2017, 32, 1–8. (In Chinese) [Google Scholar]
- Li, J.W.; Zhang, Y.Z.; Wu, J.; Chang, S.Q.; Zhuang, W.; Zhou, P.; Deng, Q.Y. Studies on matching technology of “four elite factors” for super hybrid rice with yield 15.0 t/hm2. China Rice 2015, 21, 1–6. (In Chinese) [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Ma, G.H.; Qing, X.G. Physiological and ecological characteristics and cultivation regulation for a high and stable yield of super hybrid rice. Chin. J. Rice Sci. 2011, 25, 553–560. Available online: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2011.05.015 (accessed on 3 September 2023). (In Chinese).
- Zou, Y.B. Development of high yielding cultivation researches in indica super hybrid rice. J. Shenyang Agric. Univ. 2007, 38, 707–713. (In Chinese) [Google Scholar]
- Satake, T.; Yoshida, S. High temperture-induced sterility in indica rices at flowering. Jpn. J. Crop. Sci. 1978, 47, 6–17. [Google Scholar] [CrossRef]
- Xu, Y.F.; Chu, C.C.; Yao, S.G. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Y.; Zhu, H.L.; Hu, Y.X.; Jiang, Z.R.; Tang, S.; Wang, S.H.; Ding, Y.F. The initiation of inferior grain filling is affected by sugar translocation efficiency in large panicle rice. Rice 2019, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, J.E.; Dionora, M.J.A.; Mitchell, P.L. Spikelet numbers, sink size and potential yield in rice. Field Crops Res. 2001, 7, 77–85. [Google Scholar] [CrossRef]
- Kato, T.; Dai, S.; Taniguchi, A. Activities of enzymes for sucrosestarch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle-types. Plant Prod. Sci. 2007, 10, 442–450. [Google Scholar] [CrossRef]
- Wu, W.G.; Zhang, H.C.; Wu, G.C.; Zhai, C.Q.; Qian, Y.F.; Chen, Y.; Xu, J.; Dai, Q.G.; Xu, K. Preliminary study on super rice population sink characters. Sci. Agric. Sin. 2007, 40, 250–257. Available online: https://www.chinaagrisci.com/CN/Y2007/V40/I2/250 (accessed on 3 September 2023). (In Chinese).
- Li, G.H.; Xue, L.H.; Gu, W.; Yang, C.D.; Wang, S.H.; Ling, Q.H.; Qin, X.; Ding, Y.F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Res. 2009, 112, 214–221. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H. Grain-filling problem in ‘super’ rice. J. Exp. Bot. 2010, 61, 1–5. [Google Scholar] [CrossRef]
- Ao, H.J.; Wang, S.H.; Zou, Y.B.; Peng, S.B.; Tang, Q.Y.; Fang, Y.X.; Xiao, A.M.; Chen, Y.M.; Xiong, C.M. Yield formation and dry matter characteristics of super hybrid rice under different locations and fertilizer applications. Sci. Agric. Sin. 2008, 41, 1927–1936. (In Chinese) [Google Scholar] [CrossRef]
- Xu, C.S.; Yang, F.; Tang, X.N.; Lu, B.; Li, Z.Y.; Liu, Z.H.; Ding, Y.F.; Ding, C.; Li, G.H. Super rice with high sink activities has superior adaptability to low filling stage temperature. Front. Plant Sci. 2021, 12, 729021. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, R.; Lu, J.; Wang, X.Y.; Lu, B.L.; Tian, X.H.; Zhang, Y.B. Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron. J. 2019, 111, 1788–1798. [Google Scholar] [CrossRef]
- Xie, X.B.; Shan, S.L.; Wang, Y.M.; Cao, F.B.; Chen, J.N.; Huang, M.; Zou, Y.B. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Liu, K.; Yang, R.; Deng, J.; Huang, L.Y.; Wei, Z.W.; Ma, G.H.; Tian, X.H.; Zhang, Y.B. High radiation use efficiency improves yield in the recently developed elite hybrid rice Y-liangyou 900. Field Crops Res. 2020, 253, 107804. [Google Scholar] [CrossRef]
- Honda, S.; Ohkubo, S.; San, N.S.; Nakkasame, A.; Tomisawa, K.; Katsura, K.; Ookawa, T.; Nagano, A.J.; Adachi, S. Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Sci. Rep. 2021, 11, 7579. [Google Scholar] [CrossRef]
- Zhai, H.Q.; Cao, S.Q.; Wan, J.M.; Zhang, R.X.; Lu, W.; Li, L.B.; Kuang, T.Y.; Min, S.K.; Zhu, D.F.; Cheng, S.H. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yielding hybrid rice (Oryza sativa L.). Sci. China C Life Sci. 2002, 45, 637–646. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.L.; Zhou, X.F.; Chen, J.N.; Cao, F.B.; Jiang, L.G.; Zou, Y.B. Leaf photosynthetic performance related to higher radiation use efficiency and grain yield in hybrid rice. Field Crops Res. 2016, 193, 87–93. [Google Scholar] [CrossRef]
- Deng, J.; Harrison, M.T.; Liu, K.; Ye, J.Y.; Xiong, X.; Fahad, S.; Huang, L.Y.; Tian, X.H.; Zhang, Y.B. Integrated crop management practices improve grain yield and resource use efficiency of super hybrid rice. Front. Plant Sci. 2022, 13, 851562. [Google Scholar] [CrossRef]
- Acreche, M.; Briceno-Felix, G.; Martín, J.; Slafer, G. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res. 2009, 110, 91–97. [Google Scholar] [CrossRef]
- Chang, S.Q.; Chang, T.G.; Song, Q.F.; Zhu, X.G.; Deng, Q.Y. Photosynthetic and agronomic traits of an elite hybrid rice Y-liang-you 900 with a record-high yield. Field Crops Res. 2016, 187, 49–57. [Google Scholar] [CrossRef]
- Deng, J.; Ye, J.Y.; Zhong, X.F.; Yang, Q.Q.; Harrison, M.T.; Wang, C.H.; Huang, L.Y.; Tian, X.H.; Liu, K.; Zhang, Y.B. Optimizing grain yield and radiation use efficiency through synergistic applications of nitrogen and potassium fertilizers in super hybrid rice. Plants 2023, 12, 2858. [Google Scholar] [CrossRef] [PubMed]
- Meek, D.W.; Hatfeld, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A generalized relationship between photosynthetically active radiation and solar radiation. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
ANOVA | GY | P | SP | GF | GW | IP | IPAR | TDW | RUE |
---|---|---|---|---|---|---|---|---|---|
Year (Y) | 0.50 ns | 3.77 ns | 1.04 ns | 0.16 ns | 6.81 * | 0.73 ns | 20.60 ** | 333.82 ** | 87.57 ** |
Nitrogen (N) | 109.92 ** | 3.73 * | 4.05 * | 4.1 * | 0.99 ns | 254.55 ** | 363.82 ** | 766.94 ** | 55.33 ** |
Variety (V) | 12.84 ** | 121.14 ** | 14.79 ** | 9.64 ** | 4.02 ns | 130.91 ** | 404.31 ** | 25.10 ** | 223.36 ** |
Y × N | 0.17 ns | 0.18 ns | 0.68 ns | 0.11 ns | 2.59 * | 4.14 * | 1.46 ns | 20.68 ** | 11.70 ** |
Y × V | 0.06 ns | 0.03 ns | 0.91 ns | 3.65 ns | 0.01 ns | 6.02 * | 1.49 ns | 18.92 ** | 14.22 ** |
N × V | 1.09 ns | 2.10 ns | 5.68 ** | 0.51 ns | 0.15 ns | 1.36 ns | 6.00 ** | 7.79 ** | 2.58 ns |
Y × N × V | 0.61 ns | 2.45 ns | 8.13 ** | 7.42 ** | 0.17 ns | 9.11 ** | 4.34 * | 4.86 * | 0.49 ns |
Year | Nitrogen | Variety | P | SP | GF | GW |
---|---|---|---|---|---|---|
(Y) | (N) | (V) | (m−2) | (%) | (mg) | |
2020 | N1 | YLY900 | 214.5 b | 270.0 a | 72.3 b | 21.3 a |
CLYHZ | 326.2 a | 186.3 b | 75.3 a | 20.3 b | ||
Mean | 270.3 C | 228.1 C | 63.8 C | 20.8 B | ||
N2 | YLY900 | 268.1 b | 298.7 a | 73.6 b | 22.0 a | |
CLYHZ | 379.6 a | 234.5 b | 75.5 a | 19.1 b | ||
Mean | 323.9 B | 266.6 A | 74.5 A | 20.6 B | ||
N3 | YLY900 | 289.6 b | 322.6 a | 68.7 a | 21.9 a | |
CLYHZ | 431.9 a | 257.7 b | 65.5 b | 21.5 a | ||
Mean | 360.8 A | 240.1 B | 67.1 B | 21.7 A | ||
2021 | N1 | YLY900 | 214.8 b | 233.2 a | 75.5 b | 21.0 a |
CLYHZ | 324.0 a | 180.1 b | 77.5 a | 20.5 a | ||
Mean | 269.4 C | 206.6 C | 65.0 C | 20.7 B | ||
N2 | YLY900 | 236.9 b | 254.0 a | 73.3 a | 21.3 a | |
CLYHZ | 347.4 a | 208.6 b | 72.5 a | 21.1 a | ||
Mean | 292.2 B | 231.3 B | 72.9 A | 21.2 A | ||
N3 | YLY900 | 264.9 b | 274.2 b | 71.0 a | 21.6 a | |
CLYHZ | 370.6 a | 223.8 a | 67.3 b | 21.2 a | ||
Mean | 317.8 A | 249.0 A | 69.2 B | 21.4 A |
Year | Nitrogen | Variety | GD | IR | IP | IPAR | TDW at PH | TDW | RUE |
---|---|---|---|---|---|---|---|---|---|
(Y) | (N) | (V) | (d) | (MJ m−2) | (%) | (MJ m−2) | (g m−2) | (g m−2) | (g MJ−1) |
2020 | N1 | YLY900 | 111 | 1639.8 | 68.6 a | 562.8 a | 1166.0 a | 2019.7 a | 3.6 a |
CLYHZ | 108 | 1611.0 | 68.6 a | 552.2 a | 1036.3 b | 1757.9 b | 3.2 b | ||
Mean | 110 | 1625.4 | 68.6 B | 557.5 C | 1101.2 C | 1888.8 B | 3.4 B | ||
N2 | YLY900 | 111 | 1639.8 | 79.4 a | 650.7 a | 1444.0 a | 2559.7 a | 3.9 a | |
CLYHZ | 110 | 1639.8 | 75.6 b | 619.7 b | 1191.2 b | 2301.9 b | 3.7 a | ||
Mean | 111 | 1639.8 | 77.5 A | 635.2 B | 1317.6 B | 2430.8 A | 3.8 A | ||
N3 | YLY900 | 114 | 1661.6 | 78.5 a | 652.5 a | 1545.3 a | 2660.4 a | 4.1 a | |
CLYHZ | 110 | 1639.8 | 80.3 a | 658.4 a | 1214.2 b | 2256.5 b | 3.4 b | ||
Mean | 112 | 1650.7 | 79.4 A | 655.4 A | 1379.7 A | 2458.5 A | 3.8 A | ||
2021 | N1 | YLY900 | 102 | 1729.4 | 72.7 a | 628.4 a | 1085.1 a | 1932.5 a | 3.1 a |
CLYHZ | 99 | 1682.5 | 71.0 a | 597.7 b | 873.8 b | 1698.8 b | 2.8 b | ||
Mean | 101 | 1705.9 | 71.9 C | 613.1 C | 979.4 C | 1815.7 C | 3.0 C | ||
N2 | YLY900 | 102 | 1810.4 | 79.0 b | 715.5 a | 1220.1 a | 2312.4 a | 3.2 a | |
CLYHZ | 99 | 1708.7 | 82.6 a | 705.4 a | 1196.2 a | 2286.4 a | 3.2 a | ||
Mean | 101 | 1759.6 | 80.8 B | 710.5 B | 1208.1 B | 2299.4 B | 3.2 B | ||
N3 | YLY900 | 105 | 1810.4 | 83.0 b | 751.5 a | 1438.0 a | 2612.8 a | 3.5 a | |
CLYHZ | 101 | 1708.7 | 85.5 a | 730.4 b | 1358.3 b | 2304.1 b | 3.2 b | ||
Mean | 103 | 1759.6 | 84.3 A | 741.0 A | 1398.1 A | 2458.5 A | 3.4 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Sheng, T.; Zhong, X.; Ye, J.; Wang, C.; Huang, L.; Tian, X.; Liu, K.; Zhang, Y. Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice. Plants 2023, 12, 4063. https://doi.org/10.3390/plants12234063
Deng J, Sheng T, Zhong X, Ye J, Wang C, Huang L, Tian X, Liu K, Zhang Y. Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice. Plants. 2023; 12(23):4063. https://doi.org/10.3390/plants12234063
Chicago/Turabian StyleDeng, Jun, Tian Sheng, Xuefen Zhong, Jiayu Ye, Chunhu Wang, Liying Huang, Xiaohai Tian, Ke Liu, and Yunbo Zhang. 2023. "Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice" Plants 12, no. 23: 4063. https://doi.org/10.3390/plants12234063
APA StyleDeng, J., Sheng, T., Zhong, X., Ye, J., Wang, C., Huang, L., Tian, X., Liu, K., & Zhang, Y. (2023). Delayed Leaf Senescence Improves Radiation Use Efficiency and Explains Yield Advantage of Large Panicle-Type Hybrid Rice. Plants, 12(23), 4063. https://doi.org/10.3390/plants12234063