Genome-Wide Identification and Analysis of ZF-HD Gene Family in Moso Bamboo (Phyllostachys edulis)
Abstract
:1. Introduction
2. Results
2.1. Identification of ZF-HD Genes in Moso Bamboo
2.2. Phylogenetic Analysis of the Moso Bamboo ZF-HD Gene Family
2.3. Conserved Motifs and Gene Structure Analysis of the Moso Bamboo ZF-HD Gene Family
2.4. Chromosome Distribution and Gene Duplication of the PeZF-HD Genes
2.5. Analysis of Cis-Regulatory Elements in PeZF-HD Promoters
2.6. Expression Profiles of PeZF-HD Genes against Different Abiotic Stresses
3. Discussion
4. Materials and Methods
4.1. Plant Material and Treatments
4.2. Identification of ZF-HD Genes in Moso Bamboo
4.3. Sequence Analysis
4.4. Phylogenetic Analysis and Classification
4.5. Analysis of Cis-Element in the Promoter Regions
4.6. Chromosome Localization and Gene Duplication
4.7. Calculation of Ka/Ks Ratios
4.8. Quantitative Real-Time PCR Expression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, A. Plant abiotic stress challenges from the changing environment. Front. Plant Sci. 2016, 7, 1123. [Google Scholar] [CrossRef] [PubMed]
- Amorim, L.L.B.; da Fonseca Dos Santos, R.; Neto, J.P.B.; Guida-Santos, M.; Crovella, S.; Benko-Iseppon, A.M. Transcription factors involved in plant resistance to pathogens. Curr. Protein Pept. Sci. 2017, 18, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.K.; Irish, V.F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiol. 2006, 140, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; dePamphilis, C.W.; Ma, H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families. J. Integr. Plant Biol. 2008, 50, 1031–1045. [Google Scholar] [CrossRef] [PubMed]
- Windhövel, A.; Hein, I.; Dabrowa, R.; Stockhaus, J. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol. Biol. 2001, 45, 201–214. [Google Scholar] [CrossRef]
- Mukherjee, K.; Brocchieri, L.; Bürglin, T.R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 2009, 26, 2775–2794. [Google Scholar] [CrossRef]
- Ariel, F.D.; Manavella, P.A.; Dezar, C.A.; Chan, R.L. The true story of the HD-Zip family. Trends Plant Sci. 2007, 12, 419–426. [Google Scholar] [CrossRef]
- Klug, A.; Schwabe, J.W. Protein motifs 5. Zinc fingers. FASEB J. 1995, 9, 597–604. [Google Scholar] [CrossRef]
- Krishna, S.S.; Majumdar, I.; Grishin, N.V. Structural classification of zinc fingers: Survey and summary. Nucleic Acids Res. 2003, 31, 532–550. [Google Scholar] [CrossRef]
- Hu, W.; Ma, H. Characterization of a novel putative zinc finger gene MIF1: Involvement in multiple hormonal regulation of Arabidopsis development. Plant J. 2006, 45, 399–422. [Google Scholar] [CrossRef]
- Jain, M.; Tyagi, A.K.; Khurana, J.P. Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J. 2008, 275, 2845–2861. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, D.D.; Barros, P.M.; Cordeiro, A.M.; Serra, T.S.; Lourenço, T.; Chander, S.; Oliveira, M.M.; Saibo, N.J. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. J. Exp. Bot. 2012, 63, 3643–3656. [Google Scholar] [CrossRef] [PubMed]
- Khatun, K.; Nath, U.K.; Robin, A.H.K.; Park, J.I.; Lee, D.J.; Kim, M.B.; Kim, C.K.; Lim, K.B.; Nou, I.S.; Chung, M.Y. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. BMC Genom. 2017, 18, 695. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.U.; Nupur, J.A.; Khalid, M.H.B.; Din, A.M.U.; Shafiq, M.; Alshegaihi, R.M.; Ali, Q.; Kamran, Z.; Manzoor, M.; Haider, M.S.; et al. Genome-wide identification and in silico analysis of ZF-HD transcription factor genes in Zea mays L. Genes 2022, 13, 2112. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.S.; Nakashima, K.; Sakuma, Y.; Osakabe, Y.; Qin, F.; Simpson, S.D.; Maruyama, K.; Fujita, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J. 2007, 49, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Xia, P.; Hu, Y.; Zhan, C.; Li, Y.; Gong, S.; Li, Y.; Ma, D. Genome-wide identification of ZF-HD gene family in Triticum aestivum: Molecular evolution mechanism and function analysis. PLoS ONE 2021, 16, e0256579. [Google Scholar] [CrossRef]
- Zhao, T.T.; Wang, Z.Y.; Bao, Y.F.; Zhang, X.C.; Yang, H.H.; Dong, Z.Y.; Jiang, J.B.; Zhang, H.; Li, J.F.; Chen, Q.S.; et al. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato. J. Integr. Agric. 2019, 18, 1579–1586. [Google Scholar] [CrossRef]
- Wang, W.; Wu, P.; Li, Y.; Hou, X. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage. Mol. Genet. Genom. 2016, 291, 1451–1464. [Google Scholar] [CrossRef]
- Xing, L.; Peng, K.; Xue, S.; Yuan, W.; Zhu, B.; Zhao, P.; Wu, H.; Cheng, Y.; Fang, M.; Liu, Z. Genome-wide analysis of zinc finger-homeodomain (ZF-HD) transcription factors in diploid and tetraploid cotton. Funct. Integr. Genom. 2022, 22, 1269–1281. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Sun, W.; Ma, Z.; Zheng, T.; Huang, L.; Wu, Q.; Tang, Z.; Bu, T.; Li, C.; et al. Genome-wide investigation of the ZF-HD gene family in Tartary buckwheat (Fagopyrum tataricum). BMC Plant Biol. 2019, 19, 248. [Google Scholar] [CrossRef]
- Sun, W.; Wei, J.; Wu, G.; Xu, H.; Chen, Y.; Yao, M.; Zhan, J.; Yan, J.; Wu, N.; Chen, H.; et al. CqZF-HD14 enhances drought tolerance in quinoa seedlings through interaction with CqHIPP34 and CqNAC79. Plant Sci. 2022, 323, 111406. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K.; et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 2013, 45, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Guo, L.; Jiao, C.; Fei, Z.; Chen, M.; Cao, J.; Ding, Y.; Yuan, Q. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiol. 2019, 39, 1201–1214. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, Z.; Wang, L.; Wang, J.; Wang, S.; Fei, B.; Chen, C.; Shi, C.; Liu, X.; Zhang, H.; et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 2018, 7, giy115. [Google Scholar] [CrossRef] [PubMed]
- Duvick, J.; Fu, A.; Muppirala, U.; Sabharwal, M.; Wilkerson, M.D.; Lawrence, C.J.; Lushbough, C.; Brendel, V. PlantGDB: A resource for comparative plant genomics. Nucleic Acids Res. 2008, 36 (Suppl. 1), D959–D965. [Google Scholar] [CrossRef] [PubMed]
- Burr, B. Mapping and sequencing the rice genome. Plant Cell 2002, 14, 521–523. [Google Scholar] [CrossRef]
- Filichkin, S.A.; Priest, H.D.; Givan, S.A.; Shen, R.; Bryant, D.W.; Fox, S.E.; Wong, W.K.; Mockler, T.C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2010, 20, 45–58. [Google Scholar] [CrossRef]
- Van der Hoeven, R.; Ronning, C.; Giovannoni, J.; Martin, G.; Tanksley, S. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 2002, 14, 1441–1456. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.H.; Bancroft, I.; Cheng, F.; et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011, 43, 1035–1039. [Google Scholar] [CrossRef]
- Lai, W.; Zhu, C.; Hu, Z.; Liu, S.; Wu, H.; Zhou, Y. Identification and transcriptional analysis of zinc finger-homeodomain (ZF-HD) family genes in cucumber. Biochem. Genet. 2021, 59, 884–901. [Google Scholar] [CrossRef]
- He, K.; Li, C.; Zhang, Z.; Zhan, L.; Cong, C.; Zhang, D.; Cai, H. Genome-wide investigation of the ZF-HD gene family in two varieties of alfalfa (Medicago sativa L.) and its expression pattern under alkaline stress. BMC Genom. 2022, 23, 150. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.W.; Penny, D. Patterns of intron loss and gain in plants: Intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 2007, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, J.; Ma, X.; Li, C.; Yang, Q.; Feng, S.; Li, M.; Li, N.; Song, X. Identification, evolution and expression analyses of whole genome-wide TLP gene family in Brassica napus. BMC Genom. 2020, 21, 264. [Google Scholar] [CrossRef]
- Shi, B.; Haq, I.; Fiaz, S.; Alharthi, B.; Xu, M.; Wang, J.; Hou, W.; Feng, X. Genome-wide identification and expression analysis of the ZF-HD gene family in pea (Pisum sativum L.). Front. Genet. 2022, 13, 1089375. [Google Scholar] [CrossRef] [PubMed]
- Barth, O.; Vogt, S.; Uhlemann, R.; Zschiesche, W.; Humbeck, K. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol. Biol. 2009, 69, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Yuan, Q.; Ouyang, S.; Liu, J.; Suh, B.; Cheung, F.; Sultana, R.; Lee, D.; Quackenbush, J.; Buell, C.R. The TIGR rice genome annotation resource: Annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res. 2003, 31, 229–233. [Google Scholar] [CrossRef]
- Swarbreck, D.; Wilks, C.; Lamesch, P.; Berardini, T.Z.; Garcia-Hernandez, M.; Foerster, H.; Li, D.; Meyer, T.; Muller, R.; Ploetz, L.; et al. The Arabidopsis Information Resource (TAIR): Gene structure and function annotation. Nucleic Acids Res. 2008, 36, D1009–D1014. [Google Scholar] [CrossRef]
- Huang, F.; Liu, T.; Hou, X. Isolation and functional characterization of a floral repressor, BcMAF1, from Pak-choi (Brassica rapa ssp. chinensis). Front. Plant Sci. 2018, 9, 290. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Jiangtao, C.; Yingzhen, K.; Qian, W.; Yuhe, S.; Daping, G.; Jing, L.; Guanshan, L. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages. Yi chuan 2015, 37, 91–97. [Google Scholar]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Zhao, X.Q.; Wang, J.; Wong, G.K.; Yu, J. KaKs_Calculator: Calculating Ka and Ks through model selection and model averaging. Proteom. Bioinf. 2006, 4, 259–263. [Google Scholar] [CrossRef]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Ma, J.; Guo, Q.; Li, X.; Wang, H.; Lu, M. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e56573. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bai, Y.; Kissoudis, C.; Yan, Z.; Visser, R.G.; van der Linden, G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018, 93, 781–793. [Google Scholar] [CrossRef]
- Luo, H.; Song, F.; Zheng, Z. Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J. Exp. Bot. 2005, 56, 2673–2682. [Google Scholar] [CrossRef]
Gene Name | CDS (bp) | Size (aa) | Mass (KDa) | pI | Domain | Exon Number | Location | Predicted Localization |
---|---|---|---|---|---|---|---|---|
PeZF-HD1 | 816 | 271 | 29.36 | 9.41 | ZF-HD | 1 | chromosomes 12:13827712:13828527:+ | Nucleus |
PeZF-HD2 | 801 | 266 | 28.61 | 9.05 | ZF-HD | 1 | chromosomes 3:49715743:49719049:+ | Nucleus |
PeZF-HD3 | 762 | 253 | 27.04 | 8.50 | ZF-HD | 2 | chromosomes 11:13377647:13378939:+ | Nucleus |
PeZF-HD4 | 672 | 223 | 23.46 | 8.78 | ZF-HD | 2 | chromosomes 18:35699501:35700292:+ | Nucleus |
PeZF-HD5 | 717 | 238 | 24.80 | 6.36 | ZF-HD | 2 | chromosomes 13:57959543:57960412:+ | Nucleus |
PeZF-HD6 | 1164 | 387 | 40.65 | 8.59 | ZF-HD | 1 | chromosomes 13:15365059:15366222:- | Nucleus |
PeZF-HD7 | 867 | 288 | 29.90 | 6.75 | ZF-HD | 1 | chromosomes 22:13492044:13492910:+ | Nucleus |
PeZF-HD8 | 633 | 210 | 22.79 | 8.41 | ZF-HD | 2 | chromosomes 3:15339955:15340674:+ | Nucleus |
PeZF-HD9 | 804 | 267 | 27.82 | 8.49 | ZF-HD | 1 | chromosomes 24:36670935:36671738:- | Nucleus |
PeZF-HD10 | 684 | 227 | 24.51 | 8.99 | ZF-HD | 2 | chromosomes 9:63441848:63443360:+ | Nucleus |
PeZF-HD11 | 1206 | 401 | 43.36 | 6.58 | ZF-HD | 1 | chromosomes 3:87050975:87052180:- | Nucleus |
PeZF-HD12 | 1212 | 403 | 43.21 | 6.35 | ZF-HD | 1 | chromosomes 17:17852519:17853730:+ | Nucleus |
PeZF-HD13 | 300 | 99 | 10.57 | 8.60 | ZF-HD | 2 | chromosomes 13:2989657:2990222:- | Nucleus |
PeZF-HD14 | 279 | 92 | 10.17 | 6.79 | ZF-HD | 1 | chromosomes 18:45423575:45424757:- | Nucleus |
PeZF-HD15 | 417 | 138 | 15.17 | 10.30 | ZF-HD | 2 | chromosomes 11:2971936:2974744:+ | Nucleus |
PeZF-HD16 | 462 | 153 | 16.81 | 9.06 | ZF-HD | 2 | chromosomes 12:2567371:2568681:+ | Nucleus |
PeZF-HD17 | 519 | 172 | 18.32 | 8.95 | ZF-HD | 2 | chromosomes 2:29976915:29981334:+ | Nucleus |
PeZF-HD18 | 252 | 83 | 8.59 | 6.86 | ZF-HD | 2 | chromosomes 22:21025823:21026158:- | Nucleus |
PeZF-HD19 | 348 | 115 | 11.41 | 5.90 | ZF-HD | 2 | chromosomes 16:73535364:73537228:+ | Nucleus |
PeZF-HD20 | 1065 | 354 | 36.91 | 7.26 | ZF-HD | 1 | chromosomes 3:24470226:24471290:+ | Nucleus |
PeZF-HD21 | 1035 | 344 | 35.64 | 7.71 | ZF-HD | 1 | chromosomes 22:20913172:20914206:+ | Nucleus |
PeZF-HD22 | 1041 | 346 | 35.73 | 6.97 | ZF-HD | 1 | chromosomes 13:64992849:64993889:+ | Nucleus |
PeZF-HD23 | 957 | 318 | 33.41 | 6.73 | ZF-HD | 2 | chromosomes 18:45322937:45323998:+ | Nucleus |
PeZF-HD24 | 801 | 266 | 27.63 | 8.14 | ZF-HD | 1 | chromosomes 23:37483279:37484079:+ | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Wang, J.; Tang, C. Genome-Wide Identification and Analysis of ZF-HD Gene Family in Moso Bamboo (Phyllostachys edulis). Plants 2023, 12, 4064. https://doi.org/10.3390/plants12234064
Huang F, Wang J, Tang C. Genome-Wide Identification and Analysis of ZF-HD Gene Family in Moso Bamboo (Phyllostachys edulis). Plants. 2023; 12(23):4064. https://doi.org/10.3390/plants12234064
Chicago/Turabian StyleHuang, Feiyi, Jiaxin Wang, and Chao Tang. 2023. "Genome-Wide Identification and Analysis of ZF-HD Gene Family in Moso Bamboo (Phyllostachys edulis)" Plants 12, no. 23: 4064. https://doi.org/10.3390/plants12234064
APA StyleHuang, F., Wang, J., & Tang, C. (2023). Genome-Wide Identification and Analysis of ZF-HD Gene Family in Moso Bamboo (Phyllostachys edulis). Plants, 12(23), 4064. https://doi.org/10.3390/plants12234064