Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Condition
2.2. Physiological Analysis
2.3. Isolation and Cloning of PpFer Genes from Peach
2.4. Phylogenetic Tree Construction
2.5. Quantitative Real Time PCR (qRT-PCR)
2.6. Generation of Transgenic Arabidopsis Complementing PpFer1 Gene
2.7. Statistical Analysis
3. Results
3.1. Isolation of Ferritin Genes in Peach
3.2. Expression Profiles of PpFer Genes
3.3. Differential Response of PpFer Genes under Abiotic Stress Treatment in Tissue-Cultured Seedlings
3.4. PpFer1 Rescued the Retarded Growth of Arabidopsis fer1-2 Mutant
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barton, L.L.; Abadia, J. Iron Nutrition in Plants and Rhizospheric Microorganisms; Springer: New York, NY, USA, 2006; pp. 85–101. [Google Scholar]
- Lill, R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460, 831–838. [Google Scholar] [CrossRef]
- Couturier, J.; Touraine, B.; Briat, J.F.; Gaymard, F.; Rouhier, N. The iron-sulfur cluster assembly machineries in plants: Current knowledge and open questions. Front. Plant Sci. 2013, 4, 259. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Z.; Lin, S.Z.; Fu, J.Y.; Chen, Y.H.; Zhang, H.X.; Li, J.Z.; Liang, M.X. Heterologous expression of ISU1 gene from Fragaria vesca enhances plant tolerance to Fe depletion in Arabidopsis. Plant Physiol. Biochem. 2022, 184, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Tagliavini, M.; Abadía, J.; Rombolà, A.D.; Tsipouridis, C.; Marangoni, B. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J. Plant Nutr. 2000, 23, 2007–2022. [Google Scholar] [CrossRef]
- Tagliavini, M.; Rombolà, A.D. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 2001, 15, 72–92. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nishizawa, N.K. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 2012, 63, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Zelazny, E.; Vert, G. Regulation of iron uptake by IRT1: Endocytosis pulls the trigger. Mol. Plant 2015, 8, 977–979. [Google Scholar] [CrossRef] [PubMed]
- Fourcroy, P.; Tissot, N.; Gaymard, F.; Briat, J.F.; Dubos, C. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system. Mol. Plant 2016, 9, 485. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Sun, W.; Wang, T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019, 20, 2424. [Google Scholar] [CrossRef]
- Mondal, S.; Pramanik, K.; Ghosh, S.K.; Pal, P.; Ghosh, P.K.; Ghosh, A.; Maiti, T.K. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: A critical review. Planta 2022, 255, 87. [Google Scholar] [CrossRef]
- Sudarev, V.V.; Dolotova, S.M.; Bukhalovich, S.M.; Bazhenov, S.V.; Ryzhykau, Y.L.; Uversky, V.N.; Bondarev, N.A.; Osipov, S.D.; Mikhailov, A.E.; Kuklina, D.D.; et al. Ferritin self-assembly, structure, function, and biotechnological applications. Int. J. Biol. Macromol. 2023, 224, 319–343. [Google Scholar] [CrossRef] [PubMed]
- Ravet, K.; Touraine, B.; Boucherez, J.; Briat, J.F.; Gaymard, F.; Cellier, F. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 2009, 57, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Briat, J.F.; Duc, C.; Ravet, K.; Gaymard, F. Ferritins and iron storage in plants. BBA Gen. Subjects 2010, 1800, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Lόpez-Millán, A.F.; Duy, D.; Philippar, K. Chloroplast iron transport proteins-Function and impact on plant physiology. Front. Plant Sci. 2016, 7, 178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. Function of FER2 Gene in Response to Drought Stress in Arabidopsis thaliana. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2018. (In Chinese). [Google Scholar]
- Liu, J.; Fan, Y.; Zou, J.; Fang, Y.; Wang, L.; Wang, M.; Jiang, X.; Liu, Y.; Gao, J.; Zhang, C. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. Plant J. 2017, 92, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Reyt, G.; Boudouf, S.; Boucherez, J.; Gaymard, F.; Briat, J.F. Iron- and ferritin-dependent reactive oxygen species distribution: Impact on Arabidopsis root system architecture. Mol. Plant 2015, 8, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Lönnerdal, B. Soybean ferritin: Implications for iron status of vegetarians. Am. J. Clin. Nutr. 2009, 89, 1680S–1685S. [Google Scholar] [CrossRef]
- Ghislain, M.; Muzhingi, T.; Low, J.W. Zinc and iron fortification in cassava. Nat. Biotechnol. 2019, 37, 130–132. [Google Scholar] [CrossRef]
- Jung, S.; Staton, M.; Lee, T.; Blenda, A.; Svancara, R.; Abbott, A.; Main, D. GDR (Genome Database for Rosaceae): Integrated web database for Rosaceae genomics and genetics data. Nucleic Acids Res. 2008, 36, D1034–D1040. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.M.; Lin, S.Z.; Wang, J.P.; Tang, M.L.; Huang, J.F.; Gao, T.P.; Zhang, H.X.; Song, Z.Z. Heterologous expression of the MiHAK14 homologue from Mangifera indica enhances plant tolerance to K+ deficiency and salinity stress in Arabidopsis. Plant Growth Regul. 2022, 98, 39–49. [Google Scholar] [CrossRef]
- Petit, J.M.; Briat, J.F.; Lobréaux, S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem. J. 2001, 359, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Z.; Guo, S.L.; Ma, R.J.; Zhang, B.B.; Guo, S.L.; Yu, M.L.; Korir, N.K. Differential expression of iron–sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying. Sci. Hortic. 2016, 207, 73–81. [Google Scholar] [CrossRef]
- Song, Z.Z.; Zhang, B.B.; Zhang, C.H.; Ma, R.J.; Yu, M.L. Differential expression of iron-sulfur cluster biosynthesis genes during peach flowering. Biol. Plantarum 2016, 60, 79–85. [Google Scholar] [CrossRef]
- Murgia, I.; Vazzola, V.; Tarantino, D.; Cellier, F.; Ravet, K.; Briat, J.F.; Soave, C. Knock-out of ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiol. Biochem. 2007, 45, 898–907. [Google Scholar] [CrossRef]
- Zhong, C.; Su, J.; Tang, T.T.; Ding, W.; Zhu, L.W.; Jia, B. Cloning and differential expression analysis of Fer2 gene in leaf of ‘Dangshansuli’ pear. J. Nanjing Agric. Univ. 2013, 36, 33–38. (In Chinese) [Google Scholar]
- Cheetham, S.W.; Faulkner, G.J.; Dinger, M.E. Overcoming challenges and dogmas to understand the functions of pseudogenes. Nat. Rev. Genet. 2019, 21, 191–201. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Applications of abscisic acid and increasing concentrations of calcium affect the partitioning of mineral nutrients between tomato leaf and fruit tissue. Sci. Hortic. 2019, 5, 49. [Google Scholar] [CrossRef]
Gene | Locus No. | Location | Chromosome Distribution | CDS (bp) |
---|---|---|---|---|
PpFer1 | Prupe.2G256100 | Pp02:26807278..26810901 reverse | Chr02 | 846 |
PpFer2 | Prupe.6G050900 | Pp06:3570278..3572650 forward | Chr06 | 786 |
PpFer3 | Prupe.6G283700 | Pp06:26383839..26386074 reverse | Chr06 | 798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, J.; Li, M.; Ning, Y.; Tao, Y.; Shi, S.; Dark, A.; Song, Z. Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana. Plants 2023, 12, 4093. https://doi.org/10.3390/plants12244093
Yang Y, Zhang J, Li M, Ning Y, Tao Y, Shi S, Dark A, Song Z. Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana. Plants. 2023; 12(24):4093. https://doi.org/10.3390/plants12244093
Chicago/Turabian StyleYang, Yong, Jinjin Zhang, Mengyuan Li, Youzheng Ning, Yifei Tao, Shengpeng Shi, Adeeba Dark, and Zhizhong Song. 2023. "Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana" Plants 12, no. 24: 4093. https://doi.org/10.3390/plants12244093
APA StyleYang, Y., Zhang, J., Li, M., Ning, Y., Tao, Y., Shi, S., Dark, A., & Song, Z. (2023). Heterologous Expression of a Ferritin Homologue Gene PpFer1 from Prunus persica Enhances Plant Tolerance to Iron Toxicity and H2O2 Stress in Arabidopsis thaliana. Plants, 12(24), 4093. https://doi.org/10.3390/plants12244093