Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]
Abstract
:1. Introduction
2. Results
2.1. Soil Moisture Content
2.2. Cucurbitacins B, E, and I Accumulation in Bottle Gourd Accessions under DS and NS Conditions
2.3. Free Radical Scavenging Activity of Pure Cucurbitacins B, E, and I
2.4. Ferric-Reducing Power of Cucurbitacins B, E, and I
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Sample Collection
4.2. Sample Extraction and Determination of Cucurbitacins
4.3. Detection of Cucurbitacins
4.4. Quantification of Antioxidant Levels of Pure Cucurbitacins B, E, and I
4.4.1. 2,2−Diphenyl−1−Picrylhydrazyl (DPPH) Assay
- Ac = Absorbance of control (negative) solution
- As = Absorbance of cucurbitacin solution
4.4.2. Ferric-Reducing Power Assay
- Ac = Absorbance of control (negative) solution
- As = Absorbance of cucurbitacin solution
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustafa, S.; Gabr, N.M.; Zaki, J.K.; Awdan, E.; Mina, S.A. The anti-inflammatory, anti-ulcer activities and phytochemical investigation of Cucumis melo L. cv. Ismailawi fruits. Nat. Prod. Res. 2021, 35, 5934–5938. [Google Scholar] [CrossRef]
- Behera, K.; Mandal, U.; Panda, M.; Mohapatra, M.; Mallick, S.K.; Routray, S. Ethnobotany and folk medicines used by the local healers of Bhadrak, Odisha, India. Egypt. J. Bot. 2021, 61, 375–389. [Google Scholar] [CrossRef]
- Attar, U.A.; Ghane, S.G. Optimized extraction of anti-cancer compound—Cucurbitacin I and LC–MS identification of major metabolites from wild Bottle gourd (Lagenaria siceraria (Molina) Standl.). S. Afr. J. Bot. 2018, 119, 181–187. [Google Scholar] [CrossRef]
- Attar, U.A.; Ghane, S.G. In vitro antioxidant, antidiabetic, antiacetylcholine esterase, anticancer activities and RP-HPLC analysis of phenolics from the wild bottle gourd (Lagenaria siceraria (Molina) Standl.). S. Afri. J. Bot. 2019, 125, 360–370. [Google Scholar] [CrossRef]
- Mahapatra, S.; Sureja, A.K.; Behera, T.K.; Bhardwaj, R.; Verma, M. Variability in antioxidant capacity and some mineral nutrients among ninety-one Indian accessions of bottle gourd [Lagenaria siceraria (Molina) Standl.]. S. Afri. J. Bot. 2023, 152, 50–62. [Google Scholar] [CrossRef]
- Saurabh, C.K.; Ghosh, S.K.; Sanyal, B. Novel detection method to rapidly quantify toxic cucurbitacin in Lagenaria siceraria (bottle gourd). J. Food Sci. Technol. 2023, 60, 160–170. [Google Scholar] [CrossRef]
- Barot, A.; Pinto, S.; Balakrishnan, S.; Prajapati, J.P. Composition, Functional Properties and Application of Bottle Gourd in Food Products. Res. Rev. J. Dairy Sci. Technol. 2015, 4, 15–27. [Google Scholar]
- Ojiako, O.A.; Igwe, C.U. Nutritional and anti-nutritional compositions of Cleome rutidosperma, Lagenaria siceraria, and Cucurbita maxima seeds from Nigeria. J. Med. Food. 2007, 10, 735–738. [Google Scholar] [CrossRef]
- Upaganlawar, A.; Ramchandran, R. Bottle gourd (Lagenaria Siceraria) “A vegetable food for human health”—A comprehensive review. J. Pharmacol. 2009, 1, 209–226. [Google Scholar]
- Sithole, J.N.; Modi, A.T.; Pillay, K. An assessment of minerals and protein contents in selected South African bottle gourd landraces [Lagenaria siceraria (Mol.) Standl.]. J. Hum. Ecol. 2015, 51, 279–286. [Google Scholar] [CrossRef]
- Chung, H.; Choi, Y.; Shin, Y.; Youn, S. Chemical composition, quality evaluation and characteristics of immature fruits of Korean native bottle gourd (Lagenaria siceraria). Korean J. Hortic. Sci. Technol. 2000, 41, 319–328. [Google Scholar]
- Ogunbusola, E.M. Nutritional and anti-nutritional composition of calabash and bottle gourd seed flours (var Lagenaria siceraria). J. Culin. Sci. Technol. 2018, 16, 326–335. [Google Scholar] [CrossRef]
- Ogunbusola, M.E.; Fagbemi, T.N.; Osundahunsim, O.F. Amino acid composition of Lagenaria siceraria seed flour and protein fractions. J. Food Sci. Technol. 2010, 47, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, A.G.; Badr, A.N.; Alharthi, S.S.; Selim, K.A. Efficacy of Bottle Gourd Seeds’ Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites. Toxins 2021, 13, 789. [Google Scholar] [CrossRef]
- Mashilo, J.; Shimelis, H.; Odindo, A. Genetic diversity of bottle gourd (Lagenaria siceraria (Molina) Standl.) landraces of South Africa assessed by morphological traits and simple sequence repeat markers. S. Afr. J. Plant Soil 2015, 33, 113–124. [Google Scholar] [CrossRef]
- Yetişir, H.; Sari, N. Effects of different rootstock on plant growth, yield and quality of watermelon. Aust. J. Exp. Agric. 2003, 43, 1269–1274. [Google Scholar] [CrossRef]
- Çandir, E.; Yetişir, H.; Karaca, F.; Üstün, D. Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from the Mediterranean region of Turkey. Turk. J. Agric. 2013, 37, 443–456. [Google Scholar] [CrossRef]
- Keinath, A.P.; Hassell, R.L. Control of Fusarium wilt of watermelon by drafting onto bottle gourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Dis. 2014, 98, 255–266. [Google Scholar] [CrossRef]
- Morales, C.; Riveros-Burgos, C.; Espinoza Seguel, F.; Maldonado, C.; Mashilo, J.; Pinto, C.; Contreras-Soto, R.I. Rootstocks Comparison in Grafted Watermelon under Water Deficit: Effects on the Fruit Quality and Yield. Plants 2023, 12, 509. [Google Scholar] [CrossRef]
- Sithole, N.; Modi, A.T. Responses of selected bottle gourd [Lagenaria siceraria (Molina Standly)] landraces to water stress. Acta Agric. Scand. B Soil Plant Sci. 2016, 65, 350–356. [Google Scholar] [CrossRef]
- Mashilo, J.; Shimelis, H.; Odindo, A. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol. Biochem. 2017, 120, 75–87. [Google Scholar] [CrossRef]
- Mashilo, J.; Shimelis, H.; Odindo, A. Yield-based selection indices for drought tolerance evaluation in selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces. Acta Agric. Scand. B Soil Plant Sci. 2016, 67, 43–50. [Google Scholar] [CrossRef]
- Morimoto, Y.; Mvere, B. Lagenaria siceraria. In Vegetables Plant Resources of Tropical Africa 2; Grubben, G.J.H., Denton, O.A., Eds.; Backhuys Publishers: Wageningen, The Netherlands; CTA: Leiden, The Netherlands, 2004; pp. 353–358. [Google Scholar]
- Morimoto, Y.; Maundu, P.; Fujimaki, H.; Morishima, H. Diversity of landraces of the white-flowered gourd (Lagenaria siceraria) and its wild relatives in Kenya: Fruit and seed morphology. Gen. Resour. Crop Evol. 2005, 52, 737–747. [Google Scholar] [CrossRef]
- Mashilo, J.; Shimelis, H.; Odindo, A. Phenotypic and genotypic characterization of bottle gourd [Lagenaria siceraria (Molina) Standl.] and implications for breeding: A Review. Sci. Hortic. 2017, 222, 136–144. [Google Scholar] [CrossRef]
- Yetişir, H.; Karaca, F. Assessment of rooting capacity and rootstock potential of some Turkish bottle gourd (Lagenaria siceraria) accessions used as rootstocks for watermelon [Citrullus lanatus (Thunb.) Matsum. Nakai]. Asian Res. J. Agric. 2018, 9, 1–10. [Google Scholar]
- Patel, S.B.; Attar, U.A.; Sakate, D.M.; Ghane, S.G. Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities. Sci. Rep. 2020, 10, 2109. [Google Scholar] [CrossRef]
- Patel, S.B.; Ghane, S.G. Phyto-constituents profiling of Luffa echinata and in vitro assessment of antioxidant, anti-diabetic, anticancer and anti-acetylcholine esterase activities. Saudi J. Biol. Sci. 2021, 28, 3835–3846. [Google Scholar] [CrossRef]
- Attar, U.A.; Ghane, S.G.; Chavan, N.S.; Shiragave, P.D. Simultaneous detection of anticancer compounds (Cucurbitacin I, B and E) and some pharmacological properties of Indian Blastania species. S. Afr. J. Bot. 2022, 147, 871–881. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, J.P.; Jindal, R.; Kaushik, R.M. Bottle gourd poisoning. Kuwait J. Sci. 2006, 8, 120–121. [Google Scholar]
- Cynthia, H.; Michael, G.; Shin-Pin, P.; Helen, H. Bitter bottle gourd (Lagenaria siceraria) toxicity. J. Emerg. Med. 2014, 46, 772–775. [Google Scholar]
- Verma, A.; Jaiswal, S. Bottle gourd (Lagenaria siceraria) juice poisoning. World J. Emerg. Med. 2015, 6, 308–309. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Zhu, H.; Lu, X.; Yang, D.; Zhao, S.; Umer, M.J. An integrated transcriptome and metabolome approach reveals the accumulation of taste-related metabolites and gene regulatory networks during watermelon fruit development. Planta. 2021, 254, 3680–3687. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Chiu, M.H.; Nie, R.L. Cucurbitacins and cucurbitane glycosides: Structures and biological activities. Nat. Prod. Rep. 2005, 22, 386–399. [Google Scholar] [CrossRef]
- Haq, F.; Ali, A.; Khan, M.N. Metabolite profiling and quantitation of cucurbitacins in Cucurbitaceae plants by Liquid Chromatography coupled to Tandem Mass Spectrometry. Sci. Rep. 2019, 9, 15992. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Almeida, A.; Pollier, J.; Khakimov, B.; Bassard, J.-E.; Miettinen, K. An independent evolutionary origin for insect deterrent cucurbitacins in Iberis amara. Mol. Biol. Evol. 2021, 38, 4659–4673. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Y.; An, Z.; Lian, D.; Xiao, H.; Zhang, R.R.; Zhai, F.; Liu, H. Comparative transcriptome analysis and identification of candidate genes involved in cucurbitacin IIa biosynthesis in Hemsleya macrosperma. Plant Physiol. Biochem. 2022, 185, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, H.; Zhong, Y.; Jiang, N.; Zhong, X.; Zhang, Q. Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. Hortic. Res. 2022, 9, 240–256. [Google Scholar] [CrossRef]
- Ansari, W.A.; Atri, N.; Ahmad, J.; Qureshi, M.I.; Singh, B.; Kumar, R.; Pandey, S. Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PLoS ONE 2019, 14, e0222647. [Google Scholar] [CrossRef]
- Shang, Y.; Ma, Y.; Zhou, H.; Zhang, L.; Duan, H.; Chen, J.; Zeng, Q.; Zhou, S.; Wang, W.; Gu, M.; et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Plant Sci. 2014, 346, 1084–1088. [Google Scholar] [CrossRef]
- Mashilo, J.; Odindo, A.; Shimelis, H.; Musenge, P.; Tesfay, S.Z.; Magwaza, L.S. Photosynthetic response of bottle gourd [Lagenaria siceraria (Molina) Standl.] to drought stress; Relationship between cucurbitacins accumulation and drought tolerance. Hortic. Sci. 2018, 231, 133–143. [Google Scholar] [CrossRef]
- Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech. 2017, 10, 499–502. [Google Scholar] [CrossRef]
- Peters, R.R.; Farias, M.R.; Ribeiro-do-Valle, R.M. Anti-inflammatory and analgesic effects of cucurbitacins from Wilbrandia ebracteata. J. Pharmacol. 1997, 63, 525–528. [Google Scholar]
- Ma, W.; Xiang, Y.; Yang, R.; Zhang, T.; Xu, J.; Wu, Y.; Liu, X.; Xiang, K.; Zhao, H.; Liu, Y.; et al. Cucurbitacin B induces inhibitory effects via the CIP2A/PP2A/C-KIT signalling axis in t (8;21) acute myeloid leukemia. J. Pharmacol. Sci. 2019, 139, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Phathol. 2008, 214, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Anjos, P.M.F.D.; Machado, J.A.N. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Dwijayanti, D.R.; Shimada, T.; Ishii, T.; Okuyama, T.; Ikeya, Y.; Mukai, E.; Nishizawa, M. Bitter melon fruit extract has a hypoglycemic effect and reduces hepatic lipid accumulation in ob/ob mice. Phytother. Res. 2020, 34, 1338–1346. [Google Scholar] [CrossRef]
- Wakimoto, N.; Yin, D.; O’Kelly, J.; Haritunians, T.; Karlan, B.; Said, J.; Xing, H.; Koeffeler, H.P. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. J. Cancer 2008, 99, 1793–1797. [Google Scholar]
- Balkema-Boomstra, A.G.; Zijlstra, S.; Verstappen, F.W.A.; Inggamer, H.; Mercke, P.E.; Jongsma, M.A. Role of Cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J. Chem. Ecol. 2003, 29, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.K.; Kumar, P.; Sharma, P.N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 2006, 223, 1145–1153. [Google Scholar] [CrossRef]
- Mazid, M.; Khan, T.A.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 2, 232–249. [Google Scholar]
- Luo, F.; Li, Q.; Yu, L.; Wang, C.; Qi, H. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiol. Biochem. 2020, 154, 770–781. [Google Scholar] [CrossRef]
- Haynes, R.L.; Jones, C.M. Wilting and damage to cucumber by spotted and stripes cucumber beetles. HortScience 1975, 10, 266–276. [Google Scholar] [CrossRef]
- Davidovich-Rikanati, R.; Shalev, L.; Baranes, N.; Meir, A.; Itkin, M.; Cohen, S.; Zimbler, K.; Portnoy, V.; Ebizuka, Y.; Shibuya, M.; et al. Recombinant yeast as a functional tool for understanding bitterness and cucurbitacin biosynthesis in watermelon (Citrullus spp.). Yeast 2015, 32, 103–114. [Google Scholar] [PubMed]
- Semenya, S.S.; Maroyi, A. Ethnobotanical survey of plants used by Bapedi traditional healers to treat tuberculosis and its opportunistic infections in the Limpopo Province, South Africa. S. Afr. J. Bot. 2019, 422, 401–421. [Google Scholar] [CrossRef]
- Phillips, D.R.; Rasbery, J.M.; Bartel, B.; Matsuda, S.P.T. Biosynthetic diversity in plant triterpene cyclization. Curr. Opin. Plant Biol. 2006, 9, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 2014, 65, 225–257. [Google Scholar] [CrossRef]
- Shibuya, M.; Adachi, S.; Ebizuka, Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 2004, 60, 6995–7003. [Google Scholar] [CrossRef]
- Wu, X.; Wu, X.; Wang, Y.; Wang, B.; Lu, Z.; Xu, P.; Li, G. Molecular Genetic Mapping of Two Complementary Genes Underpinning Fruit Bitterness in the Bottle Gourd (Lagenaria siceraria [Mol.] Standl.). Front. Plant Sci. 2019, 10, 1493. [Google Scholar] [CrossRef]
- Zhou, Y.; Cun, Z.; Hu, H.; Chen, J. Convergence and divergence of cucurbitacin biosynthesis and regulation in Cucurbitaceae. Native Plants 2016, 154, 564–580. [Google Scholar]
- Kim, Y.C.; Choi, D.; Zhang, C.; Liu, H.; Lee, S. Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Hortic. Environ. Biotechnol. 2018, 59, 557–566. [Google Scholar] [CrossRef]
- Irshad, M.D.; Zafaryab, M.D.; Singh, M.A.N.; Rizvi, M.M.A. Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int. J. Med. Chem. 2012, 10, 1155–1157. [Google Scholar] [CrossRef] [PubMed]
- Ionita, P. The chemistry of DPPH· free radical and congeners. Int. J. Mol. Sci. 2021, 22, 1545. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, L.; Alwasel, S. DPPH radical scavenging assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Vijayalakshmi, M.; Ruckmani, K. Ferric reducing anti-oxidant power assay in plant extract. Bangladesh J. Pharmacol. 2016, 11, 570–572. [Google Scholar] [CrossRef]
- Oktay, M.; Gulcin, I.; Kufrevioglu, O.I. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Chanda, S.; Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res. 2009, 3, 981–996. [Google Scholar]
- Elbasheir, A.A.E.; Ndiko, L. Antioxidant responses are associated with differences in drought tolerance between maize and sorghum. J. Oasis Agric. Sustain. Dev. 2021, 12, 1–12. [Google Scholar]
- Wang, J.; Zhang, X.; Han, Z.; Feng, H.; Wang, Y.; Kang, J.; Han, X.; Wang, L.; Wang, C.; Li, H.; et al. Analysis of physiological indicators associated with drought tolerance in wheat under drought stress and re-watering conditions. Antioxid. Act. 2022, 11, 22–36. [Google Scholar]
- Azin, Z.; Emamjomeh, A.; Esmaeilzadeh Bahabadi, S.; Hasanein, P. Effect of exogenous chitosan, salicylic acid, and their combination on some physiological parameters of Citrullus colocynthis (L.) under drought stress. Iran. J. Plant Physiol. 2021, 11, 3885–3897. [Google Scholar]
- Kang, L.; Wu, Y.; Zhang, J.; An, Q.; Zhou, C.; Li, D.; Pan, C. Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis melo L.) plants. Ecotoxicol. Environ. Saf. 2022, 241, 113777. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Hassan, L.E.A.; Sirat, H.M.; Yagi, S.M.A.; Mohan, K.S.; Taha, M.M.E.; Ahmad, S.; Narrima, C.S.C.P.; Rais, M.M.; Hadi, A.H. Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: Role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia 2011, 82, 1190–1197. [Google Scholar] [CrossRef]
- Chigayo, K.; Mojapelo, P.E.L.; Moleele, S.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed. 2016, 6, 1037–1043. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. J. Food Sci. Technol. 1997, 30, 609–615. [Google Scholar]
- Ahmed, A.S.; Elgorashi, E.E.; Moodley, N.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. The antimicrobial, antioxidative, anti-inflammatory activity and cytotoxicity of different fractions off our South African Bauhinia species used traditionally to treat diarrhoea. J. Ethnopharmacol. 2012, 143, 826–839. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Tannanin-Spitz, T.; Bergman, M.; Grossman, S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem. Biophys. Res. Commun. 2007, 364, 181–186. [Google Scholar] [CrossRef] [PubMed]
Cucurbitacin B (mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|
Leaves | Roots | Leaves | Roots | |||||
Accession | Mild | Moderate | Severe | Mild | Moderate | Severe | NS | NS |
BG-27 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-31 | ND | ND | ND | ND | ND | ND | ND | 0.03 |
BG-48 | ND | 0.03 | 0.03 | 0.03 | 0.05 | 0.06 | ND | ND |
BG-52 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-58 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-67 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-70 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-78 | ND | ND | ND | ND | 0.03 | ND | ND | ND |
BG-79 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-80 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-81 | ND | 0.03 | 0.03 | 0.04 | 0.05 | 0.08 | ND | ND |
GC | ND | 0.03 | 0.03 | 0.03 | 0.04 | 0.06 | ND | ND |
Cucurbitacin I (mg/g) | ||||||||
Leaves | Roots | Leaves | Roots | |||||
Accession | Mild | Moderate | Severe | Mild | Moderate | Severe | NS | NS |
BG-27 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-31 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-48 | ND | 0.04 | 0.04 | 0.03 | 0.04 | 0.5 | ND | ND |
BG-52 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-58 | ND | ND | ND | 0.03 | ND | ND | ND | ND |
BG-67 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-70 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-78 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-79 | ND | ND | ND | 0.03 | 0.03 | 0.03 | ND | ND |
BG-80 | ND | ND | ND | ND | ND | ND | ND | ND |
BG-81 | ND | 0.03 | 0.03 | ND | 0.04 | 0.04 | ND | ND |
GC | ND | 0.03 | 0.04 | 0.04 | 0.05 | 0.07 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkhize, P.; Shimelis, H.; Mashilo, J. Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]. Plants 2023, 12, 3492. https://doi.org/10.3390/plants12193492
Mkhize P, Shimelis H, Mashilo J. Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]. Plants. 2023; 12(19):3492. https://doi.org/10.3390/plants12193492
Chicago/Turabian StyleMkhize, Phumzile, Hussein Shimelis, and Jacob Mashilo. 2023. "Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]" Plants 12, no. 19: 3492. https://doi.org/10.3390/plants12193492
APA StyleMkhize, P., Shimelis, H., & Mashilo, J. (2023). Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]. Plants, 12(19), 3492. https://doi.org/10.3390/plants12193492