Polyploid Induction and Identification of Rosa roxburghii f. eseiosa
Abstract
:1. Introduction
2. Results
2.1. Induction of Polyploidy by Impregnating Stem Segments of R. roxburghii f. eseiosa before Primary Culture
2.2. Induction of Polyploidy by Impregnating Stem Segments of R. roxburghii f. eseiosa before Subculture
2.3. Effect of Smearing Method on Tetraploid Induction of Wuci 2
2.4. Flow Cytometry and Chromosome Counting Analysis of Mutant Plants
2.5. Morphological Comparison between Diploid and Tetraploid of R. roxburghii f. eseiosa
3. Discussion
3.1. Mutagenic Effects of Different Mutagenesis Methods on R. roxburghii f. eseiosa
3.2. The Identification of Polyploidy
4. Materials and Methods
4.1. Plant Material and Tissue Culture
4.2. Mutagenesis Methods
4.2.1. Mutagenesis by the Impregnation Method
4.2.2. Mutagenesis by Smearing Method
4.3. Polyploid Verification and Morphological Analysis
4.3.1. Flow Cytometry Identification
4.3.2. Chromosome Number Identification
4.3.3. Morphological and Physiological Analysis
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ku, C.Z.; Robertson, K.R. Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2003; Volume 9, p. 339. [Google Scholar]
- Jiang, L.L.; Lu, M.; Rao, T.; Liu, Z.; Wu, X.; An, H.M. Comparative analysis of fruit metabolome using widely targeted metabolomics reveals nutritional characteristics of different Rosa roxburghii genotypes. Foods 2022, 11, 850. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, H.S.; An, H.M. Chloroplast DNA-based genetic variation of Rosa roxburghii in Southwest China: Phylogeography and conservation implications. Hortic. Plant J. 2021, 7, 286–294. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, H.S.; An, H.M.; Zhou, W. Genetic variation and population structure of Rosa roxburghii by EST–based and genomic SSR markers. Pak. J. Bot. 2020, 52, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.J.; Lu, M.; Ludlow, R.A.; Zeng, J.W.; Ma, W.T.; An, H.M. Comparative ultrastructure of trichomes on various organs of Rosa roxburghii. Microsc. Res. Tech. 2021, 84, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.J.; Zeng, J.W.; Ma, W.T.; Lu, M.; An, H.M. Morphological and structural characters of trichomes on various organs of Rosa roxburghii. HortScience 2019, 54, 45–51. [Google Scholar] [CrossRef]
- Zhou, G.Z.; Lu, M.; An, H.M. Analysis of main active substances and antioxidant activities in leaves of Rosa roxburghii and the two related species. J. Nucl. Agric. Sci. 2019, 33, 1658–1665. [Google Scholar]
- Li, N.Y.; Jiang, L.L.; Liu, Y.Y.; Zou, S.M.; Lu, M.; An, H.M. Metabolomics combined with transcriptomics analysis revealed the amino acids, phenolic acids, and flavonol derivatives biosynthesis network in developing Rosa roxburghii Fruit. Foods 2022, 11, 1639. [Google Scholar] [CrossRef]
- Lu, M.; Rao, T.Z.; An, H.M.; Jiang, L.L.; Nan, H.; Zheng, S.H.; Ma, W.T.; Qin, J.X. Specific Molecular Marker of R. roxburghii f. eseiosa Ku and Its Application. CN114317534. Available online: https://www.patentguru.com/cn/inventor/%E8%A6%83%E5%AE%B6%E9%9B%AA (accessed on 12 April 2022).
- Islam, M.M.; Deepo, D.M.; Nasif, S.O.; Siddique, A.B.; Hassan, O.; Siddique, A.B.; Paul, N.C. Cytogenetics and consequences of polyploidization on different biotic–abiotic stress tolerance and the potential mechanisms involved. Plants 2022, 11, 2684. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, B.; Tian, J.R.; Chen, M.M.; Zhang, Y.Y.; Zhang, Z.H.; Ma, Y. Comparison of the morphology, growth and development of diploid and autotetraploid ‘Hanfu’ apple trees. Sci. Hortic. 2017, 225, 277–285. [Google Scholar] [CrossRef]
- Zhang, N.; Bao, Y.N.; Xie, Z.L.; Huang, X.; Sun, Y.H.; Feng, G.; Zeng, H.X.; Ren, J.; Li, Y.H.; Xiong, J.S.; et al. Efficient characterization of tetraploid watermelon. Plants 2019, 8, 419. [Google Scholar] [CrossRef]
- Xue, L.; Dai, H.P.; Lei, J.J. Creating high polyploidy pink-flowered strawberries with improved cold tolerance. Euphytica 2015, 206, 417–426. [Google Scholar] [CrossRef]
- Mo, L.; Chen, J.H.; Cheng, F.; Xu, Q.W.; Tong, Z.K.; Huang, H.H.; Dong, R.H.; Lou, X.Z.; Lin, E.P. Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. J. Integr. Agric. 2020, 19, 2016–2026. [Google Scholar] [CrossRef]
- Mo, L.; Chen, J.H.; Lou, X.Z.; Xu, Q.W.; Dong, R.H.; Tong, Z.K.; Huang, H.H.; Lin, E.P. Colchicine-Induced polyploidy in rhododendron fortunei Lindl. Plants 2020, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Liu, X.Z.; Liu, X.M.; Zhang, X.A.; Ye, Q.X.; Zhang, H.Y. Induction, identification and genetics analysis of tetraploid actinidia chinensis. R. Soc. Open Sci. 2019, 6, 191052. [Google Scholar] [CrossRef] [PubMed]
- Sha, G.F. Effects of ~60Co–γ Rays and Chemical Mutagens on Rosa roxburghii Seeds. Master’s Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
- Feng, H.; Wang, M.L.; Cong, R.C.; Dai, S. Colchicineand trifluralin–mediated polyploidization of Rosa multiflora Thunb.var.inermis and Rosa roxburghii f. normalis. J. Hortic. Sci. Biotechnol. 2016, 92, 279–287. [Google Scholar] [CrossRef]
- Wang, X.P.; Yong, H.J.; Du, J.C.; Liang, G.L.; Li, C.Y.; Wang, M.X. Tetraploid induction and ISSR analysis in Rosa roxburghii tratt. North. Hortic. 2010, 17, 158–160. [Google Scholar]
- Ade, R.; Rai, M.K. Review: Colchicine, current advances and future prospects. Nusant. Biosci. 2010, 2, 90–96. [Google Scholar] [CrossRef]
- Salma, U.; Kundu, S.; Mandal, N. Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 2017, 20, 9–19. [Google Scholar] [CrossRef]
- Eng, W.H.; Ho, W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Inou, S. The effect of colchicine on the microscopic and sub-microscopic structure of the mitotic spindle. Exp. Cell Res. 1952, 2, 305–318. [Google Scholar]
- Malawista, S.E. Colchicine: A common mechanism for its anti-inflammatory and anti-mitotic effects. Arthritis Rheum. 1968, 11, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Rood, M.B. Colchicine in agriculture, medicine, biology and chemistry—A review. Br. Homoeopath. J. 1958, 47, 116–119. [Google Scholar] [CrossRef]
- Liu, R.; Gao, C.; Jin, J.; Wang, Y.; Jia, X.; Ma, H.; Zhang, Y.; Zhang, H.; Qi, B.; Xu, J. Induction and identification of tetraploids of pear plants (Pyrus bretschneideri and Pyrus betulaefolia). Sci. Hortic. 2022, 304, 111322. [Google Scholar] [CrossRef]
- Shi, L.; Gao, S.; Lei, T.; Duan, Y.; Yang, L.; Li, J.; Zhao, Z.; Ling, Q. An integrated strategy for polyploidization of Cerastigma willmottianum Stapf based on tissue culture and chemical mutagenesis and the carbon dioxide fixation ability of tetraploids. Plant Cell Tissue Organ Cult. 2022, 149, 767–782. [Google Scholar] [CrossRef]
- Fu, J.E.; Qin, S.H.; Li, T.Y.; Huang, J.Y.; Li, W.X.; He, Y.; Hong, R.X. Autotetr aploid induction of oriental melon with colchicine. Chin. Melon Veg. 2008, 11–15. Available online: https://www.semanticscholar.org/paper/Autotetraploid-induction-of-oriental-melon-with-Jin-e/6c41a6439f6006ac4db820722fc5decb0e845abc#citing-papers (accessed on 3 February 2023).
- Podwyszyńska, M.; Sowik, I.; Machlańska, A.; Kruczyńska, D.; Dyki, B. In vitro tetraploid induction of Malus × domestica Borkh.using leaf or shoot explants. Sci. Hortic. 2017, 226, 379–388. [Google Scholar] [CrossRef]
- Cui, Y.; Hou, L.; Li, X.; Huang, F.Y.; Pang, X.M.; Li, Y.Y. In vitro induction of tetraploid Ziziphus jujuba Mill.var.spinosa plants from leaf explants. Plant Cell Tissue Organ Cult. 2017, 131, 175–182. [Google Scholar] [CrossRef]
- Jokari, S.; Shekafandeh, A.; Jowkar, A. In vitro tetraploidy induction in Mexican lime and sour orange and evaluation of their morphological and physiological characteristics. Plant Cell Tissue Organ Cult. 2022, 150, 651–668. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, Z.D.; Li, Y.D.; Wu, L.; Liu, H.G. Study on polyploid induction of blueberry in vitro with colchicine treatment. J. Northeast Agric. Univ. 2010, 41, 38–42. [Google Scholar]
- Zhang, W.W.; Liu, F.Q.; Xuan, S.X.; Feng, D.L.; Zhang, C.H.; Shen, S.X. Obtaining and Identification of Tetraploid Brassica nigra. Acta Hortic. Sin. 2015, 42, 2505–2511. [Google Scholar]
- Zhang, H.F.; Guo, B.L.; Zhang, C.H.; Yang, J.X.; Guo, J.; Chen, X.H. Induction and identification of tetraploids in Eucommia ulmoides Oliv. Acta Hortic. Sin. 2008, 35, 1047–1052. [Google Scholar]
- Zlesak, D.C.; Thill, C.A.; Anderson, N.O. Trifluralin–mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 2005, 141, 281–290. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Patat-Ochatt, E.M.; Moessner, A. Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult. 2011, 104, 329–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.W.; Qi, S.Z.; Wang, X.Q.; Zhao, J.; Zhang, J.F.; Li, B.L.; Zhang, Y.D.; Liu, X.Z.; Yuan, W. In vitro tetraploid induction from leaf and petiole explants of hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana). Forests 2017, 8, 264. [Google Scholar] [CrossRef]
- Ye, Y.M.; Ong, J.; Shi, X.P.; Yuan, W.; Li, G. Morphological and cytological studies of diploid and colchicine–induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Sci. Hortic. 2010, 124, 95–101. [Google Scholar] [CrossRef]
- Abdolinejad, R.; Shekafandeh, A.; Jowkar, A. In vitro tetraploidy induction creates enhancements in morphological, physiological and phytochemical characteristics in the fig tree (Ficus Carica L.). Plant Physiol. Biochem. 2021, 166, 191–202. [Google Scholar] [CrossRef]
- Rao, S.; Kang, X.; Li, J.; Chen, J. Induction, identification and characterization of tetraploidy in lycium ruthenicum. Breed. Sci. 2019, 69, 18144. [Google Scholar] [CrossRef]
- Wu, H.J.; Jiang, L.L.; An, H.M.; Lu, M. Establishment of rapid propagation system for stem segments of Rosa roxburghii ‘Wuci 2’. North. Hortic. 2023, 8, 17–23. [Google Scholar]
- Blasco, M.; Badenes, M.L.; Naval, M.D.M. Colchicine–induced polyploidy in loquat (Eriobotrya japonica (Thunb.) Lindl.). Plant Cell Tissue Organ Cult. 2015, 120, 453–461. [Google Scholar] [CrossRef]
- Wang, K. Induction, Identification and Characterization of Tetraploid of Rosa chinensis ‘Old Blush’. Diploma Thesis, Nanjing Agricultural University, Nanjing, China, 2018. [Google Scholar]
- Marangelli, F.; Pavese, V.; Vaia, G.; Lupo, M.; Bashir, M.A.; Cristofori, V.; Silvestri, C. In vitro polyploid induction of highbush blueberry through de novo shoot organogenesis. Plants 2022, 11, 2349. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, J.R.; Zhang, Y.; Fei, X.T.; Li, B.; Li, Y.H.; Xin, P.Y. Study on chromosome preparation technology and chromosome number of Rosa sterilis. Fruit Trees South. China 2015, 44, 78–82. [Google Scholar]
- Meng, Y.F.; Qin, D.; Meng, Q.R. Comparative Analysis on Karyotype of Eight Varieties of Rosa hybrid. J. Sichuan Agric. Univ. 2020, 38, 545–550. [Google Scholar]
Genotype | Processing Time | Treatment Concentration (mg/L) | Vaccination Number | Mortality Rate (%) | Survival Number | Number of Survival Seedlings | Number of Variations | Polyploidy Rate (%) |
---|---|---|---|---|---|---|---|---|
Wuci 1 | 6 h | 300 | 180 | 25.15 ± 3.35 c | 135 | 18 | 0 | 0.00 |
500 | 180 | 38.99 ± 4.22 b | 109 | 10 | 0 | 0.00 | ||
800 | 180 | 39.93 ± 2.71 b | 108 | 8 | 0 | 0.00 | ||
1000 | 180 | 43.16 ± 2.97 b | 100 | 4 | 0 | 0.00 | ||
1500 | 180 | 50.15 ± 3.35 a | 90 | 4 | 0 | 0.00 | ||
12 h | 300 | 180 | 40.18 ± 3.21 d | 104 | 14 | 0 | 0.00 | |
500 | 180 | 50.87 ± 2.39 c | 90 | 15 | 1 | 1.11 | ||
800 | 180 | 54.32 ± 3.80 bc | 81 | 8 | 0 | 0.00 | ||
1000 | 180 | 58.93 ± 3.09 b | 73 | 1 | 0 | 0.00 | ||
1500 | 180 | 75.48 ± 3.86 a | 43 | 3 | 0 | 0.00 | ||
24 h | 300 | 180 | 69.07 ± 4.49 d | 54 | 9 | 0 | 0.00 | |
500 | 180 | 73.51 ± 4.92 bc | 46 | 7 | 0 | 0.00 | ||
800 | 180 | 78.77 ± 3.59 ab | 39 | 7 | 0 | 0.00 | ||
1000 | 180 | 80.95 ± 5.45 ab | 34 | 3 | 0 | 0.00 | ||
1500 | 180 | 87.06 ± 2.48 a | 21 | 2 | 0 | 0.00 | ||
Wuci 2 | 6 h | 300 | 180 | 21.88 ± 3.13 d | 140 | 21 | 0 | 0.00 |
500 | 180 | 33.90 ± 6.15 c | 118 | 17 | 0 | 0.00 | ||
800 | 180 | 47.36 ± 2.32 b | 93 | 10 | 0 | 0.00 | ||
1000 | 180 | 51.11 ± 3.68 ab | 86 | 9 | 0 | 0.00 | ||
1500 | 180 | 57.09 ± 2.78 a | 75 | 6 | 0 | 0.00 | ||
12 h | 300 | 180 | 42.85 ± 3.82 d | 102 | 8 | 0 | 0.00 | |
500 | 180 | 58.22 ± 2.28 c | 73 | 6 | 0 | 0.00 | ||
800 | 180 | 61.76 ± 4.29 bc | 68 | 6 | 0 | 0.00 | ||
1000 | 180 | 68.97 ± 1.24 b | 55 | 3 | 0 | 0.00 | ||
1500 | 180 | 76.90 ± 5.13 a | 41 | 1 | 0 | 0.00 | ||
24 h | 300 | 180 | 53.42 ± 3.58 d | 82 | 6 | 0 | 0.00 | |
500 | 180 | 63.86 ± 1.20 c | 64 | 3 | 0 | 0.00 | ||
800 | 180 | 72.91 ± 1.86 c | 41 | 3 | 0 | 0.00 | ||
1000 | 180 | 78.19 ± 3.13 ab | 37 | 2 | 0 | 0.00 | ||
1500 | 180 | 82.27 ± 3.22 a | 30 | 0 | 0 | 0.00 |
Colchicine Concentration (mg/L) | Processing Time/d | Number of Processes | Number of Survivors | Survival Rate (%) | Number of Variations | Polyploidy Rate (%) |
---|---|---|---|---|---|---|
0 | 10 | 5 | 5 | 100.00 | 0 | 0.00 |
15 | 5 | 5 | 100.00 | 0 | 0.00 | |
10 | 10 | 5 | 5 | 100.00 | 0 | 0.00 |
15 | 5 | 5 | 100.00 | 1 | 20.00 | |
20 | 10 | 5 | 5 | 100.00 | 1 | 20.00 |
15 | 5 | 5 | 100.00 | 3 | 60.00 | |
30 | 10 | 5 | 5 | 100.00 | 1 | 20.00 |
15 | 5 | 5 | 100.00 | 1 | 20.00 |
Indicators | Diploid | Tetraploid |
---|---|---|
Terminal leaflet length (mm) | 18.81 ± 0.31 a | 19.55 ± 0.49 a |
Terminal leaflet width (mm) | 10.98 ± 0.27 a | 11.47 ± 0.25 a |
Terminal leaflet shape index | 1.72 ± 0.02 a | 1.71 ± 0.02 a |
Side leaflet length (mm) | 18.62 ± 0.51 a | 17.48 ± 0.41 a |
Side leaflet width (mm) | 10.06 ± 0.24 a | 9.67 ± 0.29 a |
Side leaflet shape index | 1.71 ± 0.02 b | 1.81 ± 0.04 a |
Leaflet thickness (mm) | 0.15 ± 0.01 a | 0.14 ± 0.01 a |
Relative content of chlorophyll (SPAD) | 36.73 ± 0.64 b | 27.73 ± 0.59 * c 40.21 ± 0.56 ** a |
Length of guard cells (μm) | 16.54 ± 0.22 b | 18.25 ± 0.30 a |
Width of guard cell (μm) | 11.02 ± 0.36 a | 11.54 ± 0.0.21 a |
Stomatal length (μm) | 10.90 ± 0.30 a | 11.56 ± 0.37 a |
Stomatal width (μm) | 3.48 ± 0.13 b | 3.933 ± 0.15 a |
Stomatal density (number/10 × 4) | 21.62 ± 0.58 a | 19.67 ± 0.62 a |
Indicators | Diploid | Tetraploid |
---|---|---|
Terminal leaflet length (mm) | 15.96 ± 0.20 a | 16.46 ± 0.15 a |
Terminal leaflet width (mm) | 8.60 ± 0.17 b | 9.54 ± 0.16 a |
Terminal leaflet shape index | 1.86 ± 0.04 a | 1.74 ± 0.04 b |
Side leaflet length (mm) | 14.69 ± 0.22 a | 14.90 ± 0.17 a |
Side leaflet width (mm) | 8.22 ± 0.75 b | 8.98 ± 0.15 a |
Side leaflet shape index | 1.78 ± 0.05 a | 1.66 ± 0.03 a |
Leaflet thickness (mm) | 0.14 ± 0.01 a | 0.14 ± 0.01 a |
Relative content of chlorophyll (SPAD) | 37.57 ± 1.20 b | 43.74 ± 0.98 a (28.46 ± 0.67 * c 41.91 ± 1.41 ** a) |
Length of guard cells (μm) | 17.30 ± 0.29 b | 20.97 ± 0.35 a |
Width of guard cell (μm) | 11.86 ± 0.25 b | 13.54 ± 0.20 a |
Stomatal length (μm) | 11.26 ± 0.41 b | 13.93 ± 0.35 a |
Stomatal width (μm) | 3.22 ± 0.17 b | 4.67 ± 0.12 a |
Stomatal density (number/10 × 4) | 22.76 ± 0.79 a | 16.95 ± 0.55 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Jiang, L.; Li, J.; Lu, M.; An, H. Polyploid Induction and Identification of Rosa roxburghii f. eseiosa. Plants 2023, 12, 2194. https://doi.org/10.3390/plants12112194
Wu H, Jiang L, Li J, Lu M, An H. Polyploid Induction and Identification of Rosa roxburghii f. eseiosa. Plants. 2023; 12(11):2194. https://doi.org/10.3390/plants12112194
Chicago/Turabian StyleWu, Huijing, Lanlan Jiang, Jin’e Li, Min Lu, and Huaming An. 2023. "Polyploid Induction and Identification of Rosa roxburghii f. eseiosa" Plants 12, no. 11: 2194. https://doi.org/10.3390/plants12112194
APA StyleWu, H., Jiang, L., Li, J., Lu, M., & An, H. (2023). Polyploid Induction and Identification of Rosa roxburghii f. eseiosa. Plants, 12(11), 2194. https://doi.org/10.3390/plants12112194