Institutional Context of Pest Management Science in the Global South
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, W.W.; Snellman, K. The knowledge economy. Annu. Rev. Sociol. 2004, 30, 199–220. [Google Scholar] [CrossRef]
- Jefferson, O.A.; Jaffe, A.; Ashton, D.; Warren, B.; Koellhofer, D.; Dulleck, U.; Ballagh, A.; Moe, J.; DiCuccio, M.; Ward, K.; et al. Mapping the global influence of published research on industry and innovation. Nat. Biotechnol. 2018, 36, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Leahey, E.; Funk, R.J. Papers and patents are becoming less disruptive over time. Nature 2023, 613, 138–144. [Google Scholar] [CrossRef]
- King, D.A. The scientific impact of nations. Nature 2004, 430, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Murray, D.; Jung, W.-S.; Larivière, V.; Sugimoto, C.R.; Ahn, Y.-Y. The latent structure of global scientific development. Nat. Hum. Behav. 2022, 6, 1206–1217. [Google Scholar] [CrossRef]
- Gomez, C.J.; Herman, A.C.; Parigi, P. Leading countries in global science increasingly receive more citations than other countries doing similar research. Nat. Hum. Behav. 2022, 6, 919–929. [Google Scholar] [CrossRef]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- DeFries, R.; Nagendra, H. Ecosystem management as a wicked problem. Science 2017, 356, 265–270. [Google Scholar] [CrossRef]
- Acevedo, M.F.; Harvey, D.R.; Palis, F.G. Food security and the environment: Interdisciplinary research to increase productivity while exercising environmental conservation. Glob. Food Secur. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Yletyinen, J.; Brown, P.; Pech, R.; Hodges, D.; Hulme, P.E.; Malcolm, T.F.; Maseyk, F.J.F.; Peltzer, D.A.; Perry, G.L.W.; Richardson, S.J.; et al. Understanding and Managing Social–Ecological Tipping Points in Primary Industries. BioScience 2019, 69, 335–347. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Edenhofer, O.; Gaertner, J.; DeClerck, F. Planet-proofing the global food system. Nat. Food 2020, 1, 3–5. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Nyström, M.; Jouffray, J.B.; Norström, A.V.; Crona, B.; Søgaard Jørgensen, P.; Carpenter, S.R.; Bodin, Ö.; Galaz, V.; Folke, C. Anatomy and resilience of the global production ecosystem. Nature 2019, 575, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Mahecha, M.D.; Bastos, A.; Bohn, F.J.; Eisenhauer, N.; Feilhauer, H.; Hartmann, H.; Hickler, T.; Kalesse-Los, H.; Migliavacca, M.; Otto, F.E.L.; et al. Biodiversity loss and climate extremes—study the feedbacks. Nature 2022, 612, 30–32. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Mueller, N.D.; Springmann, M.; Sulser, T.B.; Garibaldi, L.A.; Gerber, J.; Wiebe, K.; Myers, S.S. Pollinator Deficits, Food Consumption, and Consequences for Human Health: A Modeling Study. Environ. Health Perspect. 2022, 130, 127003. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, K.A.; Zhang, W.; Colmenarez, Y.C.; Simelton, E.; Sander, B.O.; Lu, Y. Tritrophic defenses as a central pivot of low-emission, pest-suppressive farming systems. Curr. Opin. Environ. Sustain. 2022, 58, 101208. [Google Scholar] [CrossRef]
- Altieri, M.A.; Martin, P.B.; Lewis, W.J. A quest for ecologically based pest management systems. Environ. Manag. 1983, 7, 91–99. [Google Scholar] [CrossRef]
- Lewis, W.J.; Van Lenteren, J.C.; Phatak, S.C.; Tumlinson, J.H. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. USA 1997, 94, 12243–12248. [Google Scholar] [CrossRef]
- Bromham, L.; Dinnage, R.; Hua, X. Interdisciplinary research has consistently lower funding success. Nature 2016, 534, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Fini, R.; Jourdan, J.; Perkmann, M.; Toschi, L. A New Take on the Categorical Imperative: Gatekeeping, Boundary Maintenance, and Evaluation Penalties in Science. Organ. Sci. 2023, 34, 1090–1110. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Carson, R. Silent Spring; Houghton Mifflin: Boston, MA, USA, 1962. [Google Scholar]
- Savary, S.; Akter, S.; Almekinders, C.; Harris, J.; Korsten, L.; Rötter, R.; Waddington, S.; Watson, D. Mapping disruption and resilience mechanisms in food systems. Food Secur. 2020, 12, 695–717. [Google Scholar] [CrossRef] [PubMed]
- Dainese, M.; Martin, E.A.; Aizen, M.A.; Albrecht, M.; Bartomeus, I.; Bommarco, R.; Carvalheiro, L.G.; Chaplin-Kramer, R.; Gagic, V.; Garibaldi, L.A.; et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 2019, 5, eaax0121. [Google Scholar] [CrossRef]
- Shattuck, A.; Werner, M.; Mempel, F.; Dunivin, Z.; Galt, R. Global pesticide use and trade database (GloPUT): New estimates show pesticide use trends in low-income countries substantially underestimated. Glob. Environ. Chang. 2023, 81, 102693. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Aubertot, J.-N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 1–35. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Pretty, J. New opportunities for the redesign of agricultural and food systems. Agric. Hum. Values 2020, 37, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, K.A.; Zou, Y.; Wanger, T.C.; Zhou, W.; Gc, Y.D.; Lu, Y. Agro-ecology science relates to economic development but not global pesticide pollution. J. Environ. Manag. 2022, 307, 114529. [Google Scholar] [CrossRef]
- González-Chang, M.; Wratten, S.D.; Shields, M.W.; Costanza, R.; Dainese, M.; Gurr, G.M.; Johnson, J.; Karp, D.S.; Ketelaar, J.W.; Nboyine, J.; et al. Understanding the pathways from biodiversity to agro-ecological outcomes: A new, interactive approach. Agric. Ecosyst. Environ. 2020, 301, 107053. [Google Scholar] [CrossRef]
- Messing, R.; Brodeur, J. Current challenges to the implementation of classical biological control. BioControl 2018, 63, 1–9. [Google Scholar] [CrossRef]
- Walker, B.; Barrett, S.; Polasky, S.; Galaz, V.; Folke, C.; Engström, G.; Ackerman, F.; Arrow, K.; Carpenter, S.; Chopra, K.; et al. Looming Global-Scale Failures and Missing Institutions. Science 2009, 325, 1345–1346. [Google Scholar] [CrossRef] [PubMed]
- Deguine, J.P.; Aubertot, J.N.; Bellon, S.; Côte, F.X.; Lauri, P.E.E.; Lescourret, F.; Ratnadass, A.; Scopel, E.; Andrieu, N.; Bàrberi, P.; et al. Agroecological crop protection for sustainable agriculture. Adv. Agron. 2023, 178, 1–59. [Google Scholar]
- Mansfield, B.; Werner, M.; Berndt, C.; Shattuck, A.; Galt, R.; Williams, B.; Argüelles, L.; Barri, F.R.; Ishii, M.; Kunin, J.; et al. A new critical social science research agenda on pesticides. Agric. Hum. Values 2023, 1–18. [Google Scholar] [CrossRef]
- Alrøe, H.F.; Kristensen, E.S. Towards a systemic research methodology in agriculture: Rethinking the role of values in science. Agric. Hum. Values 2002, 19, 3–23. [Google Scholar] [CrossRef]
- Vanloqueren, G.; Baret, P.V. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res. Policy 2009, 38, 971–983. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Aizen, M.A.; Cordeau, S.; Garibaldi, L.A.; Garratt, M.P.; Kovács-Hostyánszki, A.; Lecuyer, L.; Ngo, H.T.; Potts, S.G.; Settele, J.; et al. Transformation of agricultural landscapes in the Anthropocene: Nature’s contributions to people, agriculture and food security. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2020; Volume 63, pp. 193–253. [Google Scholar]
- Clapp, J. The problem with growing corporate concentration and power in the global food system. Nat. Food 2021, 2, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Warner, K.D.; Daane, K.M.; Getz, C.M.; Maurano, S.P.; Calderon, S.; Powers, K.A. The decline of public interest agricultural science and the dubious future of crop biological control in California. Agric. Hum. Values 2011, 28, 483–496. [Google Scholar] [CrossRef]
- Mastrángelo, M.E.; Pérez-Harguindeguy, N.; Enrico, L.; Bennett, E.; Lavorel, S.; Cumming, G.S.; Abeygunawardane, D.; Amarilla, L.D.; Burkhard, B.; Egoh, B.N.; et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2019, 2, 1115–1121. [Google Scholar] [CrossRef]
- Andersen, A.D.; Steen, M.; Mäkitie, T.; Hanson, J.; Thune, T.M.; Soppe, B. The role of inter-sectoral dynamics in sustainability transitions: A comment on the transitions research agenda. Environ. Innov. Soc. Transit. 2020, 34, 348–351. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K. Implicit Sociology, Interdisciplinarity and Systems Theories in Agricultural Science. Sociol. Rural. 2009, 49, 172–188. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Tang, F.H.M.; Hadi, B.A.R. Pest management science often disregards farming system complexities. Commun. Earth Environ. 2023, 4, 223. [Google Scholar] [CrossRef]
- Naranjo, S.E.; Hellmich, R.L.; Romeis, J.; Shelton, A.M.; Velez, A.M. The role and use of genetically engineered insect-resistant crops in IPM systems. In Integrated Management of Insect Pests: Current and Future Developments; Kogan, M., Heinrichs, E., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 283–340. [Google Scholar]
- Cavacini, A. Recent trends in Middle Eastern scientific production. Scientometrics 2016, 109, 423–432. [Google Scholar] [CrossRef]
- May, R.M. The Scientific Wealth of Nations. Science 1997, 275, 793–796. [Google Scholar] [CrossRef]
- Courtioux, P.; Métivier, F.; Rebérioux, A. Nations ranking in scientific competition: Countries get what they paid for. Econ. Model. 2022, 116, 105976. [Google Scholar] [CrossRef]
- Waddington, H.; Snilstveit, B.; Hombrados, J.; Vojtkova, M.; Phillips, D.; Davies, P.; White, H. Farmer Field Schools for Improving Farming Practices and Farmer Outcomes: A Systematic Review. Campbell Syst. Rev. 2014, 10, i-335. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Lu, Y.; Zhou, W.; Cock, M.J.W.; Naranjo, S.E.; Fereti, A.; Williams, F.E.; Furlong, M.J. Ecological pest control fortifies agricultural growth in Asia–Pacific economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Godtland, E.M.; Sadoulet, E.; de Janvry, A.; Murgai, R.; Ortiz, O. The Impact of Farmer Field Schools on Knowledge and Productivity: A Study of Potato Farmers in the Peruvian Andes. Econ. Dev. Cult. Chang. 2004, 53, 63–92. [Google Scholar] [CrossRef]
- Keeler, B.L.; Chaplin, R.E.; Guerry, A.D.; Addison, P.F.E.; Bettigole, C.; Burke, I.C.; Gentry, B.; Chambliss, L.; Young, C.; Travis, A.J.; et al. Society Is Ready for a New Kind of Science—Is Academia? Bioscience 2017, 67, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Levidow, L.; Pimbert, M.; Vanloqueren, G. Agroecological research: Conforming—Or transforming the dominant agro-food regime? Agroecol. Sustain. Food Syst. 2014, 38, 1127–1155. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Brodeur, J.; Abram, P.K.; Heimpel, G.E.; Messing, R.H. Trends in biological control: Public interest, international networking and research direction. BioControl 2018, 63, 11–26. [Google Scholar] [CrossRef]
- Lavelle, P.; Mathieu, J.; Spain, A.; Brown, G.; Fragoso, C.; Lapied, E.; De Aquino, A.; Barois, I.; Barrios, E.; Barros, M.E.; et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. 2022, 31, 1261–1276. [Google Scholar] [CrossRef]
- Coll, M.; Wajnberg, E. Environmental pest management: A call to shift from a pest- centric to a system-centric approach. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers; Coll, M., Wajnberg, E., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–18. [Google Scholar]
- Dentzman, K. Academics and the ‘easy button’: Lessons from pesticide resistance management. Agric. Hum. Values 2022, 39, 1179–1183. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.G.A.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef] [PubMed]
- Wratten, S.D.; Hofmans, M.; Thomsen, S.; Williams, P.; Groves, G.; Eason, C.; Greer, J. Measuring sustainability in agricultural systems. In Proceedings of the New Zealand Plant Protection Conference, Canterbury, New Zealand, 18–21 August 1997; Volume 50, pp. 514–519. [Google Scholar]
- Olson, R. Science Deified and Science Defied; University of California Press: Berkeley, CA, USA, 1990; Volume 2. [Google Scholar]
- Woolston, C. How to measure the societal impact of science. Nature 2023, 614, 375–377. [Google Scholar] [CrossRef]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Jäger, J.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef]
- Dentzman, K. Governance of emerging pests and pathogens in production landscapes: Pesticide resistance and collaborative governance. Curr. Opin. Environ. Sustain. 2022, 58, 101220. [Google Scholar] [CrossRef]
- Altieri, M.A.; Francis, C.A.; Van Schoonhoven, A.; Doll, J.D. A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crop. Res. 1978, 1, 33–49. [Google Scholar] [CrossRef]
- Herren, H.R.; Neuenschwander, P. Biological control of cassava pests in Africa. Annu. Rev. Entomol. 1991, 36, 257–283. [Google Scholar] [CrossRef]
- Kholová, J.; Urban, M.O.; Cock, J.; Arcos, J.; Arnaud, E.; Aytekin, D.; Azevedo, V.; Barnes, A.P.; Ceccarelli, S.; Chavarriaga, P.; et al. In pursuit of a better world: Crop improvement and the CGIAR. J. Exp. Bot. 2021, 72, 5158–5179. [Google Scholar] [CrossRef] [PubMed]
- Rosenheim, J.A.; Coll, M. Pest-Centric versus Process-Centric Research Approaches in Agricultural Entomology. Am. Èntomol. 2008, 54, 70–72. [Google Scholar] [CrossRef]
- Petsakos, A.; Prager, S.D.; Gonzalez, C.E.; Gama, A.C.; Sulser, T.B.; Gbegbelegbe, S.; Kikulwe, E.M.; Hareau, G. Understanding the consequences of changes in the production frontiers for roots, tubers and bananas. Glob. Food Secur. 2019, 20, 180–188. [Google Scholar] [CrossRef]
- Carneiro, B.; Resce, G.; Sapkota, T.B. Digital artifacts reveal development and diffusion of climate research. Sci. Rep. 2022, 12, 14146. [Google Scholar] [CrossRef] [PubMed]
- Chaplin-Kramer, R.; O’Rourke, M.; Schellhorn, N.; Zhang, W.; Robinson, B.E.; Gratton, C.; Rosenheim, J.A.; Tscharntke, T.; Karp, D.S. Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. Front. Sustain. Food Syst. 2019, 3, 60. [Google Scholar] [CrossRef]
- Beintema, N.M.; Stads, G.J. Measuring agricultural research investments: A revised global picture. Gates Open Res. 2019, 3, 459. [Google Scholar]
- Kinniburgh, F.; Selin, H.; Selin, N.E.; Schreurs, M. When private governance impedes multilateralism: The case of international pesticide governance. Regul. Gov. 2022, 17, 425–448. [Google Scholar] [CrossRef]
- Ickowitz, A.; McMullin, S.; Rosenstock, T.; Dawson, I.; Rowland, D.; Powell, B.; Mausch, K.; Djoudi, H.; Sunderland, T.; Nurhasan, M.; et al. Transforming food systems with trees and forests. Lancet Planet. Health 2022, 6, e632–e639. [Google Scholar] [CrossRef] [PubMed]
- Agboka, K.M.; Tonnang, H.E.; Abdel-Rahman, E.M.; Odindi, J.; Mutanga, O.; Niassy, S. Data-driven artificial intelligence (AI) algorithms for modelling potential maize yield under maize–legume farming systems in East Africa. Agronomy 2022, 12, 3085. [Google Scholar] [CrossRef]
- Gautam, M.; Laborde, D.; Mamun, A.; Martin, W.; Pineiro, V.; Vos, R. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet; The World Bank: Washington, DC, USA; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2022. [Google Scholar]
- Möhring, N.; Ingold, K.; Kudsk, P.; Martin-Laurent, F.; Niggli, U.; Siegrist, M.; Studer, B.; Walter, A.; Finger, R. Pathways for advancing pesticide policies. Nat. Food 2020, 1, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Kolcava, D.; Rudolph, L.; Bernauer, T. Citizen preferences on private-public co-regulation in environmental governance: Evidence from Switzerland. Glob. Environ. Chang. 2021, 68, 102226. [Google Scholar] [CrossRef]
- Schelling, T.C. Micromotives and Macrobehavior; WW Norton & Company: New York, NY, USA, 1978. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyckhuys, K.A.G.; Hadi, B.A.R. Institutional Context of Pest Management Science in the Global South. Plants 2023, 12, 4143. https://doi.org/10.3390/plants12244143
Wyckhuys KAG, Hadi BAR. Institutional Context of Pest Management Science in the Global South. Plants. 2023; 12(24):4143. https://doi.org/10.3390/plants12244143
Chicago/Turabian StyleWyckhuys, Kris A. G., and Buyung A. R. Hadi. 2023. "Institutional Context of Pest Management Science in the Global South" Plants 12, no. 24: 4143. https://doi.org/10.3390/plants12244143
APA StyleWyckhuys, K. A. G., & Hadi, B. A. R. (2023). Institutional Context of Pest Management Science in the Global South. Plants, 12(24), 4143. https://doi.org/10.3390/plants12244143