Plant Nutrition—New Methods Based on the Lessons of History: A Review
Abstract
:1. Introduction
2. Challenges of Long-Term Observations Related to Plant Nutrition
- Fertilisation with organic and mineral fertiliser can alter the total content of soil organic matter, composition, diversity, microbe activity, and mineralisation of soil organic matter (SOM) in the order of no fertiliser (C0) ≤ mineral fertiliser (NPK) < mixture of mineral fertiliser and straw < farmyard manure (FYM) [11]. Similarly, long-term applications of both organic and mineral fertilisers also increase crop yields, nutrient uptake, and soil productivity in the order of organic fertiliser > 50% organic fertiliser and 50% NPK > NPK > mineral NP > mineral PK > mineral NK > C0 after 18 years of continuous fertiliser in the North China Plain [12]. Veum et al. [13] mentioned that the quantity and quality of soil organic matter increased in the order of FYM > NPK > C0 from a Sanborn (Columbia, MO, USA) long-term field experiment. The long-term application of NPK, FYM, or cattle slurry to an experimental field at Praha-Ruzyně, Czech Republic, for 60 years showed a significant difference in humic substance content and quality and a higher available nutrient content, soil reaction, and SOM stock [14].
- Long-term crop rotation has also increased agroecosystem diversity, improving crop yields and soil health; increased climate change adaptation or agricultural resilience; increased the water holding capacity and microbial diversity of soil, long-term yield gain, and reduction of biotic factors (plant pathogens, insect pests and weed pressure) [15]; and increased crop residue returns to soil by up to 100%, resulting in a large carbon and nitrogen stock in the soil [16].
- Different tillage practices also have a significant effect on SOM dynamics and carbon content within soil aggregates [17]. Zero tillage (ZT), reduced tillage, and organic farming systems provide a better preservation of soil aggregates and soil quality, high carbon and soil organic matter content, increased carbon sequestration capacity, maintenance of crop productivity, and more sustainable agricultural systems compared to conventional (CON) systems [17,18,19]. However, the amounts of SOM stocks, dissolved organic carbon (DOC), and microbial biomass carbon are significantly influenced by depth and tillage, being higher at a 0–20 cm depth under RT compared to CON [18]. Despite its potential benefits, ZT has a serious impact on developing herbicide-resistant weeds, weed seed production, and weed/crop competition [16].
3. New Instrumental Analytical Techniques
3.1. Spectrometric and Chromatographic Methods
3.2. Tomography, Magnetic Resonance, and X-ray Fluorescence
4. Methods Related to the Specific Environments and Nutrients Relationship
4.1. Investigation of the Plant Rhizosphere
4.2. Soil Microbial Composition
4.3. Importance of Soil Enzymatic Activity and Its Determination
4.4. Plant Nutrition Indexes—Calculation of Optimal Nutrient Status in Plants
5. Data Evaluation
6. The Ways of Modern Plant Nutrition
6.1. Plant Breeding towards Better Nutrient Management
- Changes in root distribution (supporting root hair growth) [250];
- Enhancement of symbiotic mycorrhiza [251];
- Supporting root exudate production [252];
- Physiological changes minimising metabolic nutrient requirements and changes in nutrient transporter behaviour [253];
- Root-mediated water transport to the soil surface, which increases the solubility of nutrients [254].
6.2. Precision Farming—Variable Nutrient Application to Save Costs and the Environment
6.3. Improvement in Nutrient Use Efficiency Due to Fertiliser Placement
6.4. Biostimulants in Plant Growth and Nutrient Acquisition
Bacteria | Experiment Conditions | Effect on Target Plant | Source |
---|---|---|---|
Pseudomonas sp. | Laboratory | Stimulation of tomato plants’ growth | [300] |
Pot; field | Nonsignificant effect on growth and nutrients uptake with maize | [301] | |
Field | Higher grain and straw yield of barley | [302] | |
Pot; field | Improvement of germination, growth, and yield parameters of maize | [303,304] | |
Laboratory; greenhouse; field | Improvement of germination, root, and aboveground biomass length of maize | [305] | |
Pseudomonas jesenii | Greenhouse | Better growth of tomato plants | [306] |
Greenhouse; field | Higher aboveground biomass and grain yield of chickpea | ||
Pseudomonas fluorescens and Cupriavidus necator | Greenhouse | Co-inoculation led to promoted maize growth under drought stress | [307] |
Bacillus amyloliquefaciens | Laboratory | Better root and shoot growth of maize | [298] |
Pot | Nonsignificant effect on growth and nutrients acquisition by maize | [308] | |
Bacillus subtilis | Field | Improvement of macro- and micronutrient uptake with tomatoes | [309] |
Field | Higher yield of aboveground biomass and roots of cabbage | [310] | |
Bacillus cereus | Field | Increased potassium-use efficiency and higher potato yield | [311] |
Lysinibacillus sphaericus | Field | Increase in maize yield | [312] |
Paenibacillus mucilaginosus | Pot | Improvement of trifoliate orange seedlings’ growth | [313] |
Pot | In combination with ash, it improved P mobility but immobilized NO3− (experiments with maize) | [314] | |
Fungi | |||
Trichoderma sp. | Laboratory | Higher soybean yield | [315] |
Laboratory | Better growth of Vigna unguiculata | [316] | |
Trichoderma harzianum | Pot | Better germination and seedling growth of wheat | [317] |
Pot | Nonsignificant effect on nutrient uptake and growth of wheat | [301] | |
Pot | Increased shoot and root length, dry mass, and grain yield of pigeon pea | [318] | |
Pot | Higher acid phosphatase activity in soil (experiments with maize) | [319] | |
Pot | Better growth of Brassica juncea | [320] | |
Pot | Increased shoot and root length and dry weight, as well as yield of melons | [290] | |
Greenhouse | Higher potato yield | [321] | |
Penicilium Bilalii | Rhizoboxes | Longer roots of maize | [293] |
Pot | Higher alfalfa yield | [322] | |
Field | Higher grain yield of wheat | [323] | |
Field | Longer roots and higher P content in pea roots | [324] | |
Rhizophagus (Glomus) intraradices | Greenhouse | Improvement of yield parameters of tea plants | [325] |
Field | Better growth of tomatoes | [326] |
6.5. Use of Waste Materials as a Source of Nutrients
- Low quality of materials (even by a lower ratio of contaminants);
- Risk of environmental contamination (including eutrophication);
- Sociological aspects (e.g., direct application of sewage sludge);
- Negative influence on soil biochemical processes (mainly soil organic matter);
- Difficult long-distance transport.
6.6. The role of Nanotechnologies in Plant Nutrition and Water Holding in the Environment
7. A Stressful Environment as One of the Main Barriers to Plant Growth
- Physical properties of the soil (soil pH, bulk density, and moisture),
- Chemical properties (osmotic stress due to a high concentration of Na+ and Cl− and a reduction in K+ and Ca2+, ion imbalance or electrolyte leakage, ion toxicity, and low nutrient bioavailability),
8. Conclusions
- The breeding of new plant varieties with better nutrient acquisition or lower nutrient consumption could lower yields due to energy investments in root growth or metabolic processes. The second, lower-nutrient uptake strategy, can decrease plant vitality or the nutritional quality of harvested products.
- Precision agriculture allows us to save costs and, mainly, the environment due to the local application of fertilisers based on modern equipment and techniques. However, requests for precise input data interpretation and high input costs often discourage wider use.
- Biostimulants can improve nutrient acquisition. It is a promising technology for the future, but the results of field conditions are very inconsistent, and the published data often overestimate the influence of biostimulants.
- Fertilising with nonconventional waste materials (sewage sludge, struvite, ashes, biochar, and digestates) is necessary for sustainable agriculture. However, we must pay attention to nutrient bioavailability and the risk of environmental contamination with heavy metals and organic pollutants.
- The use of nanotechnologies is a promising method for holding water in soil and supporting nutrient bioavailability. The limiting factor is the high costs for use in agricultural practice.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aftab, T.; Hakeem, K.R. (Eds.) Sustainable Plant Nutrition. Molecular Interventions and Advancements for Crop, 1st ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2022; ISBN 9780443186752. [Google Scholar]
- Maathius, F.J.M. (Ed.) Plant Mineral Nutrients. Methods and Protocols; Humana Press Inc.: Totowa, NJ, USA, 2017; ISBN 9781493959730. [Google Scholar]
- Rengel, Z.; Cakmak, I.; White, P.J. (Eds.) Marschner’s Mineral Nutrition of Plants, 4th ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2023; ISBN 9780128197738. [Google Scholar]
- Timisina, J. (Ed.) Fertilizer Application on Crop Yields; MDPI: Basel, Switzerland, 2019; ISBN 978-3-03897-655-4. [Google Scholar]
- Tikhonovich, T.A.; Provorov, N.A. Chapter 14—Beneficial plant-microbe interactions. In Comprehensive and Molecular Phytopathology; Dyakov, Y.T., Dzavakhiya, V.G., Korpela, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Pöhlitz, J.; Rücknagel, J.; Schlüter, S.; Vogel, H.-J.; Christen, O. Estimation of critical stress ranges to preserve soil functions for differently textured soils. Soil Tillage Res. 2020, 200, 104637. [Google Scholar] [CrossRef]
- Garcia, W.O.; Amann, T.; Hartmann, J.; Karstens, K.; Popp, A.; Boysen, L.R.; Smith, P.; Goll, D. Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences 2020, 17, 2107–2133. [Google Scholar] [CrossRef]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Exploring the variability of soil properties as influenced by land use and management practices: A case study in the Upper Blue Nile basin, Ethiopia. Soil Tillage Res. 2020, 200, 104614. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Alshaal, T.A.; Shehata, S.A.; Domokos-Szabolcsy, É.; Elhawat, N.; Prokisch, J.; Fári, M.; Marton, L. Plant Nutrition: From Liquid Medium to Micro-farm. In Sustainable Agriculture Reviews 14: Agroecology and Global Change; Ozier-Lafontaine, H., Lesueur-Jannoyer, M., Eds.; Springer: Cham, Switzerland, 2014; pp. 449–508. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef]
- Xu, P.; Liu, Y.; Zhu, J.; Shi, L.; Fu, Q.; Chen, J.; Hu, H.; Huang, Q. Influence mechanisms of long-term fertilizations on the mineralization of organic matter in Ultisol. Soil Tillage Res. 2020, 201, 104594. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yan, X.Y.; Gong, W. Effect of long-term fertilization on soil productivity on the North China Plain. Pedosphere 2015, 25, 450–458. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizerson the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderon, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia, A.G.Y.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Rosenzweig, S.T.; Stromberger, M.E.; Schipanski, M.E. Intensified dryland crop rotations support greater grain production with fewer inputs. Agric. Ecosyst. Environ. 2018, 264, 63–72. [Google Scholar] [CrossRef]
- Modak, K.; Biswas, D.R.; Ghosh, A.; Pramanik, P.; Das, T.K.; Das, S.; Kumar, S.; Krishnan, P.; Bhattacharyya, R. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil Tillage Res. 2020, 202, 104649. [Google Scholar] [CrossRef]
- Cania, B.; Vestergaard, G.; Krauss, M.; Fliessbach, A.; Schloter, M.; Schulz, S. A long-term field experiment demonstrates the influence of tillage on the bacterial potential to produce soil structure-stabilizing agents such as exopolysaccharides and lipopolysaccharides. Environ. Microbiome 2019, 14, 1. [Google Scholar] [CrossRef]
- Cooper, R.J.; Hama-Aziza, Z.Q.; Hiscock, K.M.; Lovett, A.A.; Vrain, E.; Dugdale, S.J.; Sünnenberg, G.; Dockerty, T.; Hovesen, P.; Noble, L. Conservation tillage and soil health: Lessons from a 5-year UK farm trial (2013–2018). Soil Tillage Res. 2020, 202, 104648. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. New Phytol. 2019, 223, 548–564. [Google Scholar] [CrossRef]
- Keel, S.G.; Anken, T.; Büchi, L.; Chervet, A.; Fliessbach, A.; Flisch, R.; Huguenin-Elie, O.; Mäder, P.; Mayer, J.; Sinaj, S.; et al. Loss of soil organic carbon in Swiss long-term agricultural experiments over a wide range of management practices. Agric. Ecosyst. Environ. 2019, 286, 106654. [Google Scholar] [CrossRef]
- Poulton, P.; Johnston, J.; Macdonald, A.; White, R.; Powlson, D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Chang. Biol. 2018, 24, 2563–2584. [Google Scholar] [CrossRef]
- Šeremešić, S.; Ćirić, V.; Milošev, D.; Vasin, J.; Djalovic, I. Changes in soil carbon stock under the wheat-based cropping systems at Vojvodina province of Serbia. Arch. Agron. Soil Sci. 2017, 63, 388–402. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- Michaud, A.M.; Cambier, P.; Sappin-Didier, V.; Deltreil, V.; Mercier, V.; Rampon, J.-N.; Houot, S. Mass balance and long-term soil accumulation of trace elementsin arable crop systems amended with urban composts or cattlemanure during 17 years. Environ. Sci. Pollut. Res. 2020, 27, 5367–5386. [Google Scholar] [CrossRef]
- Yang, G.-H.; Zhu, G.-Y.; Li, H.-L.; Han, X.-M.; Li, J.-M.; Ma, Y.-B. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. J. Integr. Agric. 2018, 17, 1861–1870. [Google Scholar] [CrossRef]
- Bationo, A.; Waswa, B.; Abdou, A.; Bado, B.; Bonzi, M.; Iwuafor, E.; Kibunja, C.; Kihara, J.; Mucheru, M.; Mugendi, D.; et al. Overview of Long-Term Experiments in Africa. In Lessons Learned from Long-Term Soil Fertility Management Experiments in Africa; Bationo, A., Waswa, B., Abdou, A., Bado, B.V., Bonzi, M., Sedogo, M., Iwuafor, E., Eds.; Springer Science: New York, NY, USA; London, UK, 2012; pp. 1–26. [Google Scholar] [CrossRef]
- Fornara, D.A.; Steinbeiss, S.; McNamara, N.P.; Gleixner, G.; Oakley, S.; Poulton, P.R.; Bardgett, R.D. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Glob. Change Biol. 2011, 17, 1925–1934. [Google Scholar] [CrossRef]
- Houot, S.; Chaussod, R.; Hounemenou, C.; Barriuso, E.; Bourgeois, S. Differences Induced in the Soil Organic Matter Characteristics and Microbial Activity by Various Management Practices in Long Term Field Experiments. Dev. Geochem. 1991, 6, 435–443. [Google Scholar] [CrossRef]
- Houot, S.; Chaussod, R. Impact of agricultural practices on the size and activity of the microbial biomass in a long-term field experiment. Biol. Fertil. Soils 1995, 19, 309–316. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Pieterse, C.M.J.; de Jonge, R.; Berendsen, R.L. The soil-Borne Legacy. Cell 2018, 172, 1178–1180. [Google Scholar] [CrossRef]
- Bakker, E.; Lanson, B.; Findling, N.; Wander, M.M.; Hubert, F. Mineralogical differences in a temperate cultivated soil arising from different agronomic processes and plant K-uptake. Geoderma 2019, 347, 210–219. [Google Scholar] [CrossRef]
- Flessa, H.; Ludwig, B.; Heil, B.; Merbach, W. The origin of soil organic C, dissolved organic C, and respiration in long-term maize experiment in Halle, Germany, determined by13Cnatural abundance. J. Plant Nutr. Soil Sci. 2000, 163, 157–163. [Google Scholar] [CrossRef]
- Merbach, W.; Deubel, A. Long-term field experiments–museum relics or scientific challenge? Plant Soil Environ. 2008, 54, 219–226. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Merbach, W.; Herbst, F.; Eibner, H.; Schmidt, L.; Deubel, A. Influence of different long-term mineral–organic fertilization on yield, nutrient balance and soil C and N contents of a sandy loess (Haplic Phaeozem) in middle Germany. Arch. Agron. Soil Sci. 2013, 59, 1059–1071. [Google Scholar] [CrossRef]
- Buyanovsky, G.A.; Brown, J.R.; Wagner, G.H. Soil organic matter dynamics in Sanborn Field (North America). NATO ASI Ser. 1996, 138, 295–296. [Google Scholar] [CrossRef]
- Miles, R.J.; Brown, J.R. The Sanborn Field Experiment: Implications for Long-Term Soil Organic Carbon Levels. Agron. J. 2011, 103, 268–278. [Google Scholar] [CrossRef]
- Christensen, B.T. The Askov long-term field experiments. Arch. Agron. Soil Sci. 1997, 42, 265–278. [Google Scholar] [CrossRef]
- Bruun, S.; Christensen, B.T.; Hansen, E.M.; Magid, J.; Jensen, L.S. Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments. Soil Biol. Biochem. 2003, 35, 67–76. [Google Scholar] [CrossRef]
- Šimanský, V.; Jonczak, J. Sorption capacity of sandy soil under long-term fertilization. Agric./Pol’nohospodárstvo 2019, 65, 164–171. [Google Scholar] [CrossRef]
- Stêpieñ, W.; Kobialka, M. Effect of long-term organic and mineral fertilization on selected physico-chemical soil properties in rye monoculture and five-year crop rotation. Soil Sci. Annu. 2019, 70, 34–38. [Google Scholar] [CrossRef]
- Yang, Z.; Singh, B.R.; Hansen, S.; Hu, Z.; Riley, H. Aggregate Associated Sulfur Fractions in Long-Term (>80 Years) Fertilized Soils. Soil Sci. Soc. Am. J. 2007, 71, 163–170. [Google Scholar] [CrossRef]
- Riley, H. Long-term fertilizer trials on loam soil at M⊘ystad, south-eastern Norway: Crop yields, nutrient balances and soil chemical analyses from 1983 to 2003. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2007, 57, 140–154. [Google Scholar] [CrossRef]
- Riley, H. Residual value of inorganic fertilizer and farmyard manure for crop yields and soil fertility after long-term use on a loam soil in Norway. Nutr. Cycl. Agroecosyst. 2016, 104, 25–37. [Google Scholar] [CrossRef]
- Nguyen-Sy, T.; Cheng, W.; Kimani, S.M.; Shiono, H.; Sugawara, R.; Tawaraya, K.; Watanabe, T.; Kumagai, K. Stable carbon isotope ratios of water-extractable organic carbon affected by application of rice straw and rice straw compost during a long-term rice experiment in Yamagata, Japan. Soil Sci. Plant Nutr. 2020, 66, 125–132. [Google Scholar] [CrossRef]
- Hejcman, M.; Kunzova, E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: Results from a long-term fertilizer and crop rotation experiment. Field Crops Res. 2010, 115, 191–199. [Google Scholar] [CrossRef]
- Simon, T.; Cerhanova, D.; Mikanova, O. The effect of site characteristics and farming practices on soil organic matter in long-term field experiments in the Czech Republic. Arch. Agron. Soil Sci. 2011, 57, 693–704. [Google Scholar] [CrossRef]
- Šrek, P.; Hejcman, M.; Kunzová, E. Effect of long-term cattle slurry and mineral N, P and K application on concentrations of N, P, K, Ca, Mg, As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in peeled potato tubers and peels. Plant Soil Environ. 2014, 58, 167–173. [Google Scholar] [CrossRef]
- Hisnikovský, L.; Kunzová, E.; Menšík, L. Winter wheat: Results of long-term fertilizer experiment in Prague-Ruzyně over the last 60 years. Plant Soil Environ. 2016, 62, 105–113. [Google Scholar] [CrossRef]
- KSLA. Success Stories of Agricultural Long-Term Experiments; KSLA: Uppsala, Sweden, 2007; ISBN 978-91-85205-61-5. [Google Scholar]
- Kätterer, T.; Bolinder, M.A.; Berglund, K.; Kirchmann, H. Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agric. Scand. Sect. A–Anim. Sci. 2012, 62, 181–198. [Google Scholar] [CrossRef]
- Morari, F.; Lugato, E.; Berti, A.; Giardini, L. Long-term effects of recommended management practices on soil carbon changes and sequestration in north-eastern Italy. Soil Use Manag. 2006, 22, 71–81. [Google Scholar] [CrossRef]
- Lugato, E.; Paustian, K.; Giardini, L. Modelling soil organic carbon dynamics in two long-term experiments of north-eastern Italy. Agric. Ecosyst. Environ. 2007, 120, 423–432. [Google Scholar] [CrossRef]
- Berti, A.; Morari, F.; DalFerro, N.; Simonetti, G.; Polese, R. Organic input quality is more important than its quantity: C turnover coefficients in different cropping systems. Eur. J. Agron. 2016, 77, 138–145. [Google Scholar] [CrossRef]
- Destain, J.P.; Raimond, Y.; Darcheville, M. The fertilizing value of slurry applied to arable crops and its residual effects in a long-term experiment. In Long Term Effect of Sewage Sludge and Slurries Application; Williams, J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; 248p. [Google Scholar]
- Johnston, A.E.; Poulton, P.R. The importance of long-term experiments in agriculture: Their management to ensure continued crop production and soil fertility; the Rothamsted experience. Eur. J. Soil Sci. 2018, 69, 113–125. [Google Scholar] [CrossRef]
- Kismányoky, T.; Tóth, Z. Effect of mineral and organic fertilization on soil organic carbon content as well as on grain production of cereals in the IOSDV (ILTE) long-term field experiment, Keszthely, Hungary. Arch. Agron. Soil Sci. 2013, 59, 1121–1131. [Google Scholar] [CrossRef]
- Jolánkai, M.; Tarnawa, Á.; Nyárai, H.F.; Szentpétery, Z.; Kassai, M.K. Agronomic benefits of long-term trials. J. Agric. Environ. Sci. 2018, 5, 27–30. [Google Scholar] [CrossRef]
- Šeremešić, S.; Ćirić, V.; Djalović, I.; Vasin, J.; Zeremski, T.; Siddique, K.H.M.; Farooq, M. Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch. Agron. Soil Sci. 2020, 66, 2055–2066. [Google Scholar] [CrossRef]
- Asrade, D.A.; Kulhánek, M.; Balík, J.; Černý, J.; Sedlář, O. Side effect of organic fertilizing on the phosphorus transformation and balance over 27 years of maize monoculture. Field Crops Res. 2023, 295, 108902. [Google Scholar] [CrossRef]
- Asrade, D.A.; Kulhánek, M.; Černý, J.; Sedlář, O.; Balík, J. Effects of long-term mineral fertilization on silage maize monoculture yield, phosphorus uptake and its dynamic in soil. Field Crops Res. 2022, 280, 108476. [Google Scholar] [CrossRef]
- Spiegel, H.; Dersch, G.; Baumgarten, A.; Hösch, J. The International Organic Nitrogen Long-term Fertilization Experiment (IOSDV) at Vienna after 21 years. Arch. Agron. Soil Sci. 2010, 56, 405–420. [Google Scholar] [CrossRef]
- Trajanov, A.; Spiege, H.; Debeljak, M.; Sandén, T. Using data mining techniques to model primary productivity from international long-term ecological research (ILTER) agricultural experiments in Austria. Reg. Environ. Chang. 2018, 19, 325–337. [Google Scholar] [CrossRef]
- Meng, L.; Ding, W.; Cai, Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, Z.; Zhong, L.; Zhao, F.; Zhang, J.; Lin, X. Balanced Fertilization Decreases Environmental Filtering on Soil Bacterial Community Assemblage in North China. Front. Microbiol. 2017, 8, 2376. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Çelik, I.; Günal, H.; Acar, M.; Acir, N.; Barut, Z.B.; Budak, M. Evaluating the long- term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use Manag. 2019, 36, 223–239. [Google Scholar] [CrossRef]
- Bassouny, M.; Chen, J. Effect of long-term organic and mineral fertilizer on physical properties in root zone of a clayey Ultisol. Arch. Agron. Soil Sci. 2016, 62, 819–828. [Google Scholar] [CrossRef]
- Khan, K.F. Application, principle and operation of ICP-OES in pharmaceutical analysis. J. Pharm. Innov. 2019, 8, 281–282. [Google Scholar]
- Galvão, E.S.; Santos, J.M.; Lima, A.T.; Reis, N.C.; Orlando, M.T.D.; Stuetz, R.M. Trands in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. Chemosphere 2018, 199, 546–568. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, K.; Kara, S.M.; Özkutlu, F.; Akgün, M.; Senkal, B.C. Profile of Heavy Metal and Nutrient Elements in some Sideritis Species. Indian J. Pharm. Educ. Res. 2017, 51, 209–212. [Google Scholar] [CrossRef]
- Barros, J.A.V.A.; de Souza, P.F.; Schiavo, D.; Nóbrega, A. Microwave-assisted digestion using diluted acid and base solutions for plant analysis by ICP OES. J. Anal. At. Spectrom. 2016, 31, 337. [Google Scholar] [CrossRef]
- Kulhánek, M.; Černý, J.; Balík, J.; Sedlář, O.; Suran, P. Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ. 2018, 64, 455–462. [Google Scholar] [CrossRef]
- Warrender, C.M.; Warrender, G.W.; Smith, B.; McKenzie, C.; Gilbert, R.G. Accelerated testing of nutrient release rates from fertiliser granules. Aust. J. Soil Res. 2010, 48, 668–673. [Google Scholar] [CrossRef]
- Kanwar, L.S.; Kurella, S.; Chaudhuy, S.; Wani, S.P. Comparative Evaluation of Inductively Coupled Plasma-Optical Emission Spectrometry and Colorimetry for Determining Phosphorus in Grain Samples. Commun. Soil Sci. Plant Anal. 2016, 47, 818–821. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Slimani, Y.; Alshammari, T.; Tombuloglu, G.; Almessiere, M.; Baykal, A.; Ercan, I.; Ozcelik, S.; Demirci, T. Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4. Magnetic Nanoparticle Treatment. J. Soil Sci. Plant Nutr. 2019, 20, 357–366. [Google Scholar] [CrossRef]
- Perring, L.; Andrey, D. Multi-elemental ED-XRF Determination in Dehydrated Bouillon and Sauce Base Products. Food Anal. Methods 2018, 11, 148–160. [Google Scholar] [CrossRef]
- Barberá, R.; Farré, R.; Lagarda, M.J. Copper: Properties and Determination. In Encyclopedia of Food and Nutrition, 2nd ed.; Caballero, B., Finglas, P., Toldra, F., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 1634–1639. [Google Scholar]
- Zhang, X.; Cresswell, M. Inorganic Controlled Release Technology; Butterworth–Heinemann: Oxford, UK, 2016; pp. 57–91. [Google Scholar] [CrossRef]
- Singh, A.K. Engineered Nanoparticles; Structure, Properties and Mechanisms of Toxicity; Elsevier Inc.: Waltham, MA, USA, 2016; pp. 125–170. [Google Scholar] [CrossRef]
- Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef]
- Parzych, S.; Kwiatkowski, P.; Asztemborska, M.; Ruzik, L. Evaluation of the content and bioaccessibility of selected metals from barely grass. Eur. Food Res. Technol. 2020, 246, 1251–1257. [Google Scholar] [CrossRef]
- Koelmel, J.; Amarasiriwardena, D. Imaging of metal bioaccumulation in Hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablatioan ICP-MS. Environ. Pollut. 2012, 168, 62–70. [Google Scholar] [CrossRef]
- Guibourdenche, L.; Stevenson, R.; Pedneault, K.; Poirier, A.; Widory, D. Characterizing nutrient pathways in Quebec (Canada) vineyards: Insight from stable and radiogenic strontium isotopes. Chem. Geol. 2020, 532, 119375. [Google Scholar] [CrossRef]
- Górecka, H.; Chojnacka, K.; Górecki, H. The application of ICP-MS and ICP-OES in determination of micronutrients in wood ashes used as soil conditioners. Talanta 2006, 70, 950–956. [Google Scholar] [CrossRef] [PubMed]
- von Blanckenburg, F.; von Wirén, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D. Fractionation of metal stable isotopes by higher plants. Elements 2009, 5, 375–380. [Google Scholar] [CrossRef]
- Pravallika, S. Gas Chromatography a Mini Review. J. Pharm. Anal. 2016, 5, 55–62. [Google Scholar]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Cai, Z.; Ouyang, F.; Su, J.; Zhang, X.; Liu, C.; Xiao, Y.; Zhang, J.; Ge, F. Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri. Biol. Control. 2020, 143, 104189. [Google Scholar] [CrossRef]
- Stierlin, É.; Michel, T.; Fernandez, X. Field analyses of lavender volatile organic compounds: Performance evaluation of a portable gas chromatography-mass spectrometry device. Phytochem. Anal. 2020, 1–8. [Google Scholar] [CrossRef]
- Nahar, L.; Guo, M.; Sarker, S.D. Gas chromatographic analysis of naturally occurring cannabinoids: A review of literature published during the past decade. Phytochem. Anal. 2020, 31, 778–785. [Google Scholar] [CrossRef]
- Sifatullah, K.M.; Semra, T.G. Study of Pesticide Contamination in Soil, Water and Produce Using Gas Chromatography Mass Spectrometry. J. Anal. Bioanal. Tech. 2018, 9, 409. [Google Scholar] [CrossRef]
- Chormey, D.S.; Ayyildiz, F.M.; Bakirdere, S. Feasibility studies on the uptake and bioaccessibility of pesticides, hormones and endocrine disruptive compounds in plants, and simulation of gastric and intestinal conditions. Microchem. J. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Mohan, H.; Lim, J.M.; Lee, S.W.; Cho, M.; Park, Y.J.; Seralathan, K.K.; Oh, B.-T. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system. Chemosphere 2020, 249, 126083. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Zhang, J.L.; Nie, X.F.; Zhang, P.; Yan, X.Q.; Fu, K.F. Simultaneous Determination of 11 Preservatives in Cosmetics and Pharmaceuticals by Matrix Solid-phase Dispersion Coupled with Gas Chromatography. Acta Chromatogr. 2019, 32, 203–209. [Google Scholar] [CrossRef]
- Davey, E.; Wigand, C.; Johnson, R.; Sundberg, K.; Morris, J.; Roman, C.T. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in matsh soils. Ecol. Appl. 2011, 21, 2156–2171. [Google Scholar] [CrossRef] [PubMed]
- Taina, I.A.; Heck, R.J.; Elliot, T.R. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 2008, 88, 1–20. [Google Scholar] [CrossRef]
- Gribbe, S.; Blume-Werry, G.; Couwenberg, J. Digital, Three-Dimensional Visualization of Root Systems in Peat. Soil Syst. 2020, 4, 13. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Sturrock, C.; Mairhofer, S.; Craigon, J.; Mooney, S.J. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 2012, 110, 511–519. [Google Scholar] [CrossRef]
- Garbout, A.; Munkholm, L.J.; Hansen, S.B.; Petersen, B.M.; Munk, O.L.; Pajor, R. The use of PET/CT scanning technique for 3D visualization and quantification of real-time soil/plant interactions. Plant Soil 2012, 352, 113–127. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, S.H.; Aylmore, L.A.G. Computed tomographic evaluation of osmotica on shrinkage and recovery of lupin (Lupinus angustifolius L.) and radish (Raphanus sativus L.) roots. Environ. Exp. Bot. 2007, 59, 334–339. [Google Scholar] [CrossRef]
- Mooney, S.J. Three-dimensional visualization and quantification of soil macroporosity and water flow patters using computed tomography. Soil Use Manag. 2002, 18, 142–151. [Google Scholar] [CrossRef]
- Al-Raoush, R.; Papadopoulos, A. representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol. 2010, 200, 69–77. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Q.; Zheng, H.; Wei, D.; Li, Z.; Gao, L. Three-dimensional particle shape characterizations from half particle geometries. Powder Technol. 2020, 367, 122–132. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Y.; Liu, X.; Feng, Z.; Zhu, H.; Yao, Q. Soil Bacterial Function Associated with Stylo (Legume) and Bahigrass (Grass) Is Affected More Strongly by Soil Chemical Property Than by Bacterial Community Composition. Front. Microbiol. 2019, 10, 798. [Google Scholar] [CrossRef]
- Mooney, S.J.; Morris, C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray Computed Tomography. Catena 2008, 73, 204–211. [Google Scholar] [CrossRef]
- Schlüter, S.; Albrecht, L.; Schwärzel, K.; Kreselmeier, J. Long-term effects of conventional tillgae and no-tillage on saturated and near-saturated hydraulic conductivity—Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma 2020, 361, 114082. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Li, S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 2010, 393, 53–64. [Google Scholar] [CrossRef]
- Pires, L.F.; Auler, A.C.; Roque, W.L.; Mooney, S.J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 2020, 362, 114103. [Google Scholar] [CrossRef]
- Pálsdóttir, A.M.; Alsanius, B.M.; Johannesson, V.; Ask, A. Prospect of non-destructive analysis of root growth and geometry using computerised tomography (CT X-ray). Acta Hortic. 2008, 779, 155–159. [Google Scholar] [CrossRef]
- Flavel, R.J.; Guppy, C.N.; Tighe, M.; Watt, M.; McNeill, A.; Young, I.M. Non-destructive quantification of cereal roots in soil using high-resolution X-ray tomography. J. Exp. Bot. 2012, 63, 2503–2511. [Google Scholar] [CrossRef]
- Perret, J.S.; Al-Belushi, M.E.; Deadman, M. Non-destructive visualization and quantification of roots using computed tomography. Soil Biol. Biochem. 2007, 39, 391–399. [Google Scholar] [CrossRef]
- Blais, K.E. Measurement of Physical and Hydraulic Properties of Organic Soil Using Computed Tomography Imagery. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2005; 174p. [Google Scholar]
- Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Grth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods 2015, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Zappala, S.; Mairhofer, S.; Tracy, S.; Sturrock, C.J.; Bennett, M.; Pridmore, T.; Mooney, S.J. Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography. Plant Soil 2013, 370, 35–45. [Google Scholar] [CrossRef]
- Grünauer, F.; Schillinger, B.; Steichele, E. Optimization of the beam geometry for the cold neutron tomography facility at the new neutron source in Munich. Appl. Radiat. Isot. 2004, 61, 479–485. [Google Scholar] [CrossRef]
- Sutton, D. Tomographic techniques for the study of exceptionally preserved fossils. Proc. R. Soc. B Biol. Sci. 2008, 275, 1587–1593. [Google Scholar] [CrossRef]
- Mawodza, T.; Burce, G.; Casson, S.; Menon, M. Wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography. Geoderma 2020, 359, 113988. [Google Scholar] [CrossRef]
- Moradi, A.B.; Conesa, H.M.; Robinson, B.; Lehmann, E.; Kuehne, G.; Kaestner, A.; Oswald, S.; Schulin, R. Neutron radiography as a tool for revealing root development in soil: Capabilities and limitations. Plant Soil 2009, 318, 243–255. [Google Scholar] [CrossRef]
- Zarebanadkouki, M.; Carminati, A.; Kaestner, A.; Mannes, D.; Morgano, M.; Peetermans, S.; Lehmann, E.; Trtik, P. On-the-fly neutron tomography of water transport into lupine roots. Phys. Procedia 2015, 69, 292–298. [Google Scholar] [CrossRef]
- Raichle, M.E. Positron emission tomography. Ann. Rev. Neurosci. 1983, 6, 249–267. [Google Scholar] [CrossRef]
- Raichle, M.E. A brief history of human brain mapping. Trends Neurosci. 2009, 32, 118–126. [Google Scholar] [CrossRef]
- Vallabhajosula, S.; Solnes, L.; Vallabhajosula, B. Tomography Radiopharmaceuticals and Clinical Applications: What is New? Semin. Nucl. Med. 2011, 41, 246–264. [Google Scholar] [CrossRef]
- Converse, A.K.; Ahlers, E.O.; Bryan, T.W.; Bryan, T.W.; Hetue, J.D.; Lake, K.A.; Ellison, P.A.; Engle, J.W.; Barnhart, T.E.; Nickles, R.J.; et al. mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration. Plant Methods 2015, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.D.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essential Cell Biology, 4th ed.; Garland Science: New York, NY, USA, 2013; 864p. [Google Scholar]
- Hubeau, M.; Steppe, K. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning. Trends Plant Sci. 2015, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Knoblauch, M.; Peters, W.S. Münch, morphology, microfluidics—Our structural problem with phloem. Plant Cell Environ. 2010, 33, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.V. Phloem: The long and the short of it. Trends Plant Sci. 2006, 11, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Sevanto, S. Phloem transport and drought. J. Exp. Bot. 2014, 65, 1751–1759. [Google Scholar] [CrossRef]
- Ohya, T.; Tanoi, K.; Hamada, Y.; Okabe, H.; Rai, H.; Hojo, J.; Suzuki, K.; Nakanishi, T.M. An analysis of Long-Distance Water Transport in the Soybean Stem Using H215O. Plant Cell Physiol. 2008, 49, 718–729. [Google Scholar] [CrossRef] [PubMed]
- DeSchepper, V.; Bühler, J.; Thorpe, M.; Roeb, G.; Huber, G.; van Dusschoten, D.; Jahnke, S.; Steppe, K. 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front. Plant Sci. 2013, 4, 200. [Google Scholar] [CrossRef]
- Steppe, K.; Cochard, H.; Lacointe, A.; Améglio, T. Could rapid diameter changes be facilitated by a variable hydraulic conductance. Plant Cell Environ. 2012, 35, 150–157. [Google Scholar] [CrossRef]
- Wang, Q.; Mathews, A.J.; Li, J.; Wen, J.; Komarov, S.; O’Sullivan, J.A.; Tai, Y.-C. A dedicated high-resolution PET imager for plant sciences. Phys. Med. Biol. 2014, 59, 19. [Google Scholar] [CrossRef]
- Kikuchi, K.; Ishii, S.; Fujimaki, S.; Suzui, N.; Matsuhashi, S.; Honda, I.; Shishido, Y.; Kawachi, N. Real-time Analysis of Photoassimilate Translocation in Intact Eggplant Frueit using 11CO2 and a Positron-emitting Tracer Imaging System. J. Jpn. Soc. Hortic. Sci. 2008, 77, 199–205. [Google Scholar] [CrossRef]
- Kawachi, N.; Kikuchi, K.; Suzui, N.; Ishii, S.; Fujimaki, S.; Ishioka, N.S.; Watabe, H. Imaging of Carbon translocation to Fruit Using Carbon-11-Labeled Carbon Dioxide and Positron Emission Tomography. IEE Trans. Nucl. Sci. 2011, 58, 395–399. [Google Scholar] [CrossRef]
- Kurita, K.; Miyoshi, Y.; Nagao, Y.; Yamaguchi, M.; Suzui, N.; Yin, Y.-G.; Ishii, S.; Kawachi, N.; Hidaka, K.; Yoshida, E.; et al. Fruit PET: 3-D imaging of carbon distribution in fruit using OpenPET. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161843. [Google Scholar] [CrossRef]
- Ariňo-Estrada, G.; Mitchell, G.S.; Saha, P.; Arzani, A.; Cherry, S.R.; Blumwald, E.; Kyme, A.Z. Imaging Salt Uptake Dynamics in Plants Using PET. Sci. Rep. 2019, 9, 18626. [Google Scholar] [CrossRef] [PubMed]
- Mary, B.; Peruzzo, L.; Boaga, J.; Genni, N.; Schmutz, M.; Wu, Y.; Hubbard, S.S.; Cassiani, G. Time-lapse monitoring of root water uptake using electrical resistivity tomography and mise- à-la-masse: A vineyard infiltration experiment. Soil 2020, 6, 95–114. [Google Scholar] [CrossRef]
- Weigand, M.; Kemma, A. Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements. Plant Soil 2019, 435, 201–224. [Google Scholar] [CrossRef]
- Corona-Lopez, D.D.J.; Sommer, S.; Rolfe, S.A.; Podd, F.; Grieve, B.D. Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods 2019, 15, 49. [Google Scholar] [CrossRef]
- Hoult, D.I.; Bhakar, B. NMR Signal Reception: Virtual Photons and Coherent Spontaneous Emission. Concept. Magn. Reson. 1997, 9, 277–297. [Google Scholar] [CrossRef]
- Metzner, R.; van Dusschoten, D.; Bühler, J.; Schurr, U.; Jahnke, S. Belowground plant development measured with magnetic resonance imaging (MRI): Exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Front. Plant Sci. 2014, 5, 469. [Google Scholar] [CrossRef]
- Windt, W.C.; Vergeldt, F.J.; De Jager, P.A.; Van As, H. MRI of long-distance water transport: A comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 2006, 29, 1715–1729. [Google Scholar] [CrossRef]
- Sardans, J.; Peňulas, J.; Lope-Piedrafita, S. Changes in water content and distribution in Quercus ilex leaves during progressive drought assessed by in vivo 1H magnetic resonance imaging. BMC Plant Biol. 2010, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Jakusch, P.; Kocsis, T.; Székely, I.K.; Hatvani, I.G. The application of magnetic resonance imaging (MRI) to the examination of plant tissues and water barriers. Acta Biol. Hung. 2018, 69, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, L.; Rolletschek, H.; Neuberger, T. Nuclear magnetic resonance imaging of lipid in living plants. Prog. Lipid Res. 2013, 52, 465–487. [Google Scholar] [CrossRef] [PubMed]
- Munz, E.; Jakob, P.M.; Borisjuk, L. The potential of nuclear magnetic resonance to track lipids in planta. Biochimie 2016, 130, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.; Menzel, M.I.; van Dusschoten, D.; Roeb, G.W.; Bühler, J.; Minwuyelet, S.; Blümler, P.; Temperton, V.M.; Hombach, T.; Streun, M.; et al. Combined MRI–PET dissects dynamic changes in plant structures and functions. Plant J. 2009, 59, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, P.; Cozzolino, V.; Piccolo, A. High-Resolution Magic.Angle: Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi. J. Agric. Food Chem. 2018, 66, 2580–2588. [Google Scholar] [CrossRef] [PubMed]
- Hillnhütter, C.; Sikora, R.A.; Oerke, E.C.; van Dusschoten, D. Nuclear magnetic resonance: A tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet. J. Exp. Bot. 2012, 63, 319–327. [Google Scholar] [CrossRef] [PubMed]
- van Dusschoten, D.; Metzner, R.; Kochs, J.; Postma, J.A.; Pflugfelder, D.; Bühler, J.; Schurr, U.; Jahnke, S. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging. Plant Physiol. 2018, 170, 1176–1188. [Google Scholar] [CrossRef]
- Popova, L.; van Dusschoten, D.; Nagel, K.A.; Fiorani, F.; Mazzolai, B. Plant root turtuosity: An indicator of root path formation in soil with different composition and density. Ann. Bot. 2016, 118, 685–698. [Google Scholar] [CrossRef]
- Gruwel, M.L.H. In Situ Magnetic Resonance Imaging of Plant Roots. Vadose Zone J. 2014, 13, 1–8. [Google Scholar] [CrossRef]
- Tomotsune, M.; Yoshitake, S.; Masuda, R.; Koizumi, H. Preliminary observations of soil organic layers using a compact MRI for non-destructive analysis of internal soil structure. Ecol. Res. 2015, 30, 303–310. [Google Scholar] [CrossRef]
- Bamrah, R.K.; Vijayan, P.; Karunakaran, C.; Muir, D.; Hallin, E.; Goetz, B.; Nickerson, M.; Tanino, K.; Warkentin, T.D. Evaluation of X-ray Fluorescence Spectroscopy as a Tool for Nutrient Analysis of Pea Seeds. Crop Sci. 2019, 59, 2689–2700. [Google Scholar] [CrossRef]
- Kalpna, D.R.; Kaneria, M.J. Multielement Analysis Using ED-XRF and ICP-MS from Couroupita guianensis for Sustainable Agriculture by Soil Reclamation. In Environmental Concerns and Sustainable Development; Shukla, V., Kumar, N., Eds.; Springer Nature: Singapore; Lucknow, India, 2020; Volume 2, pp. 325–337. [Google Scholar] [CrossRef]
- Jagadeesha, B.G.; Narayana, Y.; Sudashan, M.; Banerjee, S. Studies on uptake and retention of trace elements by medicinal plants in the environs of Hassan of South India. Radiat. Phys. Chem. 2018, 144, 317–321. [Google Scholar] [CrossRef]
- Iftode, S.; Huzum, R.; Sirbu-Radasanu, D.S.; Buzgar, N.; Iancu, G.B.; Buzatu, A. Geochemical distribution of selected trace elements in the soil-plant system from Manaila mining area, Romania. Analele Stiintifice Ale Univ. “Al. I. Cuza” Din Iasi Ser. Geol. 2015, 31, 21–31. [Google Scholar]
- Swain, S.S.; Ray, D.K.; Chang, P.K. ED-XRF spektrometry-based trace element composition of genetically engineered rhizoclones vis-á-vis natural roots of a multi-medicinal plant, butterfly pea (Clitoria ternatea L.). J. Radioanal. Nucl. Chem. 2012, 293, 443–453. [Google Scholar] [CrossRef]
- Anonymous. How to feed a hungry world. Nature 2010, 466, 531–532. [Google Scholar] [CrossRef]
- Cassidy, S.T.; Burr, A.A.; Reeb, R.A.; Pardo, A.L.M.; Woods, K.D.; Wood, C.W. using clear plastic CD cases as low-cost mini-rhizotrons to phenotype root traits. Appl. Plant Sci. 2020, 8, e11340. [Google Scholar] [CrossRef]
- You, J.; Hu, Y.; Wang, C. Application of seed germination pouch for culture and initial resistance screening for the soybean cyst nematode Heterodera glycines. Nematology 2018, 20, 905–909. [Google Scholar] [CrossRef]
- Martins, S.M.; de Brito, G.G.; Gonçalves, W.C.; Tripode, B.M.D.; Lartaud, M.; Duarte, J.B.; Morello, C.d.L.; Giband, M. PhenoRoots: An inexpensive non-invasive phenotyping system to assess the variability of the root system architecture. Sci. Agric. 2020, 77, e20180420. [Google Scholar] [CrossRef]
- Smith, A.G.; Petersen, J.; Selvan, R.; Rasmussen, C.R. Segmentation of roots in soil with U-Net. Plant Methods 2020, 16, 13. [Google Scholar] [CrossRef]
- Louvieaux, J.; Leclercq, A.; Haelterman, L.; Hermans, C. In-Field Observation of Root Growth and Nitrogen Uptake Efficiency of Winter Oilseed Rape. Agronomy 2020, 10, 105. [Google Scholar] [CrossRef]
- Potvin, L.R.; Lilleskov, E.A. Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands. Biol. Fertil. Soils 2017, 53, 187–198. [Google Scholar] [CrossRef]
- Hall, R.L.; Staal, L.B.; MacIntosh, K.A.; McGrath, J.W.; Bailey, J.; Black, L.; Nielsen, U.G.; Reitzel, K.; Williams, P.N. Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma 2020, 362, 114096. [Google Scholar] [CrossRef]
- Vieira, L.M.; Gomes, E.N.; Brown, T.A.; Constantino, C.; Zanette, F. Growth and quality of Brazilian pine tree seedlings as affected by container type and volume. Ornam. Hortic. 2019, 25, 276–286. [Google Scholar] [CrossRef]
- Okutani, F.; Hamato, S.; Aoki, Y.; Nakayasu, M.; Nihei, N.; Nishimura, T.; Yazaki, K.; Sugiyama, A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ. 2020, 43, 1036–1046. [Google Scholar] [CrossRef]
- Tao, Q.; Zhao, J.; Li, J.; Liu, Y.; Luo, J.; Yuan, S.; Li, B.; Li, Q.; Xu, Q.; Yu, X.; et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. J. Hazard. Mater. 2020, 383, 121177. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yang, M.; Chang, S.X.; Qi, J.; Tang, C.; Wen, Z.; Hong, Z.; Yang, T.; Ma, Z.; et al. Changes of microbial functional capacities in the rhizosphere contribute to aluminum tolerance by genotype-specific soybeans in acid soils. Biol. Fertil. Soils 2020, 56, 771–783. [Google Scholar] [CrossRef]
- Javed, M.T.; Akram, M.S.; Habib, N.; Tanwir, K.; Ali, Q.; Niazi, N.K.; Gul, H.; Iqbal, N. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environ. Sci. Pollut. Res. 2017, 25, 2958–2971. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Wang, X.M. Mesomechanics characteristics of soil reinforcement by plant roots. Bull. Eng. Geol. Environ. 2019, 78, 3719–3728. [Google Scholar] [CrossRef]
- Nassal, D.; Spohn, M.; Eltlbany, N.; Jacquiod, S.; Smalla, K.; Marhan, S.; Kandeler, E. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 2018, 427, 17–37. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Palta, J.; Whisson, K.; Peoples, M.B. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus and potassium interactions. J. Plant Nutr. Soil Sci. 2018, 181, 364–373. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Lowry, C.; Gaudin, A.C.M. An optimized Rhizobox Protocol to Visualize Root Growth and Responsiveness to Localized Nutrients. J. Vis. Exp. 2018, e58674. [Google Scholar] [CrossRef]
- Mašková, T.; Weiser, M. The roles of interspecific variability in seed mass and soil resource availability in root system development. Plant Soil 2019, 435, 395–406. [Google Scholar] [CrossRef]
- Herrmann, P.S.P.; Sydoruk, V.; Porto, F.N.M. Microwave Transmittance Technique Using Microstrip Patch Antennas, as a Non-Invasive Tool to Determine Soil Moisture in Rhizoboxes. Sensors 2020, 20, 1166. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Ginés, M.J.; Madejón, E.; Lehto, N.J.; McLenaghen, R.D.; Horswell, J.; Dickinson, N.; Robinson, B.H. Response of a Pioneering Species (Leptospermum scoparium J.R.Forst. and G.Forst) to heterogenity in a Low-Fertility Soil. Front. Plant Sci 2019, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Cal, A.; Liu, K.; Huang, J.; Wang, B.; Li, D.; Qaswar, M.; Feng, G.; Zhang, H. The links between potassium availability and soil exchange calcium, magnesium, aluminium are mediated by lime in acidic soil. J. Soils Sediments 2019, 19, 1382–1392. [Google Scholar] [CrossRef]
- Baldi, E.; Miotto, A.; Ceretta, C.A.; Quartieri, M.; Sorrenti, G.; Brunetto, G.; Toselli, M. Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Sci. Hortic. 2018, 227, 102–111. [Google Scholar] [CrossRef]
- Mašková, T.; Klimeš, A. The Effect of Rhizoboxes on Plant Growth and Root: Shoot Biomass Partitioning. Front. Plant Sci. 2020, 10, 1693. [Google Scholar] [CrossRef]
- Zhao, C.; Long, J.; Liao, H.; Zheng, C.; Li, J.; Liu, L.; Zhang, M. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, southwest China. Sci. Rep. 2019, 9, 2160. [Google Scholar] [CrossRef]
- Rath, K.M.; Murphy, D.N.; Rousk, J. The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biol. Biochem. 2019, 138, 107607. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Wang, C.; Xue, R.; Wang, L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Deltedesco, E.; Keiblinger, K.M.; Piepho, H.-P.; Antonielli, L.; Potsch, E.M.; Zechmeister-Boltenstern, S.; Gorfer, M. Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biol. Biochem. 2020, 142, 107704. [Google Scholar] [CrossRef]
- Plassart, P.; Prévost-Bouré, N.C.; Uroz, S.; Dequiedt, S.; Stone, D.; Creamer, R.; Griffiths, R.I.; Bailey, M.J.; Ranjard, L.; Lemanceau, P. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 2019, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, W.; Kang, X.; Cui, X.; Wang, Y.; Zhao, H.; Qian, X.; Hao, Y. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. J. Arid. Land 2019, 11, 97–110. [Google Scholar] [CrossRef]
- Holík, L.; Hlisnikovský, L.; Honzík, R.; Trögl, J.; Burdová, H.; Popelka, J. Soil Microbial Communities and Enzyme Activities after Long-Term Application of Inorganic and Organic Fertilizers at Different Depths of the Soil Profile. Sustainability 2019, 11, 3251. [Google Scholar] [CrossRef]
- Willers, C.; Jansen van Rensburg, P.J.; Claassens, S. Phospholipid fatty acid profiling of microbial communities—A review of interpretations and recent applications. J. Appl. Microbiol. 2015, 119, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Kandeler, E. Physiological and Biochemical Methods for Studying Soil Biota and Their Functions. In Soil Microbiology, Ecology and Biochemistry; Paul, E.A., Ed.; Elsevier: London, UK, 2015; pp. 187–222. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Zothansiami, C.; Thakuria, D. Effect of Burning, Cropping and Synthetic Microbial Community Inoculation on Soil Enzyme Activities in 5 Year Jhum Cycle. Int. J. Curr. Microbiol. Appl. Sci. 2019, 9, 2872–2884. [Google Scholar] [CrossRef]
- Sudhakaran, M.; Ramamoorthy, D.; Savitha, V.; Kirubakaran, N. Soil Enzyme Activities and Their Relationship with Soil Physico-Chemical Properties and Oxide Minerals in Coastal Agroecosystem of Puducherry. Geomicrobiol. J. 2019, 36, 452–459. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Chen, G.; Guo, J.; Li, Y. Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE 2020, 15, e0220599. [Google Scholar] [CrossRef]
- Kuzyakova, Y.; Razavia, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Aparna, K.; Dotaniya, C.K.; Singh, M.; Regar, K.L. Role of Soil Enzymes in Sustainable Crop Production. In Enzymes in Food Biotechnology: Production, Applications, and Future Prospects; Mohammed, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 569–589. [Google Scholar] [CrossRef]
- Avasilcai, L.; Bireescu, G.; Vieriu, M.; Bibire, N.; Crivoi, F.; Cioanca, O.; Morariu, I.-D. Study on the Enzymatic Activity of the Soil in Racos Protected Area from Brasov. Rev. Chim. 2020, 71, 358–366. [Google Scholar] [CrossRef]
- Micuti, M.-M.; Bădulescu, L.; Israel-Roming, F. A Review on the enzymatic indicators for monitoring soil quality. Sci. Bull. Ser. F Biotechnol. 2017, XXI, 223–228. [Google Scholar]
- Srinivasrao, C.; Grover, M.; Kundu, S.; Desai, S. Soil Enzymes. In Encyclopedia of Soil Science; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 2100–2107. [Google Scholar] [CrossRef]
- Mvila, B.G.; Pilar-Izquierdo, M.C.; Busto, M.D.; Perez-Mateos, M.; Ortega, N. Barley seed coating with urease and phosphatase to improve N and P uptake. Sci. Agric. 2019, 77, 1–9. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, X. Effect of repeated drying-rewetting cycles on soil extracellular enzyme activities and microbial community composition in arid and semi-arid ecosystems. Eur. J. Soil Biol. 2020, 98, 103187. [Google Scholar] [CrossRef]
- Shi, B.; Zhang, J.; Wang, C.; Ma, J.; Sun, W. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Sci. Rep. 2018, 8, 4543. [Google Scholar] [CrossRef]
- Puissant, J.; Jones, B.; Goodall, T.; Mang, D.; Blaud, A.; Gweon, H.S.; Malik, A.; Jones, D.L.; Clark, I.M.; Hirsch, P.R.; et al. The pH optimum of soil exoenzymes adapt to long term changes in soil pH. Soil Biol. Biochem. 2019, 138, 107601. [Google Scholar] [CrossRef]
- Yao, X.H.; Min, H.; Lu, Z.H.; Yuan, H.P. Influence of acetamiprid on soil enzymatic activities and respiration. Eur. J. Soil Biol. 2006, 42, 120–126. [Google Scholar] [CrossRef]
- Schneider, K.; Turrión, M.B.; Gallardo, J.F. Modified method for measuring acid phosphatase activities in forest soils with high organic matter content. Commun. Soil Sci. Plant Anal. 2000, 31, 3077–3088. [Google Scholar] [CrossRef]
- Thalmann, A. Zur Metodik der Bestimmung der De-hydrogenaseaktivität im Boden mittels Triphenyltetrazo-liumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. (In German) [Google Scholar]
- Szulc, P.; Bocianowski, J. Quantitative relationships between dry matter production and N, P, K and Mg contents, and plant nutrition indices, depending on maize hybrids (Zea mays L.). Fresenius Environ. Bull. 2012, 21, 1740–1751. [Google Scholar]
- Divito, G.A.; Echeverria, H.E.; Andrade, F.H.; Sadras, V.O. N and S concentration and stoichiometry in soybean during vegetative growth: Dynamics of indices for diagnosing the S status. Field Crops Res. 2016, 198, 140–147. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Camberato, J.J.; Murrell, S.T.; Vyn, T.J. Maize nutrient accumulation and partitioning in response to plant density and nitrogen rate: I. Macronutrients. Agron. J. 2013, 105, 783–795. [Google Scholar] [CrossRef]
- Cadot, S.; Belanger, G.; Ziadi, N.; Morel, C.; Sinaj, S. Critical plant and soil phosphorus for wheat, maize, and rapeseed after 44 years of P fertilization. Nutr. Cycl. Agroecosys. 2018, 112, 417–433. [Google Scholar] [CrossRef]
- Belanger, G.; Ziadi, N.; Pageau, D.; Grant, C.; Hognasbacka, M.; Virkajarvi, P.; Hu, Z.; Lu, J.; Lafond, J.; Nyiraneza, J. A Model of critical phosphorus concentration in the shoot biomass of wheat. Agron. J. 2015, 107, 963–970. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S. Evaluation of critical nitrogen and phosphorus models for maize under full and limited irrigation conditions. Ital. J. Agron. 2018, 13, 80–92. [Google Scholar] [CrossRef]
- Belanger, G.; Claessens, A.; Ziadi, N. Relationship between P and N concentrations in maize and wheat leaves. Field Crops Res. 2011, 123, 28–37. [Google Scholar] [CrossRef]
- Sadras, V.O.; Lemaire, G. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res. 2014, 164, 54–64. [Google Scholar] [CrossRef]
- Zamuner, E.C.; Lloveras, J.; Echeverria, H.E. Use of a critical phosphorus dilution curve to improve potato crop nutritional management. Am. J. Potato Res. 2016, 93, 392–403. [Google Scholar] [CrossRef]
- Sedlář, O.; Balík, J.; Kulhánek, M.; Černý, J.; Suran, P. Sulphur nutrition index in relation to nitrogen uptake and quality of winter wheat grain. Chil. J. Agric. Res. 2019, 79, 486–492. [Google Scholar] [CrossRef]
- Lemaire, G.; Sinclair, T.; Sadras, V.; Belanger, G. Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agron. Sustain. Dev. 2019, 39, 27. [Google Scholar] [CrossRef]
- Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter-wheat crops. Ann. Bot. 1994, 74, 397–407. [Google Scholar] [CrossRef]
- Gomez, M.I.; Magnitskiy, S.; Rodriguez, L.E. Critical dilution curves for nitrogen, phosphorus, and potassium in potato group Andigenum. Agron. J. 2019, 111, 419–427. [Google Scholar] [CrossRef]
- Neuhaus, A.; Sadras, V.O. Relationship between rainfall-adjusted nitrogen nutrition index and yield of wheat in Western Australia. J. Plant Nutr. 2018, 41, 2637–2643. [Google Scholar] [CrossRef]
- Dordas, C. Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.). J. Plant Nutr. 2017, 40, 1190–1203. [Google Scholar] [CrossRef]
- Sedlář, O.; Balík, J.; Černý, J.; Kulhánek, M.; Vašák, F. Relation between nitrogen nutrition index and production of spring malting barley. Int. J. Plant Prod. 2017, 11, 379–388. [Google Scholar] [CrossRef]
- Blackwell, M.; Darch, T.; Haslam, R. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Front. Agric. Sci. Eng. 2019, 6, 332–340. [Google Scholar] [CrossRef]
- Balík, J.; Černý, J.; Kulhánek, M.; Sedlář, O.; Suran, P. Balance of potassium in two long-term field experiments with different fertilization treatments. Plant Soil Environ. 2019, 65, 225–232. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarin, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Skwierawska, M.; Benedycka, Z.; Jankowski, K.; Skwierawski, A. Sulphur as a fertiliser component determining crop yield and quality. J. Elem. 2016, 21, 609–623. [Google Scholar] [CrossRef]
- Ziadi, N.; Belanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A. Relationship between phosphorus and nitrogen concentrations in spring wheat. Agron. J. 2008, 100, 80–86. [Google Scholar] [CrossRef]
- Liebisch, F.; Bunemann, E.K.; Huguenin-Elie, O.; Jeangros, B.; Frossard, E.; Oberson, A. Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur. J. Agron. 2013, 4, 67–77. [Google Scholar] [CrossRef]
- Soratto, R.P.; Sandana, P.; Fernandes, A.M.; Martins, J.D.L.; Job, A.L.G. Testing critical phosphorus dilution curves for potato cropped in tropical Oxisols of southeastern Brazil. Eur. J. Agron. 2020, 115, 126020. [Google Scholar] [CrossRef]
- Sedlář, O.; Balík, J.; Kulhánek, M.; Černý, J.; Kos, M. Mehlich 3 extractant used for evaluation of wheat available phosphorus and zinc in calcareous soils. Plant Soil Environ. 2018, 64, 53–57. [Google Scholar] [CrossRef]
- Hejcman, M.; Száková, J.; Schellberg, J.; Tlustoš, P. The Rengen Grassland Experiment: Relationship between soil and biomass chemical properties, amount of elements applied, and their uptake. Plant Soil 2010, 333, 163–179. [Google Scholar] [CrossRef]
- Jouany, C.; Cruz, P.; Theau, J.P.; Petibon, P.; Foucras, J.; Duru, M. Diagnosis of the phosphate and the potash status of natural grasslands containing legumes (Diagnostic du statut de nutrition phosphatée et potassique des prairies naturelles en présence de légumineuses). Fourrages 2005, 184, 547–555. [Google Scholar]
- Garnier, E.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Fortunel, C.; Freitas, H.; Golodets, C.; et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 2007, 99, 967–985. [Google Scholar] [CrossRef]
- Ziadi, N.; Belanger, G.; Cambouris, A.N.; Tremblay, N.; Nolin, M.C.; Claessens, A. Relationship between P and N concentrations in corn. Agron. J. 2007, 99, 833–841. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Luna, E.; Jouany, C.; Castaneda, C. Soil composition and plant nutrients at the interface between crops and saline wetlands in arid environments in NE Spain. Catena 2019, 173, 384–393. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Wyngaard, N.; Calvo, N.I.R.; Pagani, A.; Divito, G.A.; Echeverria, H.E.; Ciampitti, I.A. Critical sulfur dilution curve and sulfur nutrition index in maize. Agron. J. 2019, 111, 448–456. [Google Scholar] [CrossRef]
- Cruz, P.; Jouany, C.; Theau, J.P.; Petibon, P.; Lecloux, E.; Duru, M. Utilization of the nitrogen nutrition index in natural pastures containing legumes (L’utilisation de l’indice de nutrition azotée en prairies naturelles avec présence de légumineuses). Fourrages 2006, 187, 369–376. [Google Scholar]
- Ferreira, G.; Ernst, O. Diagnosis of the nutritional status of rapeseed crop (Brassica napus) based on nitrogen and sulfur dilution curves. Agrociencia Urug. 2014, 18, 65–74. [Google Scholar]
- Reussi, N.; Echeverria, H.E.; Rozas, H.S. Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. J. Plant Nutr. 2012, 35, 990–1003. [Google Scholar] [CrossRef]
- Belanger, G.; Ziadi, N. Phosphorus and nitrogen relationships during spring growth of an aging timothy sward. Agron. J. 2008, 100, 1757–1762. [Google Scholar] [CrossRef]
- Salette, J.; Huche, L. Diagnosis of the mineral nutrition status of a pasture through herbage analysis: Principles, implementation, examples (Diagnostic de l’état de nutrition minérale d’une prairie par l’analyse du vegetal: Principes, mise en oeuvre, exemples). Fourrages 1991, 125, 3–18. [Google Scholar]
- Duru, M.; Ducrocq, H. A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr. Cycl. Agroecosys. 1997, 47, 59–69. [Google Scholar] [CrossRef]
- Belanger, G.; Ziadi, N.; Lajeunesse, J.; Jouany, C.; Virkajarvi, P.; Sinaj, S.; Nyiraneza, J. Shoot growth and phosphorus-nitrogen relationship of grassland swards in response to mineral phosphorus fertilization. Field Crops Res. 2017, 204, 31–41. [Google Scholar] [CrossRef]
- Cogo, C.M.; Andriolo, J.L.; Bisognin, D.A.; Godoi, R.D.; Bortolotto, O.C.; da Luz, G.L. Nitrogen-potassium relationship for diagnosis of plant nutritional status and fertilization of the potato crop. Pesqui. Agropecu. Bras. 2006, 4, 1781–1786. [Google Scholar] [CrossRef]
- Belanger, G.; Ziadi, N.; Pageau, D.; Grant, C.; Lafond, J.; Nyiraneza, J. Shoot growth, phosphorus-nitrogen relationships, and yield of canola in response to mineral phosphorus fertilization. Agron. J. 2015, 107, 1458–1464. [Google Scholar] [CrossRef]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef]
- Lynch, J.P. Roots of the second green revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Parihar, M.; Meena, V.S.; Mishra, P.K.; Rakshit, A.; Choudhary, M.; Yadav, R.P.; Rana, K.; Bisht, J.K. Arbuscular mycorrhiza: A viable strategy for soil nutrient loss reduction. Arch. Microbiol. 2019, 201, 723–735. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Postma, J.; Lynch, J.P. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann. Bot. 2010, 107, 829–841. [Google Scholar] [CrossRef]
- Shen, Y.F.; Zhang, Y.; Li, S.Q. Nutrient effects on diurnal variation and magnitude of hydraulic lift in winter wheat. Agric. Water Manag. 2011, 98, 1589–1594. [Google Scholar] [CrossRef]
- Cordell, D.; Drangerta, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Ghannoum, O.; Paul, M.J.; Ward, J.L.; Beale, M.H.; Corol, D.I.; Conroy, J.P. The sensitivity of photosynthesis to phosphorus deficiency differs between C3 and C4 tropical grasses. Funct. Plant Biol. 2008, 35, 213–221. [Google Scholar] [CrossRef]
- Bingham, F.T.C. 23. Phosphorus. In Diagnostic Criteria for Plants and Soils; Chapman, H.D., Ed.; University of California: Berkeley, CA, USA, 1996; pp. 324–361. [Google Scholar]
- Sylvester-Bradley, R.; Berry, P.; Blake, J.; Kindred, D.; Spink, J.; Bingham, I.; McVittie, J.; Foulkes, J. The Wheat Growth Guide, 2nd ed.; Home-Grown Cereals Authority: London, UK, 2008; 32p. [Google Scholar]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef]
- Veneklaas, E.J.; Lambers, H.; Bragg, J.; Finnegan, P.M.; Lovelock, C.E. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 2012, 195, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Oleksyn, J.; Wright, I.J.; Niklas, K.J.; Hedin, L.; Elser, J.J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. Biol. Sci. 2010, 277, 877–883. [Google Scholar] [CrossRef]
- Nadeem, M.; Mollier, A.; Morel, C.; Vives, A.; Pruud’homme, L.; Pellerin, S. Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant Soil 2011, 346, 231–244. [Google Scholar] [CrossRef]
- Landoni, M.; Badone, F.C.; Haman, N.; Schiraldi, A.; Fessas, D.; Cesari, V.; Toschi, I.; Cremona, R.; Delogu, C.; Villa, D.; et al. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. J. Agric. Food Chem. 2013, 61, 4622–4630. [Google Scholar] [CrossRef]
- White, P.J.; Veneklaas, E.J. Nature and nurture: The importance of seed phosphorus content. Plant Soil 2012, 357, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Shen, J.; Liao, H. Acquisition or utilisation, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci. 2010, 179, 302–306. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets−iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Wang, X.; Sun, X.; Ding, Y.; Cao, W.; Hu, Z. Progress and development on biological information of crop phenotype research applied to real-time variable-rate fertilization. Plant Methods 2020, 16, 11. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty-five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Späti, K.; Huber, R.; Finger, R. Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecol. Econ. 2021, 185, 107047. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Sarker, A.; Shearer, S.A.; Shaheb, M.R.; Sarker, A.; Shearer, S.A. Precision Agriculture for Sustainable Soil and Crop Management; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Haneklaus, S.; Schnug, E. Decision-making strategies for the variable-rate application of compound fertilizers. Commun. Soil Sci. Plant Anal. 2000, 31, 1863–1873. [Google Scholar] [CrossRef]
- USDA. Precision Agricultural Technologies and Factors Affecting Their Adoption. 2016. Available online: https://www.ers.usda.gov/amber-waves/2016/december/precision-agriculture-technologies-and-factors-affecting-their-adoption/ (accessed on 18 June 2023).
- Abu bakar, B.; Muslimin, J.; Abd Rani, M.N.; Bookeri, M.; Ahmad, M.T.; Abdullah, M.; Ismail, R. On-The-Go Variable Rate Fertilizer Application Method for Rice Through Classification of Crop Nitrogen Nutrition Index (NNI). ASM Sci. J. 2021, 15, 1–10. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, S. High-throughput field crop phenotyping: Current status and challenges. Breed. Sci. 2022, 72, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhaninafchi, H.; Singh, M.; Dixit, A.K.; Prakash, A.; Sharda, S.; Kaur, J.; Nafchi, A.M. Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop. Sustainability 2022, 14, 11209. [Google Scholar] [CrossRef]
- Ding, S.; Bai, L.; Yao, Y.; Yue, B.; Fu, Z.; Zheng, Z.; Huang, Y. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates. Comput. Electron. Agric. 2018, 152, 32–39. [Google Scholar] [CrossRef]
- Song, C.; Zhou, Z.; Zang, Y.; Zhao, L.; Yang, W.; Luo, X.; Jiang, R.; Ming, R.; Zang, Y.; Zi, L.; et al. Variable-rate control system for UAV-based granular fertilizer spreader. Comput. Electron. Agric. 2021, 180, 105832. [Google Scholar] [CrossRef]
- Torbett, J.C.; Roberts, R.K.; Larson, J.A.; English, B.C. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Comput. Electron. Agric. 2008, 64, 140–148. [Google Scholar] [CrossRef]
- Nahry, A.H.E.; Ali, R.R.; Baroudy, A.A.E. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Agric. Water Manag. 2011, 98, 517–531. [Google Scholar] [CrossRef]
- Canatoy, R.C.; Daquiado, N.P. Fertilization influence on biomass yield and nutrient uptake of sweet corn in potentially hardsetting soil under no tillage. Bull. Natl. Res. Cent. 2021, 45, 61. [Google Scholar] [CrossRef]
- Colaço, A.F.; Molin, J.P. Variable rate fertilization in citrus: A long term study. Precis. Agric. 2017, 18, 169–191. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient Use Efficiency in Plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Xue, L.; Yang, L. Recommendations for nitrogen fertiliser topdressing rates in rice using canopy reflectance spectra. Biosyst. Eng. 2008, 100, 524–534. [Google Scholar] [CrossRef]
- Neumann, G. EU-Funded Research Collaboration on Use of Bio-Effectors in Agriculture Launched; Press Release; University of Hohenheim: Stuttgart, Germany, 2012; Available online: http://www.biofector.info/about-biofector.html (accessed on 15 April 2020).
- Hogenhout, S.A.; Van der Hoorn, R.A.L.; Terauchi, R.; Kamoun, S. Emerging Concepts in Effector Biology of Plant-Associated Organisms. Mol. Plant-Microbe Interact. 2009, 22, 115–122. [Google Scholar] [CrossRef]
- Roy, E. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017, 98, 213–227. [Google Scholar] [CrossRef]
- Galletti, S.; Fornasier, F.; Cianchetta, S.; Lazzeri, L. Soil incorporation of brassica materials and seed treatment with Trichoderma harzianum: Effects on melon growth and soil microbial activity. Ind. Crops Prod. 2015, 75, 73–78. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Rasera, R.; Causin, R. Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop Prot. 2014, 65, 51–56. [Google Scholar] [CrossRef]
- Yusran, Y.; Römheld, V.; Müller, T. Effects of Pseudomonas sp. Proradix and Bacillus amyloliquefaciens FZB42 on the Establishment of AMF Infection, Nutrient Acquisition and Growth of Tomato Affected by Fusarium oxysporum Schlecht f.sp. Radicis-Lycopersici Jarvis and Shoemaker. In The Proceedings of the International Plant Nutrition Colloqium XVI; University of California: Davis, CA, USA, 2009; 11p. [Google Scholar]
- Gomez-Munoz, B.; Pittroff, S.M.; De Neergaard, A.; Jensen, L.S.; Nicolaisen, M.H.; Magid, J. Penicillium bilaii effects on maize growth and P uptake from soil and localized sewage sludge in a rhizobox experiment. Biol. Fertil. Soil 2017, 53, 23–35. [Google Scholar] [CrossRef]
- Richardson, A.E.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; Smith, S.E.; Harvey, P.R.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 2011, 349, 121–156. [Google Scholar] [CrossRef]
- Israr, D.; Mustafa, G.; Khan, K.S.; Shahzad, M.; Ahmad, N.; Masood, S. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol. Biochem. 2016, 108, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Kröber, M.; Wibberg, D.; Grosch, R.; Eikmeyer, F.; Verwaaijen, B.; Chowdhury, P.; Hartmann, A.; Pühler, A.; Schlüter, A. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front. Microbiol. 2014, 5, 252. [Google Scholar] [CrossRef]
- Lagerlöf, J.; Ayuke, F.; Bejai, S.; Jorge, G.; Lagerqvist, E.; Meijer, J.; JohnMuturi, J.; Söderlund, S. Potential side effects of biocontrol and plant-growth promoting Bacillus amyloliquefaciens bacteria on earthworms. Appl. Soil Ecol. 2015, 96, 159–164. [Google Scholar] [CrossRef]
- He, P.; Hao, K.; Blom, J.; Rückert, C.; Vater, J.; Mao, Z.; Wu, Y.; Hou, M.; He, P.; He, Y.; et al. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J. Biotechnol. 2013, 164, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Holečková, Z.; Kulhánek, M.; Balík, J. Use of Active Microrganisms in Crop Production—A Review. J. Food Process. Technol. 2017, 8, 696. [Google Scholar] [CrossRef]
- Gravel, V.; Antoun, H.; Tweddell, R.J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol. Biochem. 2007, 39, 1968–1977. [Google Scholar] [CrossRef]
- Holečková, Z.; Kulhánek, M.; Balík, J. Influence of bioeffectors application on maize growth, yields and nutrient uptake. Int. J. Plant Sci. 2018, 179, 1041–1052. [Google Scholar]
- Fröhlich, A.; Buddrus-Schiemann, K.; Durner, J.; Hartmann, A.; Von Rad, U. Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. J. Plant Int. 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2009, 3, 9–12. [Google Scholar]
- Nezarat, S.; Gholami, A. Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize. Pak. J. Biol. Sci. 2009, 12, 26–32. [Google Scholar] [CrossRef]
- Kifle, M.H.; Laing, M.D. Effects of selected diazotrophs on maize growth. Front. Plant Sci. 2016, 7, 1429. [Google Scholar] [CrossRef]
- Valverde, A.; Burgos, A.; Fiscella, T.; Rivas, R.; Velazquez, E.; Rodríguez-Barrueco, C.; Cervantes, E.; Chamber, M.; Igual, J.-M. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphatesolubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 2007, 287, 43–50. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Vega, A.; Castro, P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 2020, 6, e05106. [Google Scholar] [CrossRef]
- Holečková, Z.; Kulhánek, M.; Hakl, J.; Balík, J. Use of active microorganisms of the Pseudomonas genus during cultivation of maize in field conditions. Plant Soil Environ. 2018, 64, 26–31. [Google Scholar] [CrossRef]
- Altuhaish, A.; Altuhaish, A.; Tjahjoleksono, A. Biofertilizer effects in combination with different drying system and storage period on growth and production of tomato plant under field conditions. Emir. J. Food Agric. 2014, 26, 716–722. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Yildirim, E.; Gunes, A.; Karagoz, K.; Kotan, R.; Dursun, A. Plant growthpromoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For. 2014, 38, 327–333. [Google Scholar] [CrossRef]
- Ali, A.A.; Awad, M.Y.M.; Hegab, S.A.; Abd El Gawad, A.M.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Breedt, G.; Labuschagne, N.; Coutinho, T.A. Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann. Appl. Biol. 2017, 171, 229–236. [Google Scholar] [CrossRef]
- Wang, P.; Wu, S.H.; Wen, M.X.; Wang, Y.; Wu, Q.S. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Mercl, F.; Tejnecký, V.; Ságová-Marečková, M.; Dietel, K.; Kopecký, J.; Břendová, K.; Kulhánek, M.; Košnář, Z.; Száková, J.; Tlustoš, P. Co-application of wood ash and Paenibacillus mucilaginosus to soil: The effect on maize nutritional status, root exudation and composition of soil solution. Plant Soil 2018, 428, 105–122. [Google Scholar] [CrossRef]
- Paradiso, R.; Arena, C.; De Micco, V.; Giordano, M.; Aronne, G.; DePascale, S. Changes in leaf anatomical traits enhanced photosynthetic activity of soybean grown in hydroponics with plant growth-promoting microorganisms. Front. Plant Sci. 2017, 8, 674. [Google Scholar] [CrossRef]
- Chagas, L.F.B.; De Castro, H.G.; Colonia, B.S.O.; De Carvalho, M.R.; Miller, L.D.; Chagas, A.F.J. Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Braz. J. Bot. 2016, 39, 437–445. [Google Scholar] [CrossRef]
- El-Gremi, S.M.; Draz, I.S.; Youssef, W.A.E. Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot. 2017, 91, 13–19. [Google Scholar] [CrossRef]
- Gupta, U.C. Tissue sulfur levels and additional sulfur needs for various crops. Can. J. Plant Sci. 1976, 56, 651–657. [Google Scholar] [CrossRef]
- Mercl, F.; García Sánchez, M.; Kulhánek, M.; Košnář, Z.; Száková, J.; Tlustoš, P. Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMG08 on acidic soil. Appl. Soil Ecol. 2020, 147, 103360. [Google Scholar] [CrossRef]
- Ahmad, P.; Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; John, R.; Egamberdieva, D.; Gucel, S. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front. Plant Sci. 2015, 6, 868. [Google Scholar] [CrossRef]
- Buysens, C.; Cesar, V.; Ferrais, F.; de Boulois, H.D.; Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 2016, 105, 137–143. [Google Scholar] [CrossRef]
- Beckie, H.J.; Schlechte, D.; Moulin, A.P.; Gleddie, S.C.; Pulkinen, D.A. Response of alfalfa to inoculation with Penicillium bilaii (Provide). Can. J. Plant Sci. 1998, 78, 91–102. [Google Scholar] [CrossRef]
- Ram, H.; Malik, S.S.; Dhaliwal, S.S.; Kumar, B.; Singh, Y. Growth and productivity of wheat affected by phosphorus-solubilizing fungi and phosphorus levels. Plant Soil Environ. 2015, 61, 122–126. [Google Scholar] [CrossRef]
- Vessey, K.J.; Heisinger, K.G. Effect of Penicillium bilaii inoculation and phosphorus fertilisation on root and shoot parameters of field-grown pea. Can. J. Plant Sci. 2001, 81, 361–366. [Google Scholar] [CrossRef]
- Sharma, D.; Kayang, H. Effects of arbuscular mycorrhizal fungi (amf) on camellia sinensis (l.) o. kuntze under greenhouse conditions. J. Exp. Biol. Agric. Sci. 2017, 5, 235–241. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Barry, K.M.; Measham, P.F. The role of arbuscular mycorrhizal fungi in establishment and water balance of tomato seedlings and sweet cherry cuttings in low phosphorous soil. Acta Hortic. 2016, 1112, 109–115. [Google Scholar] [CrossRef]
- Do Vale, L.H.F.; Gómez-Mendoza, D.P.; Kim, M.S.; Pandey, A.; Ricart, C.A.O.; Filho, E.X.F.; Sousa, M.V. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012, 12, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Karamanos, R.E.; Flore, N.A.; Harapiak, T.J. Re-visiting use of Penicillium bilaii with phosphorus fertilization of hard red spring wheat. Can. J. Plant Sci. 2010, 90, 265–277. [Google Scholar] [CrossRef]
- Cunningham, J.E.; Kuiack, C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 1992, 58, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Smitte, D. Seaweeds comes ashore. Fine Gard. Nov./Dec. 1991, 22, 31–33. [Google Scholar]
- Zhang, X.; Ervin, E.H.; Schmidt, E.R. Plant growt regulator can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 2003, 43, 952–956. [Google Scholar] [CrossRef]
- Tandon, S.; Dubey, A. Effects of biozyme (Ascophyllum nodosum) biostimulant on growth and development of soybean (Glycine Max (L.) Merill). Commun. Soil Sci. Plant Anal. 2015, 46, 861–874. [Google Scholar] [CrossRef]
- Turan, M.; Köse, C. Seaweed extracts improve copper uptake of grapevine. Soil Plant Sci. 2004, 54, 213–220. [Google Scholar] [CrossRef]
- Lekfeldt, J.D.S.; Rex, M.; Mercl, F.; Kulhánek, M.; Tlustoš, P.; Magid, J.; de Neergaard, A. Effect of bioeffectors and recycled P-fertilizer products on the growth of spring wheat. Chem. Biol. Technol. Agric. 2016, 3, 22. [Google Scholar] [CrossRef]
- World Bank. Global Waste Generation Could Increase 70% by 2050. 2018. Available online: https://www.wastedive.com/news/world-bank-global-waste-generation-2050/533031/ (accessed on 16 November 2022).
- Huygens, D.; Saveyn, H.G.M. Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 52. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schroder, J.J.; Smit, A. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef]
- FAO. Lessons Learned on the Sustainability and Replicability of Integrated Food-Energy Systems in Ghana and Mozambique. Part 2: Analysis of Case Studies; FAO: Rome, Italy, 2018; ISBN 978-92-5-130351-1. [Google Scholar]
- Ochecová, P.; Mercl, F.; Košnář, Z.; Tlustoš, P. Fertilization efficiency of wood ash pellets amended by gypsum and superphosphate in the ryegrass growth. Plant Soil Environ. 2017, 63, 47–54. [Google Scholar] [CrossRef]
- Demeyer, A.; Nkana, J.C.V.; Verloo, M.G. Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Ochecová, P.; Tlustoš, P.; Száková, J. Wheat and soil response to wood fly ash application in contaminated soils. Agron. J. 2014, 106, 995–1002. [Google Scholar] [CrossRef]
- Pesonen, J.; Kuokkanen, T.; Rautio, P.; Lassi, U. Bioavailability of nutrients and harmful elements in ash fertilizers: Effect of granulation. Biomass Bioenergy 2017, 100, 92–97. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef]
- Kowaljow, E.; Mazzarino, M.J.; Satti, P.; Jiménez-Rodríguez, C. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant Soil 2010, 332, 135–145. [Google Scholar] [CrossRef]
- García-Orenes, F.; Guerrero, C.; Mataix-Solera, J.; Navarro-Pedreño, J.; Gómez, I.; Mataix-Beneyto, J. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil Tillage Res. 2005, 82, 65–76. [Google Scholar] [CrossRef]
- Kulhánek, M.; Balík, J.; Černý, J.; Vašák, F.; Shejbalová, Š. Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients. Plant Soil Environ. 2014, 60, 151–157. [Google Scholar] [CrossRef]
- Cieślik, B.M.; Konieczka, P.; Namieśnik, J. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2014, 90, 1–15. [Google Scholar] [CrossRef]
- Dean, R.B.; Suess, M.J. The risk to health of chemicals in sewage sludge applied to land. Waste Manag. Res. 1985, 3, 251–278. [Google Scholar] [CrossRef]
- Cieślik, B.M.; Konieczka, P. A review phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod. 2016, 142, 1728–1740. [Google Scholar] [CrossRef]
- Yuan, Z.; Pratt, S.; Batstone, D.J. Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 2012, 23, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- Havukainen, J.; Nguyen, M.; Hermann, L.; Horttanainen, M.; Mikkilä, M.; Linnanen, L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016, 89, 401–410. [Google Scholar] [CrossRef]
- Shafii, M.A.; Ling, E.C.M.; Shaffie, E. The use of sewage sludge ash and its ash in construction and agriculture industry. J. Teknol. 2019, 81, 81–90. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, D.J. Enhanced phosphorus bioavailability and heavy metal removal from sewage sludge ash through thermochemical treatment with chlorine donors. J. Ind. Eng. Chem. 2018, 58, 216–221. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Alshaal, T.; El-Henawy, A.; Elmahrouk, M. Nanotechnology, Food Security and Water Treatment; Gothandam, K.M., Ranjan, S., Dasgupta, N., Ramalingam, N., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2018; pp. 129–161. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; Teixeira da Silva, J.A. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2019, 100, 25–31. [Google Scholar] [CrossRef]
- Manjunatha, R.L.; Naik, D.; Usharani, K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019, 8, 1073–1083. [Google Scholar]
- Marchiol, L. Nanotechnology in Agriculture: New Opportunities and Perspectives. In New Visions in Plant Science; Çelik, Ö., Ed.; IntechOpen: London, UK, 2018; pp. 122–141. [Google Scholar] [CrossRef]
- Husen, A. Introduction and techniques in nanomaterial formulation. In Nanomaterials for Agriculture and Forest Applications; Husen, A., Jawid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–14. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Mahil, E.I.T.; Kumar, B.N.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm Sci. 2019, 32, 239–249. [Google Scholar]
- Singh, R.P. Application of Nanomaterials Toward Development of Nanobiosensors and Their Utility in Agriculture. In Nanotechnology; Prasad, R., Kumar, M., Kumar, V., Eds.; Springer Nature: Singapore, 2017; pp. 292–303. [Google Scholar] [CrossRef]
- Mahanta, N.; Dambale, A.; Rajkhowa, M. Nutrient use efficiency through Nano fertilizers. Int. J. Chem. Stud. 2019, 7, 2839–2842. [Google Scholar]
- Jampílek, J.; Kráľová, K. Nanomaterials for Delivery of Nutrients and Growth-Promoting Compounds to Plants. In Nanotechnology; Prasad, R., Kumar, M., Kumar, V., Eds.; Springer: Singapore, 2017; pp. 177–226. [Google Scholar] [CrossRef]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef]
- Khalid, M.F.; Hussain, S.; Ahmad, S.; Ejaz, S.; Zakir, I. Impacts of Abiotic Stresses on Growth and Development of Plants. In Plant Tolerance to Environmental Stress: Role of Phytoprotectants; Hasanuzzaman, M., Fujita, M., Oku, H., Islam, M.T., Eds.; CRC Press-Taylor & Francis: Boca Raton, FL, USA, 2019; pp. 1–26. [Google Scholar] [CrossRef]
- Mustafa, G.; Akhtar, M.S.; Abdullah, R. Global Concern for Salinity on Various Agro-Ecosystems. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Akhtar, M.S., Ed.; Springer Nature: Singapore, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Bidalia, A.; Vikram, K.; Yamal, G.; Rao, K.S. Effect of Salinity on Soil Nutrients and Plant Health. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Akhtar, M.S., Ed.; Springer: Singapore, 2019; pp. 273–297. ISBN 978-981-13-8801-9. [Google Scholar]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef]
- Hniličková, H.; Hnilička, F.; Orsák, M.; Hejnák, V. Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ. 2019, 65, 90–96. [Google Scholar] [CrossRef]
- Parihar, P.; Bora, M. Plants Growing Under Salinity Stress Can Be Eased Through Mycorrhizal Association. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Akhtar, M.S., Ed.; Springer Nature: Singapore, 2019; pp. 237–248. [Google Scholar] [CrossRef]
- Nadeem, H.; Ahmad, F. Soil-Plant and Microbial Interaction in Improving Salt Stress. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Akhtar, M.S., Ed.; Springer Nature: Singapore, 2019; pp. 217–235. [Google Scholar] [CrossRef]
- Saxena, R.; Kumar, M.; Tomar, R.S. Plant responses and resilience towards drought and salinity stress. Plant Arch. 2019, 19, 50–58. [Google Scholar]
- Yousefi, H.; Dalir, N.; Rahnemaie, R.; Babaei, A. The alleviation of salinity-induced stress by using boron in soilless grown rose. J. Plant Nutr. 2020, 43, 526–537. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.I.; Mottale, S.A. Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy 2019, 10, 19. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostofa, M.G.; Rahman, M.A.; Islam, M.R.; Keya, S.S.; Das, A.K.; Miah, G.; Kawser, A.Q.M.R.; Ahsan, S.M.; Hashem, A.; et al. Acetic acid: A cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci. Rep. 2019, 9, 15186. [Google Scholar] [CrossRef]
- Hasan, R.; Miyake, H. Salinity Stress Alters Nutrient Uptake and Causes the Damage of Root and Leaf Anatomy in Maize. KnE Life Sci. 2017, 3, 219–225. [Google Scholar] [CrossRef]
- Nadeem, M.; Li, J.; Yahya, M.; Sher, A.; Ma, C.; Wang, X.; Qiu, L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int. J. Mol. Sci. 2019, 20, 2541. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.L.; Woolley, R.K.; Tyler, A.; Buck, R.L.; Hopkins, B.G. Mineral nutrient deficiencies in quinoa grown in hydroponics with single nutrient salt/acid/chelate sources. J. Plant Nutr. 2020, 43, 1661–1673. [Google Scholar] [CrossRef]
Country | Location | Since | Founders | Main Focus | Soil Texture | References |
---|---|---|---|---|---|---|
United Kingdom | Broadbalk, Rothamsted | 1843 | Lawes and Gilbert | Effects of N, FYM, and straw on SOM/SOC stock | Clay | [22,27,28] |
France | Essai Deherain | 1875 | Royal Agronomic Institution of Grignon | To compare the effects of organic amendments and inorganic fertilisers on crop yield | Agrudalf | [29,30] |
USA | Morrow plots, Illinois | 1876 | GE Morrow | Investigation of soil clay mineralogy and its evolution upon agricultural practices | Silt loam | [31,32] |
Germany | Halle/Saale Eternal Rye | 1878 | Julius Kühn | Effects of organic and mineral fertilisation | Loamy sand | [33,34,35,36] |
USA | Sanborn Field, Missouri | 1888 | JW Sanborn | Effect of crop rotation and the application of FYM on crop production | Loam | [13,37,38] |
Denmark | Askov—Lermarken | 1894 | Danish Institute of Plant and Soil Science | Effects of animal manure and mineral fertilisers on the content of C and N | Sandy loam | [39,40] |
Poland | Skierniewice | 1921 | Warsaw University of Life Sciences | Effects of long-term nitrogen fertilisation on soil sorption capacity | Sandy loam | [41,42] |
Norway | Moystad | 1922 | Bioforsk | Effects of FYM and mineral fertiliser on crop yield, nutrient supply, and changes in soil properties over long periods of time | Loam | [43,44,45] |
Japan | Yamagata | 1926 | YIARC | Effects of long-term application of organic matter combined with inorganic fertilisers on stable carbon isotope | Inceptisol | [46] |
Czech Republic | Praha- Ruzyně | 1955 | Crop Research Institute | Effects of organic and mineral fertilisation on soil chemical properties | Clay Loam | [14,47,48,49,50] |
Sweden | Ultuna | 1956 | Swedish University of Agricultural science | Response of soil organic carbon to selected organic and inorganic fertiliser treatments | LoamY | [51,52] |
Burkina Faso | Saria | 1960 | AfNet and TSBF | Application of inorganic (NPK) and organic fertilizers (FYM, crop residues, agroforestry, and tree biomass), and rotations and intercropping with grain legumes (cowpea, soybean, and groundnuts) | Tropical Soil | [51] |
Italy | Padova | 1962 | University of Padova | Effects of recommended management practices on the SOC change | Clay, sand and peaty | [53,54,55] |
Belgium | Gembloux | 1974 | Agricultural Research Center of Gembloux | Evaluation of long-term efficiency of livestock effluent on arable land as a source of nitrogen fertiliser | Sandy Loam | [56] |
Kenya | Kabete | 1976 | NARL | Maintaining and improving the productivity of the soils through repeated use of inorganic fertilisers (in nitrogen and phosphorus), FYM, and crop residues under continuous cropping | Loamy | [57] |
Niger | Sadore | 1982 | TSBF network | The effect of crop residue on the soil organic carbon and protection against erosion | Sandy | [57] |
Hungary | Keszthely | 1983 | G. Láng | Effects of organic and mineral fertilisation | Loamy | [58,59] |
Rep. of Serbia | IOSDV Novi Sad | 1984 | Institute of Field and Vegetable Crops | Evaluate the effects of crop residue on SOC stock | Clay loam | [23,60] |
Spain | IOSDV Madrid | 1985 | CSIC | International long-term organic nitrogen fertilisation experiments | Loamy clay | [35] |
Czech Republic | Červený Újezd | 1992 | CZU in Prague | Long-term application of organic (FYM, sewage sludge, and cattle slurry) and mineral fertilisers based on unified N dose | Loam | [61,62] |
Austria | IOSDV Fuchsenbigl | 1986 | AGES | Investigate the effect of mineral N fertiliser in combination with selected organic amendments (FYM, crop residue, and slurry) | Loam | [63,64] |
China | Fengqiu State | 1989 | Academy of Sciences | Investigate the effect of long-term fertilisation practices on soil productivity | Sandy loam | [12,65,66] |
Slovenia | IOSDV Rakican | 1992 | E. Von Boguslawski | International long-term organic nitrogen fertilisation experiments | Loamy sand | [35] |
Turkey | Cukurova | 1996 | Cukurova University | Effect of long-term mineral fertilisation, organic matter application, and mycorrhizal inoculation on some soil physical properties | Clay | [67,68] |
China | Xianning | 1998 | Huazhong Agricultural University | Effect of long-term fertilisation on mineralization of soil organic carbon | Loam | [11,69] |
Fatty Acid Type | Frequently Found Biomarkers Signature | Lipid Fraction | Predominant Origin |
---|---|---|---|
Saturated | |||
Iso/anteiso methyl-branched | i, a in C14-C18 | PLFA | GP bacteria |
10-Methylbranched | 10ME in C15-C18 | PLFA | Sulphate reducing bacteria |
Cyclopropyl ring | cy17:0, cy19:0 | PLFA | GN bacteria |
Hydroxy substituted | OH in C10-C18 | PLFA | GN bacteria, actinomycete |
Monosaturated | |||
Double bond C5 | 16:1ω5 | PLFA/NLFA | AM fungi, bacteria |
Double bond C7 | 16:1 ω7 | PLFA | Bacteria widespread |
18:1 ω7 | PLFA | Bacteria, AM fungi | |
Double bond C8 | 18:1 ω8 | PLFA | Methane-oxidizing bacteria |
Double bond C9 | 18:1 ω9 | PLFA | Fungi |
PLFA | GP bacteria | ||
20:1 ω9 | PLFA | AM fungi (Gigaspora) | |
Polysaturated | |||
ω6 family | 18:2 ω6,9 | PLFA | Fungi (saprophytic, EM) |
18:3 ω6,9,12 | PLFA | Zygomycetes | |
20:4 ω6,9,12,15 | PLFA/NLFA | Animals widespread | |
ω3 family | 18:3 ω3,9,12 | PLFA | Higher fungi |
20:5 ω3,6,9,12,15 | PLFA | Algae |
Type of Enzymes | Sources of Enzyme | Substrate Acted on | Product | Type of Nutrient Released | Sources |
---|---|---|---|---|---|
Peroxidase | fungi | Petroleum, lignin, and ROS | hydrogen peroxide | N and C cycling and detoxification | [200] |
β-1,4-glucosidase (BG) | MOS | β-glucosides | Glucose and cellobiose | C cycling | [196] |
β-1,4-N acetylglucosaminidase | MOS | Chitin and peptidoglycan | Chitooligomers | N cycling | [196] |
Cellulase | MOS (fungi and bacteria) | Cellulose and lichenin | Glucose | C cycling | [192] |
β-xylosidase (BX) | Fungi | Xylane | Xylose | C cycling | [196] |
Urease | MOS, animal, and plant | Urea | Carbonic acid and ammonia | N cycling | [193] |
Protease | MOS and plant | Protein | Amino acids | N cycling | [192] |
Alkaline/alkaline phosphatase | MOS (fungi and bacteria) | organic phosphorus | Orthophosphate | P cycling | [200] |
Phosphodiesterases | MOS (fungi and bacteria) | Nucleic acids and another organic P | Orthophosphate | P cycling | [200] |
Dehydrogenases | Soil bacteria | CO2, organic acids, and alcohols | Oxidized or reduced products | Proton transfer | [198] |
Arylsulphatase or sulphatase | MOS, plant, and animal | Phenol sulphate and organic sulphate ester | Phenol and sulphate | S cycling | [198] |
Deaminase | MOS (fungi and bacteria) | Amino acid | Ammonia and organic acids | N cycling | [198] |
β-Glucosidase (BG) | MOS, animal, and plant | Cellobiose | Glucose | C cycling | [201] |
Chitinase | Plants and MOS | Chitin | Carbohydrates and inorganic nitrogen | C and N cycling | [201] |
Crop | Region | Critical Nutrient Concentration | Reference |
---|---|---|---|
Wheat 1 | CAN | Pc = 0.94 + 0.107 N | [229] |
Wheat 2 | CAN | Pc = 1.70 + 0.092 N | [229] |
Wheat 3 | CAN | Pc = 0.02 + 0.106 N | [215] |
Wheat 3 | CAN | Pc = 0.29 + 0.073 N | [215] |
Wheat | CHE | Pc = 0.88 + 0.083 N | [212] |
Wheat | CHE | Pc = 0.291N − 1.557 − 0.004 N2 | [212] |
Wheat | CHE | Pc = 4.44 × W−0.41 | [212] |
Wheat | ARG | Sc (%) = 0.37 × W−0.169 | [242] |
Wheat | CAN, FIN, CHN | Pc = −0.677 + 0.221N − 0.00292 N2 | [213] |
Maize | USA | Pc = 1.00 + 0.094 × (34.0 × W−0.37) | [214] |
Maize 4 | PLN | Pc = 3.2234 × W−0.086 | [209] |
Maize 5 | PLN | Pc = 3.5191 × W−0.085 | [209] |
Maize 1 | CAN | Pc = 1.25 + 0.104 N | [236] |
Maize 2 | CAN | Pc = 1.00 + 0.094 N | [236] |
Maize | USA | Pc = 7.8 × W−0.18 | [211] |
Maize | CHE | Pc = 0.39 + 0.083 N | [212] |
Maize | CHE | Pc = 3.49 × W−0.19 | [212] |
Maize 3 | CAN | Pc = 0.82 + 0.089 N | [215] |
Maize 3 | CAN | Pc = 1.04 + 0.084 N | [215] |
Maize 3 | CAN | Pc = 0.003 + 0.082 N | [215] |
Maize 3 | CAN | Pc = 0.002 + 0.1011 N | [215] |
Maize 6 | USA | Sc = 7.0 × W−0.30 | [211] |
Maize 7 | USA | Sc = 6.1 × W−0.26 | [211] |
Maize 8 | USA | Sc = 5.7 × W−0.24 | [211] |
Maize 3 | ARG | Sc = 2.13 × W−0.23 | [239] |
Maize 4 | PLN | Mgc = −0.221 × ln(W) + 2.2853 | [209] |
Maize 5 | PLN | Mgc = −0.225 × ln(W) + 2.502 | [209] |
Maize 4 | PLN | Mgc = 2.3014 × e−0.004×W | [209] |
Maize 5 | PLN | Mgc = 2.4521 × e−0.003×W | [209] |
Maize | USA | Kc = 88 × W−0.21 | [211] |
Maize 4 | PLN | Kc = 37.41 × e−0.006×W | [209] |
Maize 5 | PLN | Kc = 39.231 × e−0.005×W | [209] |
Timothy | CAN | Pc = 1.07 + 0.063 N | [243] |
Timothy 9 | CAN | Pc = 3.27 × W−0.20 | [243] |
Timothy 10 | CAN | Pc = 5.23 × W−0.40 | [243] |
Grassland | FRA | Pc (%) = 0.133 + 0.091 N | [244] |
Grassland | FRA | Pc (%) = 0.45 × W−0.30 | [244] |
Grassland | FRA | Pc (%) = 0.13 + 0.06 N | [244] |
Grassland | FRA | Pc (%) = 0.15 + 0.065 N | [245,246] |
Grassland | FRA | Kc (%) = 6.70 × W−0.414 | [244] |
Grassland | FRA | Kc (%) = 4.40 × W−0.30 | [244] |
Grassland | FRA | Kc (%) = 1.40 + 0.50 N | [244] |
Grassland | FRA | Kc (%) = 1.6 + 0.525 N | [245] |
Potato 11,12 | COL | Pc (%) = 0.536 × W−0.186 | [221] |
Potato 12,13 | COL | Pc (%) = 0.523 × W−0.199 | [221] |
Potato 11,12 | COL | Pc (%) = 0.39 × LAI−0.082 | [221] |
Potato 12,13 | COL | Pc (%) = 0.41 × LAI−0.090 | [221] |
Potato 12 | ARG | Pc (%) = 3.919 × W−0.304 | [217] |
Potato 11,12 | COL | Kc (%) = 8.84 × LAI−0.437 | [231] |
Potato 12,13 | COL | Kc (%) = 5.95 × LAI−0.149 | [231] |
Potato 12 | BRA | Kc (%) = 5.54 × W−0.317 | [247] |
Potato 11,12 | COL | Kc (%) = 9.02 × W−0.269 | [221] |
Potato 12,13 | COL | Kc (%) = 6.58 × W−0.135 | [221] |
Soybean | ARG | Sc = 2.8 × W−0.11 | [210] |
Rape | CHE | Pc = 5.18 × W−0.39 | [212] |
Rape | CHE | Pc = 1.67 + 0.657 N | [212] |
Rape | CAN | Pc = 1.74 + 0.024 N | [248] |
Rape | URY | Sc (%) = 1.22 × e−0.18×W | [241] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulhánek, M.; Asrade, D.A.; Suran, P.; Sedlář, O.; Černý, J.; Balík, J. Plant Nutrition—New Methods Based on the Lessons of History: A Review. Plants 2023, 12, 4150. https://doi.org/10.3390/plants12244150
Kulhánek M, Asrade DA, Suran P, Sedlář O, Černý J, Balík J. Plant Nutrition—New Methods Based on the Lessons of History: A Review. Plants. 2023; 12(24):4150. https://doi.org/10.3390/plants12244150
Chicago/Turabian StyleKulhánek, Martin, Dinkayehu Alamnie Asrade, Pavel Suran, Ondřej Sedlář, Jindřich Černý, and Jiří Balík. 2023. "Plant Nutrition—New Methods Based on the Lessons of History: A Review" Plants 12, no. 24: 4150. https://doi.org/10.3390/plants12244150
APA StyleKulhánek, M., Asrade, D. A., Suran, P., Sedlář, O., Černý, J., & Balík, J. (2023). Plant Nutrition—New Methods Based on the Lessons of History: A Review. Plants, 12(24), 4150. https://doi.org/10.3390/plants12244150