Global Status of Vegetable Soybean
Abstract
:1. Introduction
2. Nutritional Considerations
3. Global Area, Production, and Productivity
4. Constraints to Production
4.1. Suitable Varieties
4.2. Biotic Factors
4.2.1. Insects
4.2.2. Diseases
4.3. Abiotic Factors
4.4. Crop Management
4.5. Post-Harvest Practices
4.6. Quality Seeds
5. Constraints to Consumption
Anti-Nutritional Factors
6. Technological Interventions to Address the Constraints
6.1. Varietal Improvement
6.1.1. Improving Genetic Variability
6.1.2. Quality Traits
6.1.3. Resistance to Insect Pests and Nematodes
6.1.4. Resistance to Diseases
6.1.5. Maturity
6.2. Good Agricultural Practices
6.3. Quality Seeds
6.4. Potential Means to Enhance Consumer Demand and Consumption
7. Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanmugasundaram, S.; Nair, R.M.; Yan, M.-R.; Palada, M.C. Vegetable Soybean (Edamame). In Handbook of Vegetables; Peter, K.V., Singh, P., Eds.; Stadium Press, LLC: Houston, TX, USA, 2015; Volume 3, pp. 521–555. [Google Scholar]
- Wang, Z.Q.; Senga, E.F.B.; Wang, D.Y. Vegetable soybean (Glycine max (L.) Merrill) from production to processing. Outlook Agric. 2005, 34, 167–172. [Google Scholar] [CrossRef]
- Ravishankar, M.; Pan, R.S.; Kaur, D.P.; Giri, R.R.; Anil Kumar, V.; Rathore, A.; Easdown, W.; Nair, R.M. Vegetable soybean: A crop with immense potential to improve human nutrition and diversify cropping systems in Eastern India-A Review. Soybean Res. 2016, 14, 1–13. [Google Scholar]
- Miles, C.A.; O’Dea, J.; Daniels, C.H.; King, J. Edamame. Pacific Northwest Extension. 2018. Available online: http://cru.cahe.wsu.edu/CEPublications/pnw525/pnw525.pdf (accessed on 15 June 2020).
- Abugho, S.B. Weed Control and Management for Vegetable Soybeans in Arkansas. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2018. [Google Scholar]
- Nair, R.M.; Giri, R.R.; Boddepalli, V.N.; Prasad, K.V.S.V.; Devulapalli, R.; Blümmel, M. Variation in grain yield, fodder quality and animal intake parameters in two dual purpose legume crops: Mungbean and Vegetable soybean grown in semi-arid tropical India. Legume Res. 2021, 44, 207–214. [Google Scholar]
- Zhang, Q.; Li, Y.; Chin, K.L.; Qi, Y. Vegetable soybean: Seed composition and production research. Ital. J. Agron. 2017, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Rani, A.; Pratap, D.; Goyal, L.; Billore, S.D. Assessment of exotic vegetable-type soybean genotypes for nutritional and anti-nutritional components. Ind. J. Nutr. Diet. 2010, 47, 491–498. [Google Scholar]
- Rigo, A.A.; Dahmer, A.M.; Steffens, C.; Steffens, J.; Carrão-Panizzi, M.C. Characterization of soybean cultivars genetically improved for human consumption. Int. J. Food Eng. 2015, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lovabyta, N.S.; Jayus, J.; Nugraha, A.S. Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using Streptococcus thermophillus FNCC40, Lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26. Biodiversitas 2020, 21, 1358–1364. [Google Scholar]
- Li, Y.S.; Du, M.; Zhang, Q.Y.; Wang, G.H.; Hashemi, M.; Liu, X.B. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max (L.) Merrill] in Northeast China. Aust. J. Crop Sci. 2012, 6, 1681–1686. [Google Scholar]
- Song, J.; Liu, C.; Li, D.; Gu, Z. Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max [L.] Merr). Ind. Crop Prod. 2013, 50, 743–749. [Google Scholar] [CrossRef]
- Tsou, S.C.S.; Hong, T.L. Research on vegetable soybean quality in Taiwan. In Vegetable Soybean Research Needs for Production and Quality Improvement; Shanmugasundaram, S., Ed.; AVRDC: Tainan City, Taiwan, 1991; pp. 103–107. [Google Scholar]
- Zhang, Q.Y.; Gao, Q.L.; Herbert, S.J.; Li, Y.S.; Hashemi, A.M. Influence of sowing date on phenological stages, seed growth and marketable yield of four vegetable soybean cultivars in Northeastern USA. Afr. J. Agric. Res. 2010, 5, 2556–2562. [Google Scholar]
- Zhang, Q.-Y.; Li, Y.-S.; Liu, C.-K.; Tian, B.-W.; Tu, B.-J.; Mao, J.-W. Key components of eating quality and their dynamic accumulation in vegetable soybean varieties [Glycine max (L.) Merr.]. Acta Agron. Sin. 2015, 41, 1692–1700. [Google Scholar] [CrossRef]
- Poornima, R.; Koti, R.V.; Nair, R.M. Physiological basis of yield variation in vegetable soybean and organoleptic test for acceptance. Plant Arch. 2014, 14, 51–54. [Google Scholar]
- Maruthi, J.B.; Paramesh, R. Effect of integrated nutrient management on seed quality of vegetable soybean (Glycine max (L.) Merrill) cv. Karune. Legume Res. 2016, 39, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Huang, L.; Cheng, X.; Gao, Y.; Zhang, X.; Yuan, X.; Xue, C.; Chen, X. Volatile Flavor Profile and Sensory Properties of Vegetable Soybean. Molecules 2022, 27, 939. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, Q.; Zhang, M.; Zhu, Q. Prediction of colour and moisture content for vegetable soybean during drying using hyper spectral imaging technology. J. Food. Eng. 2014, 128, 24–30. [Google Scholar] [CrossRef]
- Bolla, K.N. Soybean consumption and health benefits. Int. J. Sci. Technol. Res. 2015, 4, 50–53. [Google Scholar]
- Villares, A.; Rostagno, M.A.; Garcia-lafuente, A.; Guillamon, E.; Alfredomartinez, J. Content and profile of isoflavones in soy-based foods as a function of the production process. Food Bioprocess Technol. 2011, 4, 27–38. [Google Scholar] [CrossRef]
- Utami, M.M.D.; Hertamawati, R.T. Dietary edamame soybean isoflavon concentrate on improving carcass quality of broilers. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2nd International Conference on Food and Agriculture, Bali, Indonesia, 2–3 November 2019; IOP Publishing: Bristol, UK, 2020; Volume 411, p. 411. [Google Scholar]
- Buwjoom, T.; Maneewan, B.; Yamauchi, K. The using of fermented vegetable soybean waste and banana stem in Black-bone chicken diets. In Proceedings of the 17th Asian-Australasian Association of Animal Production Societies Animal Science Congress, Fukuoka, Japan, 22–25 August 2016; pp. 1689–1692. [Google Scholar]
- Sukit, K.; Buaream, M.; Tonglian, B.; Nattakarn, K.; Kohsyo, Y.; Sontaya, N.; Chamnian, Y.; Koh-en, Y. Fermented green vegetable soybean meal increases dressed carcass meat and bone weight in black-boned chickens (Fah Luang Chicken, Gallus gallus). Am. J. Anim. Vet. Sci. 2017, 12, 176–181. [Google Scholar]
- Battistini, C.; Gullón, B.; Ichimura, E.S.; Gomes, A.M.P.; Ribeiro, E.P.; Kunigk, L.; Moreira, J.U.V.; Jurkiewicz, C. Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Braz. J. Microbiol. 2018, 9, 303–309. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- D’Adamo, C.R.; Sahin, A. Soy foods and supplementation: A review of commonly perceived health benefits and risks. Altern. Ther. Health Med. 2014, 20, 39–51. [Google Scholar] [PubMed]
- Dong, D.; Fu, X.; Yuan, F.; Zhu, S.; Li, B.; Yang, Q.; Yu, X.; Zhu, D. Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet. Resour. Crop Evol. 2014, 61, 173–183. [Google Scholar] [CrossRef]
- Djanta, M.K.A.; Agoyi, E.E.; Agbahoungba, S.; Quenum, F.J.B.; Chadare, F.J.; Assogbadjo, A.E.; Agbangla, C.; Sinsin, B. Vegetable soybean, edamame: Research, production, utilization and analysis of its adoption in Sub-Saharan Africa. J. Hortic. For. 2020, 12, 1–12. [Google Scholar]
- COA Taiwan. Annual Report, Council of Agriculture, Excecutive Yuan. 2020. Available online: https://eng.coa.gov.tw/ws.php?id=2505682 (accessed on 10 April 2022).
- MAFF Japan. Summary of the Annual Report on Food, Agriculture and Rural Areas in Japan, Ministry of Agriculture, Forestry and Fisheries. 2020. Available online: https://www.maff.go.jp/e/data/publish/attach/pdf/index-190.pdf (accessed on 12 May 2021).
- MAFF. Annual Report on Food, Agriculture and Rural Areas in Japan FY 2021. 2022. Available online: https://www.maff.go.jp/e/data/publish/attach/pdf/index-69.pdf (accessed on 12 May 2021).
- Somta, P.; Kasetsart University, Nakhon Pathom, Thailand. Personal communication, 2022.
- Pratiwi, A.N. Farm Income and Factors that Influence the Production of Edamame Soybean at PT Mitratani Dua Tujuh, Jember, East Java. Master’s Thesis, IPB University, Bogor, Indonesia, 2018. [Google Scholar]
- McBryde, J. Snacking on Soy: Arkansas Grows Edamame Commercially. Farm Flavor. 2012. Available online: http://farmflavor.com/us-ag/arkansas/top-crops-arkansas/snacking-on-soy-arkansas-grows-edamame-commercially/ (accessed on 25 November 2020).
- Nuss, J. US soybean farmers see growth potential in edamame. Agron. J. 2013, 108, 2371–2378. [Google Scholar]
- Shurtleff, W.; Aoyagi, A. Chronology of Green Vegetable Soybeans and Edamamé (Including Maodou) Worldwide. 2001. Available online: https://www.soyinfocenter.com/chronologies_of_soyfoods-edamame.php (accessed on 1 August 2020).
- SoyfoodsGuide. United Soybean Board. 2015. Available online: https://mnsoybean.org/wp-content/uploads/2018/05/SoyfoodsGuide_2015_web.pdf (accessed on 1 August 2020).
- Zeipina, S.; Vågen, I.M.; Lepse, L. Possibility of Vegetable Soybean Cultivation in North Europe. Horticulturae 2022, 8, 593. [Google Scholar] [CrossRef]
- Binder, K. Edible Soybean Rises in Popularity with U.S. Consumers & Producers. Farm World. 24 April 2018. Available online: http://www.farmworldonline.com/news/NewsArticle.asp?newsid=10620 (accessed on 25 August 2020).
- Dhaliwal, D.S.; Williams, M.M., II. Economically Optimal Plant Density for Machine-harvested Edamame. HortScience 2020, 55, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Marimin, F.D.; Martini, S.; Astuti, R.; Suharjito, H.S. Added Value and Performance Analyses of Edamame Soybean Supply Chain: A Case Study. Oper. Supply Chain. Manag. 2010, 3, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Khunpilueg, P.; Chotiyarnwong, A.; Chotiyarnwong, P.; Tepjun, V.; Phoomthaisong, J.; Wanasai, N.; Kasiwiwat, A.; Maliphun, A. A New Aroma Vegetable Soybean “Chiang Mai 84-2”. In Outstanding Research of Department of Agriculture, Year 2012; Department of Agriculture, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2012; pp. 182–194. [Google Scholar]
- Srinives, P.; Somta, P. Present Status and Future Perspectives of Glycine and Vigna in Thailand. In Proceedings of the 14th NIAS International Workshop on Genetic Resources-Genetic Resources and Comparative Genomics of Legumes (Glycine and Vigna), Tsukuba, Japan, 1 November 2011; Toomooka, N., Vaughan, D.A., Eds.; National Institute of Agrobiological Sceinces: Tsukuba, Japan, 2011; pp. 63–68. [Google Scholar]
- USDA. Oilseeds: World Markets and Trade. 2021. Available online: https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade (accessed on 15 March 2022).
- Smit, A. Yield Stability of Edamame (Glycine max L.) Introductions under South African Conditions. Ph.D. Thesis, Plant Breeding at the University of the Free State, Bloemfontein, South Africa, 2019; 194p. [Google Scholar]
- Shanmugasundaram, S.; Yan, M.-R. Vegetable Soybean. In The Soybean-Botany, Production and Uses; Singh, G., Ed.; Cabi: Boston, MA, USA, 2010; pp. 427–460. [Google Scholar]
- Zhang, G.W.; Xu, S.C.; Mao, W.H.; Hu, Q.Z.; Gong, Y.M. Determination of the genetic diversity of vegetable soybean [Glycine max (L.) Merr.] using EST-SSR markers. J. Zhejiang Univ. Sci. B 2013, 14, 279–288. [Google Scholar] [CrossRef] [Green Version]
- James, A.; Edamame Soybean Development in Australia. Australia: Rural Industries Research and Development Corporation. 2007. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/07-130.pdf (accessed on 15 September 2020).
- Williams, M.M. Phenomorphological characterization of vegetable soybean germplasm lines for commercial production. Crop Sci. 2015, 55, 1274–1279. [Google Scholar] [CrossRef]
- Tsindi, A.; Kawuki, R.; Tukamuhabwa, P. Adaptation and stability of vegetable soybean genotypes in Uganda. Afr. Crop Sci. J. 2019, 27, 267–280. [Google Scholar] [CrossRef]
- Bernard, R.L. Breeding vegetable soybeans in the Midwest. In Proceedings of the Second International Vegetable Soybean Conference, Tacoma, WA, USA, 10–12 August 2001; p. 21. [Google Scholar]
- Lord, N.; Kuhar, T.; Rideout, S.; Sutton, K.; Alford, A.; Li, X.; Wu, X.; Reiter, M.; Doughty, H.; Zhang, B. Combining Agronomic and Pest Studies to Identify Vegetable Soybean Genotypes Suitable for Commercial Edamame Production in the Mid-Atlantic U.S. Agric. Sci. 2021, 12, 738–754. [Google Scholar] [CrossRef]
- Bowen, C.; Baurdau, A.; Schultz, S.; Hartman, G.L. Registration of seven disease and pest resistant vegetable soybean germplasm lines. J. Plant Regist. 2022, 16, 438–445. [Google Scholar] [CrossRef]
- Mimura, M.; Coyne, C.J.; Bambuck, M.W.; Lumpkin, T.A. SSR Diversity of Vegetable Soybean [Glycine max (L.) Merr.]. Genet. Resour. Crop Evol. 2007, 54, 497–508. [Google Scholar] [CrossRef]
- Kaga, A.; Shimizu, T.; Watanabe, S.; Tsubokura, Y.; Katayose, Y.; Harada, K.; Vaughan, D.A.; Tomooka, N. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections. Breed. Sci. 2012, 61, 566–592. [Google Scholar] [CrossRef] [Green Version]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.F.; Domier, L.L.; Davis, J.A.; Steffey, K.L. Compendium of Soybean Diseases and Pests; American Phytopathological Society: St. Paul, MN, USA, 2015. [Google Scholar]
- Norsuwan, T.; Poungmanee, J.; Kasensoontron, R.; Utasuk, K.; Pongjanta, W. Application of yellow sticky traps and gap recommended insecticide for insect pest control in green soybean production in Chiang Mai province. J. Agric. 2015, 31, 319–327. [Google Scholar]
- Zhu, L.; Feng, L.; Yu, X.; Fu, X.; Yang, Q.; Jin, H.; Yuan, F. Development and Application of an In Vitro Method to Evaluate Anthracnose Resistance in Soybean Germplasm. Plants 2022, 11, 657. [Google Scholar] [CrossRef]
- Chen, C.T.; Lu, C.T.; Tzen, J.T.C.; Yang, C.Y. Physiological Properties and Molecular Regulation in Different Edamame Cultivars under Drought Stress. Agronomy 2021, 11, 939. [Google Scholar] [CrossRef]
- Moloi, M.J.; van der Merwe, R. Drought Tolerance Responses in Vegetable-Type Soybean Involve a Network of Biochemical Mechanisms at Flowering and Pod-Filling Stages. Plants 2021, 10, 1502. [Google Scholar] [CrossRef]
- Crawford, L.E.; Williams, M.M. Planting depth and seed size affect edamame emergence individually. HortScience 2019, 54, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Petter, F.A.; Silva, J.D.; Zuffo, A.M.; Andrade, F.R.; Pacheco, L.P.; Almeida, F.D. Elevada densidade de semeadura aumenta a produtividade da soja? Respostas da radiação fotossinteticamente ativa. Bragantia 2016, 75, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.M.E.; Smiderle, O.J. Potencial fisiológico de sementes de soja-hortaliça produzidas com diferentes adubações e armazenadas por doze meses. Rev. Agro@Mbiente Online 2013, 7, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi-Golezani, K.; Taifeh-Noori, M.; Oustan, S.; Moghaddam, M. Response of soybean cultivars to salinity stress. J. Food Agric. Environ. 2009, 7, 401–404. [Google Scholar]
- Zhang, S.; Zhang, Z.; Bales, C.; Gu, C.; DiFonzo, C.; Li, M.; Song, Q.; Cregan, P.; Yang, Z.; Wang, D. Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85–32. Theor. Appl. Genet. 2017, 130, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Nolen, S.; Zhang, B.; Kering, M.K. Increasing fresh edamame bean supply through season extension techniques. J. Hortic. 2016, 3, 170. [Google Scholar] [CrossRef] [Green Version]
- Garber, B.; Neill, C.L. Edamame: Costs, Revenues, and Profitability; No. AAEC-189P; Virginia Cooperative Extension: Blacksburg, VA, USA, 2019. [Google Scholar]
- Born, H. “Edamame: Vegetable Soybean”. ATTRA Sustainable Agriculture Program, National Center for Appropriate Technology. 2006. Available online: https://attra.ncat.org/attra-pub/viewhtml.php?id=28 (accessed on 1 February 2022).
- Shanmugasundaram, S.; Yan, M.-R. Mechanization of vegetable soybean production in Taiwan. In Proceedings of the 2nd International Vegetable Soybean Conference, 10–12 August; Lumpkin, T.A., Shanmugasundaram, S., Eds.; Washington State University: Pullman, WA, USA, 2001; pp. 167–172. [Google Scholar]
- Tadesse, M.; Chris, M. Efficiency of mechanical harvest for immature vegetable soybean pods. Va. J. Sci. 2007, 58, 2. [Google Scholar] [CrossRef]
- Zeipina, S.; Alsina, I.; Lepse, L. Insight in edamame yield and quality parameters: A review Conference. Res. Rural Dev. 2017, 2, 40–44. [Google Scholar] [CrossRef]
- Prochaska, L.J.; Nguyen, X.T.; Donat, N.; Piekutowski, W.V. Effects of food processing on the thermodynamic and nutritive value of foods: Literature and database survey. Med. Hypotheses 2000, 54, 254–262. [Google Scholar] [CrossRef]
- Barrrett, D.M.; Theerakulkait, C. Quality Indicators in Blanched, Frozen, Stored Vegetables. In Advances in Enzyme Technology as Applied to Fruits and Vegetables; IFT Fruit and Vegetable Products Division Symposium; James, G., Ed.; Springer: Chicago, IL, USA, 1995; pp. 64–66. [Google Scholar]
- Lin, Z.; Schyvens, E. Influence of blanching treatments on the texture and color of some processed vegetables and fruits. J. Food Process Preserv. 1995, 19, 451–465. [Google Scholar] [CrossRef]
- Xu, Y.; Sismour, E.; Pao, S.; Rutto, L.; Grizzard, C.; Ren, S. Textural and Microbiological Qualities of Vegetable Soybean (Edamame) Affected by Blanching and Storage Conditions. J. Food Process Technol. 2012, 3, 165. [Google Scholar] [CrossRef]
- Esler, I. Prospects for Vegetable Soybean in India and Its Market Acceptance: Research and Cultural Experiences in Hyderabad, India. Hyderabad. 2011. Available online: https://www.worldfoodprize.org/documents/filelibrary/images/youth_programs/2011_interns/EslerIzzy_India_DD3E1352FCBE2.pdf (accessed on 12 May 2020).
- Shanmugasundaram, S.; Cheng, S.T.; Huang, M.T.; Yan, M.R. Varietal improvement of vegetable soybean in Taiwan. In Vegetable Soybean—Research Needs for Production and Quality Improvement, Proceedings of the Workshop, 29 April–2 May; Shanmugasundaram, S., Ed.; Asian Vegetable Research and Development Center: Tainan, Taiwan, 1991; pp. 30–42. [Google Scholar]
- Kumar, V.; Rani, A.; Chauhan, G.S. Quantitative and qualitative analysis of trypsin inhibitor during seed development in Indian soybean genotype. J. Food Sci. Technol. 2005, 42, 477–480. [Google Scholar]
- Kumar, V.; Rani, A.; Mittal, P.; Shuaib, M. Kunitz trypsin inhibitor in soybean: Contribution to total trypsin inhibitor activity as a function of genotype and fate during processing. J. Food Meas. Charact. 2019, 13, 1583–1590. [Google Scholar] [CrossRef]
- Jha, P.; Kumar, V.; Rani, A.; Kumar, A. Mapping QTLs controlling the biosynthesis of maltose in soybean. Rom. Biotechnol. Lett. 2021, 26, 2936–2941. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Chauhan, G.S. A comparative study of oligosaccharides and sucrose content in immature and mature seeds of soybean genotypes. J. Food Sci. Technol. 2007, 44, 49–51. [Google Scholar]
- Xu, Y.; Cartier, A.J.; Kibet, D.; Jordan, K.; Hakala, I.; Davis, S.; Sismour, E.; Kering, M.; Rutto, L. Physical and nutritional properties of edamame seeds as influenced by stage of development. J. Food Meas. Charact. 2015, 10, 193–200. [Google Scholar] [CrossRef]
- Van Hintum, T.J.L. The Core Selector, a system to generate representative selections of germplasm accessions. Plant Genet. Resour. Newsl. 1999, 118, 64–67. [Google Scholar]
- El Bouhssini, M.; Street, K.; Amri, A.; Mackay, M.; Ogbonnaya, F.C.; Omran, A.; Abdalla, O.; Baum, M.; Dabbous, A.; Rihawi, F. Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed. 2011, 130, 96–97. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Nelson, R.L.; Geraldi, I.O.; Cruz, C.D.; de Toledo, J.F. Establishing a soybean germplasm core collection. Field Crops Res. 2010, 119, 277–289. [Google Scholar] [CrossRef]
- Wang, L.; Guan, Y.; Guan, R.; Li, Y.; Ma, Y.; Dong, Z.; Liu, X.; Zhang, H.; Zhang, Y.; Liu, Z.; et al. Establishment of Chinese soybean Glycine max core collections with agronomic traits and SSR markers. Euphytica 2006, 151, 215–223. [Google Scholar] [CrossRef]
- Song, X.; Li, Y.; Chang, R.; Guo, P.; Qiu, L. Population structure and genetic diversity of mini core collection of cultivated soybean (Glycine max (L) Merr.) in China. Sci. Agric. Sin. 2010, 43, 2209–2219. [Google Scholar]
- Jeong, N.; Kim, K.S.; Jeong, S.; Kim, J.Y.; Park, S.K.; Lee, J.S.; Jeong, S.C.; Kang, S.T.; Ha, B.K.; Kim, D.Y.; et al. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 2019, 14, e0224074. [Google Scholar] [CrossRef]
- Priolli, R.H.; Wysmierski, P.T.; Cunha, C.P.; Pinheiro, J.B.; Vello, N.A. Genetic structure and a selected core set of Brazilian soybean cultivars. Gen. Mol. Biol. 2013, 36, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, Y.; Tomooka, N.; Kaga, A.; Wanigadeva, S.M.; Vaughan, D.A. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Genet. Resour. Crop Evol. 2009, 56, 1045–1055. [Google Scholar] [CrossRef]
- Kao, C.F.; He, S.S.; Wang, C.S.; Lai, Z.Y.; Lin, D.G.; Chen, S. A Modified Roger’s Distance Algorithm for Mixed Quantitative–Qualitative Phenotypes to Establish a Core Collection for Taiwanese Vegetable Soybeans. Front. Plant Sci. 2021, 11, 2143. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.M.; Yan, M.-R.; Vemula, A.K.; Rathore, A.; van Zonneveld, M.; Schafleitner, R. Development of core collections in soybean on the basis of seed size. Legume Sci. 2022, e158. [Google Scholar] [CrossRef]
- Yu, X.; Fu, X.; Yang, Q.; Jin, H.; Zhu, L.; Yuan, F. Genome-Wide Variation Analysis of Four Vegetable Soybean Cultivars Based on Re-Sequencing. Plants 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Zhu, L.; Bu, Y.; Wang, X.; Zhang, X.; Zhou, Y.; Wang, X.; Guo, N.; Qiu, L.; et al. Genome-wide association study of four yield-related traits at the R6 stage in soybean. BMC Genet. 2019, 20, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moseley, D.O. An Evaluation of Breeding, Agronomic, and Processing Methodologies of Vegetable Soybean (Edamame) to Increase Domestic Production in the United States Market. Theses and Dissertations. 2018. Available online: http://scholarworks.uark.edu/etd/2628 (accessed on 10 December 2021).
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef]
- Hou, J.; Wang, C.; Hong, X.; Zhao, J.; Xue, C.; Guo, N.; Gai, J.; Xing, H. Association analysis of vegetable soybean quality traits with SSR markers. Plant Breed. 2011, 130, 444–449. [Google Scholar] [CrossRef]
- Ficht, A.; Bruce, R.; Torkamaneh, D.; Grainger, C.M.; Eskandari, M.; Rajcan, I. Genetic analysis of sucrose concentration in soybean seeds using a historical soybean genomic panel. Theor. Appl. Genet. 2022, 135, 1375–1383. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, J.; Han, Y.; Teng, W.; Genlou, S.; Li, W. Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov. and correlations with plant, pod and seed traits. Euphytica 2008, 164, 275–282. [Google Scholar] [CrossRef]
- Liu, N.; Niu, Y.; Zhang, G.; Feng, Z.; Bo, Y.; Lian, J.; Wang, B.; Gong, Y. Genome sequencing and population resequencing provide insights into the genetic basis of domestication and diversity of vegetable soybean. Hortic. Res. 2022, 9, uhab052. [Google Scholar] [CrossRef]
- Peric, V.; Zilic, S.; Srebic, M.; Mikie, A. Nutritional value of the grains of Kunitz trypsin inhibitor free soybean cultivars. Biotechnol. Anim. Husb. 2011, 27, 1537–1542. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Rawal, R.; Mourya, V. Marker assisted accelerated introgression of null allele of Kunitz trypsin inhibitor in soybean. Breed Sci. 2015, 65, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulatova, K.; Mazkirat, S.; Didorenko, S.; Babissekova, D.; Kudaibergenov, M.; Alchinbayeva, P.; Khalbayeva, S.; Shavrukov, Y. Trypsin inhibitor assessment with biochemical and molecular markers in a soybean germplasm collection and hybrid populations of seed quality improvement. Agronomy 2019, 9, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Moraes, R.M.A.; de Soares, T.C.B.; Colombo, L.R.; Salla, M.F.S.; de Almeida Barros, J.G.; Piovesan, N.D.; de Barros, E.G.C.; Maurilio Alves Moreira, M.A. Assisted selection by specific DNA markers for genetic elimination of the kunitz trypsin inhibitor and lectin in soybean seeds. Euphytica 2006, 149, 221. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, V.; Mourya, V.; Singh, R.K.; Husain, S.M. Validation of SSR markers linked to null kunitz trypsin inhibitor allele in Indian soybean (Glycine max (L.) Merr.) population. J. Plant Biochem. Biotechnol. 2011, 20, 258–261. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Rawal, R.; Husain, S.M. Lipoxygenase-2 free Indian soybean genotypes. Curr. Sci. 2013, 104, 586–587. [Google Scholar]
- Kumar, V.; Rani, A.; Husain, S.M.; Srivastava, S.K. NRC105 (IC0512375; INGR10056): Vegetable-type Soybean (Glycine max) Germplasm line. Ind. J. Plant Gen. Res. 2013, 24, 122–123. [Google Scholar]
- Rani, A.; Kumar, V. Development and commercialization of first ever kunitz trypsin inhibitor free soybean genotypes. Curr. Sci. 2015, 109, 855–856. [Google Scholar]
- Kumar, V.; Rani, A.; Shukla, S.; Jha, P. Development of Kunitz Trypsin inhibitor free vegetable soybean genotypes through marker-assisted selection. Int. J. Veg. Sci. 2020, 27, 364–377. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Rawal, R. Identification of simple sequence repeat markers tightly linked to lipoxygenase-2 gene in soybean. Ind. J. Biotechnol. 2014, 13, 455–458. [Google Scholar]
- Juwattanasomran, R.; Somta, P.; Kaga, A.; Chankaew, S.; Shimizu, T.; Sorajjapinun, W.; Srinives, P. Identification of a new fragrance allele in soybean and development of its functional marker. Mol. Breed. 2014, 29, 13–21. [Google Scholar] [CrossRef]
- Qian, L.; Jin, H.; Yang, Q.; Zhu, L.; Yu, X.; Fu, X.; Zhao, M.; Yuan, F. A Sequence Variation in GmBADH2 Enhances Soybean Aroma and Is a Functional Marker for Improving Soybean Flavor. Int. J. Mol. Sci. 2022, 23, 4116. [Google Scholar] [CrossRef] [PubMed]
- Cox, M. Improving Seed Viability in Vegetable Soybean, Borlaug-Ruan International Internship, World Vegetable Center Report. 2015. Available online: https://www.worldfoodprize.org/documents/filelibrary/images/youth_programs/2015_interns/2015_br_research_papers/Cox_AVRDCRCSA_India_FinalReport_C497BFD6258DF.pdf (accessed on 12 May 2021).
- AVRDC. AVRDC Report 2005; AVRDC Publication Number 08-702; AVRDC–The World Vegetable Center: Shanhua, Taiwan, 2015; 196p. [Google Scholar]
- Yu, X.; Jin, H.; Yang, Q.; Fu, X.; Yuan, F. Genetic Mapping of a Soybean Glabrous Gene Using Specific-Locus Amplified Fragment Sequencing Method. Legume Res. 2020, 43, 501–506. [Google Scholar] [CrossRef]
- Wilkes, J.E.; Kirkpatrick, T.L. The effects of Meloidogyne incognita and Heterodera glycines on the yield and quality of edamame (Glycine max l.) in Arkansas. J. Nematol. 2020, 52, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Murithi, H.M.; Namara, M.; Tamba, M.; Tukamuhabwa, P.; Mahuku, G.; van Esse, H.P.; Thomma, B.P.H.J.; Joosten, M.H.A.J. Evaluation of soybean genotypes for resistance against the rust-causing fungus Phakopsora pachyrhizi in East Africa. Plant Pathol. 2021, 70, 841–852. [Google Scholar] [CrossRef]
- Khosla, G.; Gill, B.S.; Sirari, A.; Sharma, P.; Singh, S. Inheritance and molecular mapping of resistance against mungbean yellow mosaic India virus in soybean (Glycine max). Plant Breed. 2021, 140, 860–869. [Google Scholar] [CrossRef]
- Pooprompan, P.; Wasee, S.; Toojinda, T.; Abe, J.; Chanprame, S.; Srinives, P. Molecular Marker Analysis of Days to Flowering in Vegetable Soybean (Glycine max (L.) Merrill). Kasetsart J. Nat. Sci. 2006, 40, 573–581. [Google Scholar]
- Agoyi, E.E.; Afutu, E.; Tumuhairwe, J.B.; Odong, T.L.; Tukamuhabwa, P. Screening soybean genotypes for promiscuous symbiotic association with Bradyrhizobium strains. Afr. Crop Sci. J. 2016, 24, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, E.; Kelley, K.; Butler, L. Edamame production as influenced by seedling emergence and plant population. HortTechnology 2005, 15, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Moseley, D.; da Silva, M.P.; Mozzoni, L.; Orazaly, M.; Florez-Palacios, L.; Acuña, A.; Wu, C.; Chen, P. Effect of Planting Date and Cultivar Maturity in Edamame Quality and Harvest Window. Front. Plant Sci. 2021, 11, 585856. [Google Scholar] [CrossRef]
- Arathoon, A.J. Agronomic Studies on Edamame (Vegetable Soybean) in Kwazulu-Natal. Master’s Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2015; 305p. [Google Scholar]
- Santana, A.C.; Carrão-Panizzi, M.C.; Mandarino, J.M.G.; Leite, R.S.; da Silva, J.B.; Ida, E.I. Evaluation of the shelf-life of vegetable-type soybean pods. Braz. Arch. Biol. Technol. 2012, 55, 591–595. [Google Scholar] [CrossRef]
- Kim, C.; Torres, A.; Xu, Y.; Kaseloo, P.; Nguyen, L.; Awan, Z.; Rutto, L. Role of Steam Blanching and Vacuum Packaging on the Physical and Microbiological Quality of Fresh Vegetable Soybean (Edamame) During Storage. Austin Food Sci. 2017, 2, 1029. [Google Scholar]
- Lara, L.M.; Wilson, S.A.; Chen, P.; Atungulu, G.G. The effects of infrared treatment on physicochemical characteristics of vegetable soybean. Heliyon 2019, 5, e01148. [Google Scholar] [CrossRef] [Green Version]
- Pan, R.S.; Singh, A.K.; Kumar, S.; Rai, M. Stability of yield and its components in vegetable soybean (Glycine max). Ind. J. Agric. Sci. 2007, 77, 28–31. [Google Scholar]
- Pan, R.S.; Singh, A.K.; Kumar, S.; Sharma, J.P.; Das, B. Soybean cv. Swarna Vasundhara. ICAR News 2010, 16, 11. [Google Scholar]
- Chen, B.H.; Yang, S.H.; Han, L.H. Characterization of major carotenoids in water convolvulus (Ipomoea aquatica) by open column, thin layer and high performance liquid chromatography. J. Chromatogr. 1991, 543, 147–155. [Google Scholar] [CrossRef]
- Bonny, S. Genetically modified glyphosate-tolerant soybean in the USA: Adoption factors, impacts and prospects. A review. Agron. Sustain. Dev. 2008, 28, 21–32. [Google Scholar] [CrossRef]
- Wolfe, E.; Popp, M.; Bazzani, C.; Nayga, R.M.; Danforth, D.; Popp, J.; Chen, P.; Seo, H.-S. Consumers’ willingness to pay for edamame with a genetically modified label. Agribusiness 2018, 34, 283–299. [Google Scholar] [CrossRef]
- Neill, C.L.; Morgan, K.L. Beyond Scale and Scope: Exploring Economic Drivers of U.S. Specialty Crop Production with an Application to Edamame. Front. Sustain. Food Syst. 2021, 4, 582834. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, R.M.; Boddepalli, V.N.; Yan, M.-R.; Kumar, V.; Gill, B.; Pan, R.S.; Wang, C.; Hartman, G.L.; Silva e Souza, R.; Somta, P. Global Status of Vegetable Soybean. Plants 2023, 12, 609. https://doi.org/10.3390/plants12030609
Nair RM, Boddepalli VN, Yan M-R, Kumar V, Gill B, Pan RS, Wang C, Hartman GL, Silva e Souza R, Somta P. Global Status of Vegetable Soybean. Plants. 2023; 12(3):609. https://doi.org/10.3390/plants12030609
Chicago/Turabian StyleNair, Ramakrishnan M., Venkata Naresh Boddepalli, Miao-Rong Yan, Vineet Kumar, Balwinder Gill, Rabi S. Pan, Chansen Wang, Glen L. Hartman, Renan Silva e Souza, and Prakit Somta. 2023. "Global Status of Vegetable Soybean" Plants 12, no. 3: 609. https://doi.org/10.3390/plants12030609
APA StyleNair, R. M., Boddepalli, V. N., Yan, M. -R., Kumar, V., Gill, B., Pan, R. S., Wang, C., Hartman, G. L., Silva e Souza, R., & Somta, P. (2023). Global Status of Vegetable Soybean. Plants, 12(3), 609. https://doi.org/10.3390/plants12030609