Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes
Abstract
:1. Introduction
2. Results
2.1. Climatic Characteristics
2.2. Grape Cluster Characteristics
2.3. Grape Quality
2.4. Phenolic Profiles of the Grape Samples, TPC, RSA, and TAC
2.5. Principal Component Analysis (PCA) and Correlation Analysis
3. Discussion
3.1. Grape Cluster Characteristics
3.2. Grape Quality
3.3. Insight into the Phenolic Composition of the Investigated Grape Samples
4. Materials and Methods
4.1. Plant Material
4.2. Climatic Conditions
4.3. Grape Cluster and Grape Juice Quality
4.4. Chemical Analysis
4.4.1. Chemicals and Materials
4.4.2. Extraction of Polyphenols from Grape Samples
4.4.3. Determination of Total Phenolic Content (TPC), Radical Scavenging Activity (RSA), and Total Anthocyanin Content (TAC) of Grape Samples
4.4.4. Estimation of Phenolic Profile (Characterization of Individual Polyphenols)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banjanin, T. Characterization of quantitative and qualitative characteristics of Blatina vine variety in agroecological conditions of Trebinje. Ph.D. Thesis, University of Belgrade Faculty of Agriculture, Belgrade, Serbia, 2022. [Google Scholar]
- Hu, B.; Gao, J.; Xu, S.; Zhu, J.; Fan, X.; Zhou, X. Quality evaluation of different varieties of dry red wine based on nuclear magnetic resonance metabolomics. Appl. Biol. Chem. 2020, 63, 24. [Google Scholar] [CrossRef]
- Mandić, A.; Mihaljević, M.; Leko, M.; Primorac, J.; Beljo, J. Synonyms and homonyms in Herzegovinian and Dalmatian grapevine cultivars. Acta Hortic. 2019, 1248, 15–20. [Google Scholar] [CrossRef]
- Jovanovic-Cvetkovic, T.; Micic, N.; Ðuric, G.; Cvetkovic, M. Pollen morphology and germination of indigenous grapevine cultivars Žilavka and Blatina (Vitis vinifera L.). Agrolife Sci. J. 2016, 5, 105–109. [Google Scholar]
- Pisciottaa, A.; Abruzzo, F.; Santangelo, T.; Barbagallo, M.G.; Di Lorenzo, R. Berries variability: Causes and effects on the quality of ‘Cabernet Sauvignon’. Acta Hortic. 2018, 1229, 201–207. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight Exposure and Temperature Effects on Berry Growth and Composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar] [CrossRef]
- Roby, G.; Matthews, M.A. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust. J. Grape Wine Res. 2004, 10, 74–82. [Google Scholar] [CrossRef]
- Holt, H.E.; Francis, I.L.; Field, J.; Herderich, M.J.; Iland, P.G. Relationships between berry size, berry phenolic composition and wine quality scores for Cabernet Sauvignon (Vitis vinifera L.) from different pruning treatments and different vintages. Aust. J. Grape Wine Res. 2008, 14, 191–202. [Google Scholar]
- Houel, C.; Martin-Magniette, M.-L.; Nicolas, S.; Lacombe, T.; Le Cunff, L.; Franck, D.; Torregrosa, L.; Conéjéro, G.; Lalet, S.; This, P.; et al. Genetic variability of berry size in the grapevine (Vitis vinifera L.). Aust. J. Grape Wine Res. 2013, 19, 208–220. [Google Scholar] [CrossRef]
- Melo, M.; Volschenk, C.; Hunter, J.; Schultz, H. Berry Size Variation of Vitis vinifera L. cv. Syrah: Morphological Dimensions, Berry Composition and Wine Quality. S. Afr. J. Enol. Vitic. 2015, 36, 1–10. [Google Scholar] [CrossRef]
- Chen, W.-K.; He, F.; Wan, Y.-X.; Liu, X.; Duan, C.-Q.; Wang, J. Influences of Berry Size on Fruit Composition and Wine Quality of Vitis vinifera L. cv. ‘Cabernet Sauvignon’ Grapes. S. Afr. J. Enol. Vitic. 2018, 39, 67–76. [Google Scholar] [CrossRef]
- Zhu, J.; Fraysse, R.; Trought, M.C.; Raw, V.; Yang, L.; Greven, M.; Martin, D.; Agnew, R. Quantifying the seasonal variations in grapevine yield components based on pre- and post-flowering weather conditions. OENO One 2020, 54, 213–230. [Google Scholar] [CrossRef]
- Coombe, B.G. Relationship of Growth and Development to Changes in Sugars, Auxins, and Gibberellins in Fruit of Seeded and Seedless Varieties of Vitis Vinifera. Plant Physiol. 1960, 35, 241–250. [Google Scholar] [CrossRef]
- Ebadi, A.; May, P.; Coombe, B. Effect of short-term temperature and shading on fruit-set, seed and berry development in model vines of V. vinifera, cvs Chardonnay and Shiraz. Aust. J. Grape Wine Res. 1996, 2, 1–8. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Kerridge, G.H.; Rühl, E.H.; Nicholas, P.R. Shiraz berry size in relation to seed number and implications for juice and wine composition. Aust. J. Grape Wine Res. 2005, 11, 2–8. [Google Scholar] [CrossRef]
- Shiraishi, M. Comparison in Changes in Sugars, Organic Acids and Amino Acids during Berry Ripening of Sucrose—And Hexose—Accumulating Grape Cultivars. J. Japan. Soc. Hort. Sci. 2000, 69, 141–148. [Google Scholar] [CrossRef]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical Changes throughout Grape Berry Development and Fruit and Wine Quality. Food GSB 2007, 1, 1–22. [Google Scholar]
- Calò, A.; Tomasi, D.; Crespan, M.; Costacurta, A. Relationship between environmental factors and the dynamics of growth and composition of the grapevine. Acta Hortic. 1996, 427, 217–232. [Google Scholar] [CrossRef]
- Liu, H.-F.; Wu, B.-H.; Fan, P.-G.; Li, S.-H.; Li, L.-S. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2006, 86, 1526–1536. [Google Scholar] [CrossRef]
- Shiraishi, M.; Fujishima, H.; Chijiwa, H. Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 2010, 174, 1–13. [Google Scholar] [CrossRef]
- Coombe, B.G. Influence of temperature on composition and quality of grapes. Acta Hortic. 1987, 206, 23–35. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Grieco, F. Functional properties of grape and wine polyphenols plant foods for human nutition. Plant Foods Hum. Nutr. 2015, 70, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Rafique, R.; Rafique, T.; Naseer, M.; Khalil, U.; Rafique, R. Effect of Climate Change on Polyphenols Accumulation in Grapevine. In Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; Badria, F.A., Miroslav, B., Eds.; IntechOpen Limited: London, UK, 2021. [Google Scholar]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Review. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Fu-xiang, L.; Fu-hua, L.; Ya-xuan, Y.; Ran, Y.; Jian, M. Comparison of phenolic profiles and antioxidant activities in skins and pulps of eleven grape cultivars (Vitis vinifera L.). J. Integr. Agric 2019, 18, 1148–1158. [Google Scholar]
- Sergazy, S.; Shulgau, Z.; Fedotovskikh, G.; Chulenbayeva, L.; Nurgozhina, A.; Nurgaziyev, M. Cardio protective effect of grape polyphenol extract against doxorubicin induced cardiotoxicity. Sci. Rep. 2020, 10, 14720. [Google Scholar] [CrossRef]
- Majeed, U.; Shafi, A.; Majeed, H.; Akram, K.; Liu, X.; Ye, J.; Luo, Y. Grape (Vitis vinifera L.) phytochemicals and their bio-chemical protective mechanisms against leading pathologies. Food Chem. 2022, 405, 134762. [Google Scholar] [CrossRef]
- Maraš, V.; Kodžulović, V.; Mugoša, M.; Raičević, J.; Gazivoda, A.; Šućur, S.; Perišić, M. Clonal selection of autochthonous grape variety Vranac in Montenegro. In Proceedings of the Second International Conference on Medical and Biological Engineering CMBEBiH 2017, (IFMBE Proceedings, 62), Sarajevo, Bosnia and Herzegovina, 16–18 March 2017. [Google Scholar]
- Karoglan Kontic, J.; Maletic, E.; Mirosevic, N.; Kozina, B.; Maric, J. Production Charachteristics of Some Introduced Grape Cultivars (Vitis vinifera L.). Agric. conspec. sci. 2000, 65, 107–114. [Google Scholar]
- Vujović, D.; Maletić, R.; Bucalo, D. Agrobiological characteristics of Merlot variety population inGrockavineyards. In Proceedings of the International Symposium for Agriculture and Food, Skopje, North Macedonia, 12–14 December 2012. [Google Scholar]
- Karoglan, M.; Osrečak, M.; Maslov, L.; Kozina, B. Effect of cluster and berry thinning on Merlot and Cabernet Sauvignon wines composition. Czech J. Food Sci. 2014, 32, 470–476. [Google Scholar] [CrossRef]
- González-Fernández, A.B.; Marcelo, V.; Valenciano, J.B.; Rodríguez-Pérez, J.R. Relationship between physical and chemical parameters for four commercialgrape varieties from the Bierzo region (Spain). Sci. Hortic. 2012, 147, 111–117. [Google Scholar] [CrossRef]
- Beslic, Z.; Pantelic, M.; Dabic, D.; Todic, S.; Natic, M.; Tesic, Z. Effect of vineyard floor management on water regime, growth response, yield and fruit quality in Cabernet Sauvignon. Sci. Hortic. 2015, 197, 650–656. [Google Scholar] [CrossRef]
- Drenjančević, M.; Jukić, V.; Zmaić, K.; Kujundžić, T.; Rastija, V. Effects of early leaf removal on grape yield, chemical characteristics, and antioxidant activity of grape variety Cabernet Sauvignon and wine from eastern Croatia. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 705–711. [Google Scholar] [CrossRef]
- Stefanovic, D.; Nikolic, N.; Kostic, L.; Todic, S.; Nikolic, M. Early Leaf Removal Increases Berry and Wine Phenolics in Cabernet Sauvignon Grown in Eastern Serbia. Agronomy 2021, 11, 238. [Google Scholar] [CrossRef]
- Benz, M.J.; Anderson, M.M.; Williams, M.A.; Barnhisel, K.; Wolpert, J.A. Viticultural Performance of Five Merlot Clones in Oakville, Napa Valley. Am. J. Enol. Vitic. 2006, 57, 233–237. [Google Scholar] [CrossRef]
- Simon, S.; Malinovski, L.I.; Panceri, C.P.; Brighenti, A.F.; Vanderlinde, G.; Bordignon-Luiz, M.T.; Silva, A.L. Productive and qualitative characterization of ‘Merlot’ grapes (Vitis vinifera L.) in Campo Belo do Sul, Santa Catarina State, Brazil. Acta Hortic. 2017, 1157, 337–342. [Google Scholar] [CrossRef]
- Banjanin, T.; Ranković-Vasić, Z.; Nikolić, D.; Anđelić, B. Influence of climatic factors on the quality of Merlot grapevine variety in Trebinje region vineyards (Bosnia and Herzegovina). AGROFOR Int. J. 2019, 4, 95–101. [Google Scholar] [CrossRef]
- Maras, V.; Bogicevic, M.; Tomic, M.; Kodzulovic, V.; Sucur, S.; Cizmovic, M.; Raicevic, D. Ampelometric, Genetic and Sanitary Evaluation of CV. Vranac. Bull. UASVM Hortic. 2011, 68, 155–162. [Google Scholar]
- Milosavljević, M. Biotehnika Vinove Loze. Samostalna izdavačka agencija; NIK-PRESS: Beograd, Srbija, 2012; p. 192. [Google Scholar]
- Popović, T.; Raičević, D. The yield and quality of autochthonous grapevine variety vranac influenced by the agroecological conditions in Podgorica subregion. In Proceedings of the First International Conference On Vranac and Other Montenegrin Autochthonous Grapevine Varieties, Podgorica, Montenegro, 20–22 November 2017. [Google Scholar]
- Banjanin, T.; Ranković-Vasić, Z.; Matijašević, S. Technological Characteristics of the Vranac and Cabernet Sauvignon Grapevine Varieties in the Conditions of the Trebinje Vineyards. Agroknowledge J. 2018, 19, 167–175. [Google Scholar] [CrossRef]
- Blesić, M. Stabilnost bojenih materija i kvalitet vina u zavisnosti od uslova vođjenja maceracije kljuka Blatine. Ph.D. Thesis, Poljoprivredni fakultet Univerziteta u Sarajevu, Sarajevo, Bosna and Hercegovina, 2001. [Google Scholar]
- Rogić, B. Uticaj zelene rezidbe na kvalitet i kvantitet mošta i vina sorte Blatina. Master’s Thesis, Poljoprivredno-prehrambeni fakultet Univerziteta u Sarajevu, Sarajevo, Bosna and Hercegovina, 2009. [Google Scholar]
- Buntić, M.; Beljo, J.; Sabljo, A.; Leko, M. Ampelographic characterization of grapevine genetic resources. In Proceedings of the XXist Scientific-Professional Conference of Agriculture and Food Industry, Neum, Bosnia and Herzegovina, 29 September–2 October 2010. [Google Scholar]
- Kojić, A.; Blesić, M.; Delić, M.; Kovaĉević, S.; Lasić, V. Research of technological properties of some cv. Blatina variants in Herzegovina region. In Proceedings of the XXist Scientific-Professional Conference of Agriculture and Food Industry, Neum, Bosnia and Herzegovina, 29 September–2 October 2010. [Google Scholar]
- Jovanović-Cvetković, T.; Mjatović, D.; Grbić, R. Effect of climatic parameters on uvological characteristics of variety ‘Blatina’. In Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series; Craiova University: Craiova, Romania, 2016; XLVI; pp. 178–184. [Google Scholar]
- Cindrić, P.; Korać, N.; Kovač, V. Sorte Vinove Loze, 3. Izdanje; Prometej: Novi Sad, Serbia, 2000; pp. 275–276. [Google Scholar]
- Božinovik, Z. Ampelografija, Drugo Dopunjeno Izdane; Agrinet DOO: Skopje, North Macedonia, 2010; p. 142. [Google Scholar]
- Falcão, L.D.; Chaves, E.S.; Burin, V.M.; Falcão, A.P.; Gris, E.F.; Bonin, V.; Bordignon-Luiz, M.T. Maturity of Cabernet Sauvi-gnon berries from grapevines grown with two different training systems in a new grape growing region in Brazil. Cien. Inv. Agr. 2008, 35, 271–282. [Google Scholar] [CrossRef]
- Jovanović-Cvetković, T.; Grbić, R.; Bosančić, B.; Mšić, N. Influence of rachis position on physical and compositionalparameters of Cabernet Sauvignon berries. In Proceedings of the VII International Scientific Agriculture Symposium “Agrosym 2016”, Jahorina, Bosnia and Herzegovina, 6–9 October 2016. [Google Scholar]
- Matijašević, S.; Popović, T.; Glišić, M.; Isajlović, S.; Ranković-Vasić, Z.; Pržić, Z.; Nikolić, D.; Ćirković, D. The influence of the berry size on the skin anthocyanins content of some black wine varieties. In Annals of the University of Craiova-Agriculture, Montanology, Cadastre Series; Craiova University: Craiova, Romania, 2019; XLIX; pp. 98–106. [Google Scholar]
- Fidelibus, M.W.; Christensen, L.P.; Katayama, D.G.; Verdenal, P.-H. Yield Components and Fruit Composition of Six “Cabernet Souvignon” Grapevine Selections in the Central San Joaquin Valley, California. J. Am. Pomol. Soc. 2006, 60, 32–36. [Google Scholar]
- Pržić, Z. Influence of Partial Defoliation on Content of Major Aromatic and Flavonoid Complex Compounds in Grapes and Wine. Ph.D. Thesis, University of Belgrade, Faculty of Agriculture, Belgrade, Serbia, 2014. [Google Scholar]
- Vukosavljević, V.; Garić, M. Prinos i kvalitet grožđa sorte Kaberne sovinjon u agroekološkim uslovima Levačkog vinogorja. In Proceedings of the Zbornici radova, Savetovanje o Biotehnologiji sa Međunarodnim Učešćem, Čačak, Serbia, 13–14 March 2015. [Google Scholar]
- Vanderlinde, G.; Brighenti, A.; Malinovski, L.; Cipriani, R.; Simon, S.; Sander, G.; Allebrandt, R.; Silva, A. Influence of the timing of shoot topping on yield and grape quality in ‘Cabernet Sauvignon’ and ‘Merlot’ cultivars. Acta Hortic. 2017, 1157, 407–412. [Google Scholar] [CrossRef]
- González-Neves, G.; Ferrer, M.; Gil, G. Differentiation of Tannat, Cabernet Sauvignon and Merlotgrapes from Uruguay ac-cording to their generalcomposition and polyphenolic potential. Comun. Sci. 2012, 3, 41–49. [Google Scholar]
- Ferrer, M.; Echeverría, G.; Carbonneau, A. Effect of Berry Weight and its Components on the Contents of Sugars and An-thocyanins of Three Varieties of Vitis vinifera L. under Different Water Supply Conditions. S. Afr. J. Enol. Vitic. 2014, 35, 103–113. [Google Scholar]
- Da Mota, R.V.; Favero, A.C.; Silva, C.P.C.; Purgatto, E.; Shiga, T.M.; Regina, M.A. Wine grape quality of grapevines grown in the Cerrado ecoregion of Brazil. J. Int. Sci. Vigne Vin 2011, 45, 101–109. [Google Scholar] [CrossRef]
- Vujović, S.D.; Žunić, M.D.; Popović, S.B.; Pantelić, M.M.; Popović-Djordjević, B.J. Agrobiological and wine quality traits of Vitis vinifera cv. Merlot clones selected in Serbia. J. Int. Sci. Vigne Vin 2015, 49, 267–274. [Google Scholar] [CrossRef]
- Sivcev, B.; Rankovic-Vasic, Z.; Petrovic, A.; Jancis, R.; Milisic, K. Fruit Characteristics of the Merlot Clones in Belgrade Wine Growing Region, Serbia. J. Adv. Plant Sci 2018, 1, 106. [Google Scholar]
- Fidelibus, M.W.; Christensen, L.P.; Katayama, D.G.; Verdenal, P.-T.; Cathline, K. Fruit Characteristics of Six Merlot GrapevineSelections in the Central San Joaquin Valley, California. Am. J. Enol. Vitic. 2007, 58, 259–261. [Google Scholar] [CrossRef]
- Gombau, J.; Pons-Mercadé, P.; Conde, M.; Asbiro, L.; Pascual, L.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutiérrez, I.; Zamora, F. Influence of grape seeds on wine composition and astringencyof Tempranillo, Garnacha, Merlot and Cabernet Sauvignon wines. Food Sci. Nutr. 2020, 8, 3442–3455. [Google Scholar] [CrossRef]
- Xie, S.; Tang, Y.; Wang, P.; Song, C.; Duan, B.; Zhang, Z.; Meng, J. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes. PLoS ONE 2018, 13, e0201374. [Google Scholar] [CrossRef]
- Chapman, D.M.; Roby, G.; Ebeler, S.E.; Guinard, J.-X.; Matthews, M.A. Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust. J. Grape Wine Res. 2005, 11, 339–347. [Google Scholar] [CrossRef]
- Cheng, G.; He, Y.-N.; Yue, T.-X.; Wang, J.; Zhang, Z.-W. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon BerryGrowth and Anthocyanin Profiles. Molecules 2014, 19, 13683–13703. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; Pena-Neira, Á.; López-Solís, R.; Zamora-Marín, F.; Ricardo-da Silva, J.M.; Laureano, O. Comparative Study of the Phenolic Composition of Seeds andSkins from Carme’nere and Cabernet Sauvignon Grape Varieties (Vitis vinifera L.) during Ripening. J. Agric. Food Chem. 2010, 58, 3591–3599. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Verdugo-Vásquez, N.; Díaz-Gálvez, I. Influence of Type of Management and Climatic Conditions on Productive Behavior, Oenological Potential, and Soil Characteristics of a ‘Cabernet Sauvignon’ Vineyard. Agronomy 2019, 9, 64. [Google Scholar] [CrossRef]
- Mesić, J.; Obradović, V.; Marčetić, H.; Svitlica, B.; Malčić, I.; Soldo, T. Impact of cluster thinning on Merlot and Cabernet Sauvignon (Vitis vinifera L.) must quality. In Proceedings of the 15th International Symposium on Agriculture, Vodice, Croatia, 16–21 February 2020. [Google Scholar]
- Ivanišević, D.; Kalajdžić, M.; Drenjančević, M.; Puškaš, V.; Korać, N. The impact of cluster thinning and leaf removal timing on the grape quality and concentration of monomeric anthocyanins in Cabernet-Sauvignon and Probus (Vitis vinifera L.) wines. OENO One 2020, 1, 63–74. [Google Scholar] [CrossRef]
- Bogicevic, M.; Maras, V.; Mugoša, M.; Vesna Kodžulović, V.; Jovana Raičević, J.; Šućur, S.; Failla, O. The effects of early leaf removal and cluster thinning treatments on berry growth and grape composition in cultivars Vranac and Cabernet Sauvignon. Chem. Biol. Technol. Agric. 2015, 2, 13. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Romero-Cascales, I.; Ros García, J.M.; Bautista-Ortín, A.B.; López-Roca, J.M.; Fernández-Fernández, J.I.; Gómez-Plaza, E. Anthocyanins, and tannins in four grape varieties (Vitis vinifera L.) evolution of their contentand extractability. J. Int. Sci. Vigne Vin 2008, 42, 147–156. [Google Scholar]
- Moyer, M.M.; Newhouse, J.M.; Mireles, M.S. Performance of early fruit-zone leaf removal in Cabernet Sauvignon and Merlot in an arid climate. Catal. Discov. Pract. 2022, 6, 20–29. [Google Scholar] [CrossRef]
- Lavrić, M.; Prusina, T. The influence of the vintage year on Blatina wine quality. In Proceedings of the 15th International Symposium on Agriculture, Vodice, Croatia, 16–21 February 2020. [Google Scholar]
- Jagatić Korenika, A.-M.; Tomaz, I.; Preiner, D.; Lavrić, M.; Šimić, B.; Jeromel, A. Influence of L. thermotolerans and S. cerevisiae Commercial Yeast Sequential Inoculation on Aroma Composition of Red Wines (Cv Trnjak, Babic, Blatina and Frankovka). Fermentation 2021, 7, 4. [Google Scholar] [CrossRef]
- Popović, T.; Mijović, S.; Pajović, R. The influence of climatic factors on the level and quality of yield of Vranac variety in podgorica vineyards. Agric. For. 2013, 59, 137–145. [Google Scholar]
- Maras, V.; Tomic, M.; Kodzulovic, V.; Knezevic, B.; Raicevic, D.; Cizmovic, M. Yield and Quality of Grapes and Wine of the Cultivars ‘Vranac’,‘Primitivo’ and ‘Negro Amaro’. Acta Hort. 2012, 931, 371–375. [Google Scholar] [CrossRef]
- Pajovic, R.; Raicevic, D.; Popovic, T.; Sivilotti, P.; Lisjak, K.; Vanzo, A. Polyphenolic Characterisation of Vranac, Kratosija and Cabernet Sauvignon (Vitis vinifera L. cv.) Grapes and Wines from Different Vineyard Locations in Montenegro. S. Afr. J. Enol. Vitic. 2014, 35, 139–147. [Google Scholar] [CrossRef]
- Košmerl, T.; Bertalanič, L.; Maraš, V.; Kodžulović, V.; Šućur, S.; Abramovič, H. Impact of Yield on Total Polyphenols, Anthocyanins, Reducing Sugars and Antioxidant Potential in White and Red Wines Produced from Montenegrin Autochthonous Grape Varieties. Food Sci. Technol. 2013, 1, 7–15. [Google Scholar] [CrossRef]
- Šućur, S.; Maraš, V.; Kodžulović, V.; Raičević, J.; Mugoša, M.; Jug, T.; Košmerl, T. The impact of different commercial yeasts on quality parameters of Montenegrin red wine-Vranac and Kratošija. Biol. Eng. Med. 2016, 1, 1–4. [Google Scholar] [CrossRef]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Pantelić, M.; Dabić Zagorac, D.; Davidović, S.; Todić, S.; Bešlić, Z.; Gašić, U.; Tešić, Ž.; Natić, M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients. 2015, 8, E16. [Google Scholar] [CrossRef]
- Banjanin, T.; Özcan, M.M.; Al Juhaimi, F.; Ranković-Vasić, Z.; Uslu, N.; Mohamed, I.; Ghafoor, K.; Babiker, E.; Osman, M.; Gassem, M.; et al. Effect of varieties on bioactive compounds, fatty acids, and mineral contents in different grape seed and oils from Bosnia and Herzegovina. J. Food Process. Preserv. 2019, 43, e13981. [Google Scholar] [CrossRef]
- Pantelić, M.; Dabić Zagorac, D.; Natić, M.; Gašić, U.; Jović, S.; Vujović, D.; Popović Djordjević, J. Impact of clonal variability on phenolics and radical scavenging activity of grapes and wines: A study on the recently developed Merlot and Cabernet Franc clones (Vitis vinifera L.). PLoS ONE 2016, 11, e0163823. [Google Scholar] [CrossRef]
- Ozkan, K.; Ayse, K.; Osman, S. The effects of different drying methods on the in vitro bioaccessibility of phenolics, antioxidant capacity, minerals and morphology of black ‘Isabel’grape. LWT 2022, 158, 113185. [Google Scholar] [CrossRef]
- Natić, M.; Dabić Zagorac, D.; Gašić, U.; Dojčinović, B.; Ćirić, I.; Relić, D.; Todić, S.; Sredojević, M. Autochthonous and international grape varieties grown in Serbia-Phenolic and elemental composition. Food Biosci. 2021, 40, 100889. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic profiles of leaves, grapes and wine of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- Herranz-Lópeza, M.; Fernández-Arroyob, S.; Pérez-Sancheza, A.; Barrajón-Catalána, E.; Beltrán-Debónc, R.; Abel Menéndezd, J.; Alonso-Villaverde, A.; Segura-Carretero, A.; Joven, J.; Vicente, M. Synergism of plant-derived polyphenols in adipogenesis: Perspectives and implications. Phytomedicine 2012, 19, 253–261. [Google Scholar] [CrossRef]
- Institute of Statistisc. Statistical Yearbook of Republika Srpska 2020, 2021, 2nd ed.; Republika Srpska Institute of Statistics: Banja Luka, Bosnia and Herzegovina, 2021; pp. 31–33. [Google Scholar]
- Federalni Hidrometeorološki Zavod. Metorološki Godišnjak 2020; Federalni Hidrometeorološki Zavod: Sarajevo, Bosnia and Herzegovina, 2020; pp. 35–36. [Google Scholar]
- Federalni Hidrometeorološki Zavod. Metorološki Godišnjak 2021; Federalni Hidrometeorološki Zavod: Sarajevo, Bosnia and Herzegovina, 2021; pp. 38–39. [Google Scholar]
- Winkler, A.J.; Cook, J.A.; Kilwer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkley, CA, USA, 1974; pp. 58–60. [Google Scholar]
Mean Temperature | Av. Max. T. * (°C) | Av. Min. T. (°C) | GDD (°C) | Rain (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aug.–Sep. | Apr.–Oct. | Year | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Year | |
2020 | 23.6 | 20.0 | 14.4 | 30.6 | 26.1 | 18.8 | 15.0 | 829.6 | 2140.0 | 189.4 | 543.4 | 1124.4 |
2021 | 22.8 | 19.6 | 14.9 | 29.6 | 26.0 | 18.0 | 14.8 | 783.9 | 2054.4 | 121.8 | 496.9 | 1691.8 |
00–19 | 23.3 | 20.8 | 15.7 | 29.1 | 26.1 | 17.4 | 15.1 | 747.9 | 2372.7 | 194.2 | 705.3 | 1683.7 |
Mean Temperature | Av. Max. T. * (°C) | Av. Min. T. (°C) | GDD (°C) | Rain (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aug.–Sep. | Apr.–Oct. | Year | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Aug.–Sep. | Apr.–Oct. | Year | |
2020 | 25.0 | 21.1 | 16.3 | 31.8 | 27.4 | 19.5 | 15.5 | 912.0 | 2375.4 | 196.9 | 521.1 | 1066.7 |
2021 | 24.4 | 21.1 | 16.0 | 31.8 | 27.8 | 18.6 | 15.5 | 875.4 | 2375.4 | 136.4 | 454.0 | 1541.5 |
00–19 | 24.3 | 21.4 | 16.1 | 30.5 | 27.4 | 18.2 | 15.1 | 875.1 | 2555.3 | 191.5 | 685.8 | 1491.6 |
Grape Cluster Weight (g) | Number of Grape Berries in Grape Cluster | Weight of Ten Grape Berries | Number of Seeds in Ten Grape Berries | |
---|---|---|---|---|
Cabernet Sauvignon/2020 | 198.4 ± 9.4 c | 207.9 ± 11.8 a | 11.4 ± 0.6 d | 16.5 ± 1.3 b |
Merlot/2020 | 278.4 ± 10.8 b | 206.4 ± 10.1 a | 15.2 ± 0.6 c | 20.4 ± 1.1 ab |
Blatina/2020 | 373.9 ± 23.5 a | 194.9 ± 21.7 ab | 22.3 ± 1.4 b | 17.5 ± 1.1 ab |
Vranac/2020 | 339.9 ± 20.9 a | 139.0 ± 15.9 bc | 29.8 ± 0.7 a | 22.7 ± 1.5 a |
Cabernet Sauvignon/2021 | 192.3 ± 12.9 c | 155.2 ± 12.2 abc | 12.8 ± 0.4 cd | 17.1 ± 1.0 ab |
Merlot/2021 | 173.9 ± 16.2 c | 121.0 ± 13.4 c | 15.1 ± 0.7 c | 19.2 ± 1.0 ab |
Blatina/2021 | 325.3 ± 38.6 a | 115.2 ± 14.4 c | 29.8 ± 0.9 a | 22.8 ± 1.8 a |
Vranac/2021 | 272.1 ± 28.8 a | 130.1 ± 19.0 bc | 26.6 ± 0.6 a | 18.5 ± 1.5 ab |
Year (Y) | 16.13 *** | 33.21 *** | 6.60 *** | 0.02 ns |
Variety (V) | 25.26 *** | 3.94 * | 205.47 *** | 3.26 * |
Y × V | 2.10 ns | 3.15 * | 16.64 *** | 4.31 ** |
Mean Values (± Standard Error of Mean) | ||||
Year | ||||
2020 | 297.7 ± 13.5 a | 187.1 ± 8.7 a | 19.6 ± 1.2 b | 19.3 ± 0.7 a |
2021 | 240.9 ± 15.9 b | 130.4 ± 7.6 b | 21.1 ± 1.2 a | 19.4 ± 0.7 a |
Variety | ||||
Cabernet Sauvignon | 195.4 ± 7.8 c | 181.6 ± 10.2 a | 12.1 ± 0.4 d | 16.8 ± 0.8 b |
Merlot | 226.1 ± 15.3 c | 163.7 ± 12.8 ab | 15.1 ± 0.4 c | 19.8 ± 0.8 a |
Blatina | 349.6 ± 22.6a | 155.1 ± 15.6 ab | 26.0 ± 1.2 b | 20.2 ± 1.2 a |
Vranac | 306.0 ± 19.0 b | 134.5 ± 12.1 b | 28.2 ± 0.6 a | 20.6 ± 1.1 a |
Grape Cluster Weight (g) | Number of Grape Berries in Grape Cluster | Weight of Ten Grape Berries | Number of Seeds in Ten Grape Berries | |
---|---|---|---|---|
Cabernet Sauvignon/2020 | 152.9 ± 10.7 cd | 120.7 ± 8.0 bc | 12.6 ± 0.3 d | 15.5 ± 0.4 d |
Merlot/2020 | 325.9 ± 37.8 ab | 195.1 ± 21.8 a | 20.1 ± 0.7 c | 21.6 ± 1.1 abc |
Blatina/2020 | 229.1 ± 22.3 bcd | 78.9 ± 7.8 c | 32.1 ± 1.1 ab | 25.7 ± 1.3 a |
Vranac/2020 | 379.2 ± 28.8 a | 156.2 ± 15.4 abc | 28.1 ± 1.0 b | 18.3 ± 1.1b cd |
Cabernet Sauvignon/2021 | 149.5 ± 11.2 d | 125.7 ± 8.4 abc | 12.6 ± 0.3 d | 16.0 ± 0.9 d |
Merlot/2021 | 261.6 ± 11.3 bc | 184.4 ± 18.3 ab | 15.9 ± 0.4 d | 18.1 ± 0.8 cd |
Blatina/2021 | 428.7 ± 27.5 a | 145.0 ± 14.2 abc | 33.0 ± 1.3 a | 18.7 ± 0.8b cd |
Vranac/2021 | 414.2 ± 31.7 a | 161.1 ± 8.3 abc | 29.1 ± 1.0 b | 22.5 ± 1.0 ab |
Year (Y) | 9.59 ** | 4.65 * | 1.08 ns | 4.50 * |
Variety (V) | 58.97 *** | 21.83 *** | 223.12 *** | 15.88 *** |
Y × V | 17.55 *** | 5.04 ** | 3.76 * | 12.61 *** |
Mean Values (± Standard Error of Mean) | ||||
Year | ||||
2020 | 271.7 ± 19.0 b | 137.7 ± 9.8 b | 23.3 ± 1.3 ns | 20.3 ± 0.7 a9 |
2021 | 313.5 ± 21.3 a | 154.1 ± 7.1 a | 22.6 ± 1.4 ns | 18.8 ± 0.6 b |
Variety | ||||
Cabernet Sauvignon | 151.2 ± 7.6 c | 123.2 ± 5.7 c | 12.6 ± 0.2 d | 15.8 ± 0.5 c |
Merlot | 293.8 ± 20.6 b | 189.8 ± 13.9 a | 18.0 ± 0.6 c | 19.9 ± 0.8 b |
Blatina | 328.8 ± 28.7 b | 112.0 ± 10.9 c | 32.5 ± 0.8 a | 22.2 ± 1.1 a |
Vranac | 396.7 ± 21.2 a | 158.7 ± 8.6 b | 28.7 ± 0.7 b | 20.4 ± 0.9 ab |
Total Soluble Solids (°Brix) | Titratable Acids (g/L) | pH | |
---|---|---|---|
Cabernet Sauvignon/2020 | 24.3 ± 0.6 ab | 5.38 ± 0.02 d | 2.80 ± 0.02 d |
Merlot/2020 | 24.8 ± 0.6 a | 6.08 ± 0.01 c | 3.04 ± 0.01 bc |
Blatina/2020 | 23.5 ± 0.7 abc | 4.81 ± 0.02 e | 2.99 ± 0.02 bc |
Vranac/2020 | 23.4 ± 0.5 abc | 4.10 ± 0.01 f | 3.20 ± 0.01 ab |
Cabernet Sauvignon/2021 | 22.8 ± 0.4 abc | 6.78 ± 0.01 ab | 3.33 ± 0.01 a |
Merlot/2021 | 23.1 ± 0.2 abc | 6.47 ± 0.02 b | 3.12 ± 0.01 b |
Blatina/2021 | 21.5 ± 0.4 c | 7.08 ± 0.02 a | 2.89 ± 0.01 d |
Vranac/2021 | 22.4 ± 0.6 bc | 5.62 ± 0.06 d | 3.21 ± 0.04 ab |
Year (Y) | 19.08 *** | 5413.70 *** | 103.87 *** |
Variety (V) | 3.14 * | 1216.73 *** | 42.31 *** |
Y × V | 0.37 ns | 405.59 *** | 82.23 *** |
Mean Values (± Standard Error of Mean) | |||
Year | |||
2020 | 24.1 ± 0.3 a | 5.10 ± 0.15 b | 3.04 ± 0.03 b |
2021 | 22.5 ± 0.2 b | 6.48 ± 0.12 a | 3.19 ± 0.03 a |
Variety | |||
Cabernet Sauvignon | 23.6 ± 0.4 ab | 6.12 ± 0.21 b | 3.10 ± 0.08 b |
Merlot | 23.9 ± 0.4 a | 6.28 ± 0.06 a | 3.08 ± 0.02 b |
Blatina | 22.5 ± 0.5 b | 6.03 ± 0.34 c | 3.00 ± 0.01 |
Vranac | 22.9 ± 0.4 ab | 4.80 ± 0.22 d | 3.20 ± 0.02 a |
Total Soluble Solids (°Brix) | Titratable Acids (g/L) | pH | |
---|---|---|---|
Cabernet Sauvignon/2020 | 25.5 ± 0.23 ab | 5.10 ± 0.05 d | 3.65 ± 0.03 a |
Merlot/2020 | 26.3 ± 0.51 a | 4.68 ± 0.07 e | 3.50 ± 0.0 ab |
Blatina/2020 | 19.1 ± 0.29 d | 6.43 ± 0.01 b | 2.92 ± 0.01 c |
Vranac/2020 | 25.7 ± 0.47 ab | 4.51 ± 0.02 e | 3.20 ± 0.03 b |
Cabernet Sauvignon/2021 | 24.5 ± 0.28 b | 5.02 ± 0.01 d | 3.70 ± 0.02 a |
Merlot/2021 | 25.9 ± 0.43 ab | 5.96 ± 0.02 c | 3.34 ± 0.01 bc |
Blatina/2021 | 16.6 ± 0.23 e | 8.21 ± 0.01 a | 3.28 ± 0.01 bc |
Vranac/2021 | 21.9 ± 0.81 c | 5.83 ± 0.01 c | 3.55 ± 0.01 ab |
Year (Y) | 39.59 *** | 1890.91 *** | 118.09 *** |
Variety (V) | 148.00 *** | 1889.10 *** | 310.66 *** |
Y × V | 6.33 *** | 261.19 *** | 89.14 *** |
Mean Values (± Standard Error of Mean) | |||
Year | |||
2020 | 24.2 ± 0.64 a | 5.18 ± 0.16 b | 3.32 ± 0.06 b |
2021 | 22.2 ± 0.78 b | 6.26 ± 0.24 a | 3.47 ± 0.04 a |
Variety | |||
Cabernet Sauvignon | 24.9 ± 0.23 b | 5.06 ± 0.03 | 3.68 ± 0.02 a |
Merlot | 26.1 ± 0.32 a | 5.32 ± 0.19 b | 3.42 ± 0.03 b |
Blatina | 17.8 ± 0.41 d | 7.32 ± 0.27 a | 3.09 ± 0.05 d |
Vranac | 23.8 ± 0.73 c | 5.17 ± 0.19 c | 3.37 ± 0.05 c |
Parameter/Sample | Blatina | Vranac | Cabernet Sauvignon | Merlot | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T2020 | T2021 | M2020 | M2021 | M2020 | M2021 | T2020 | T2021 | T2020 | T2021 | M2020 | M2021 | T2020 | T2021 | M2020 | M2021 | ||
Hydroxycinnamic acids (mg/kg) | |||||||||||||||||
1 | Chlorogenic acid | 2.12 | 2.27 | 1.27 | 0.81 | 2.06 | 2.91 | 1.92 | 2.81 | 1.09 | 0.75 | 1.87 | 1.60 | 0.94 | 1.25 | 0.95 | 1.03 |
2 | Neo-chlorogenic acid | 2.14 | 2.03 | 0.95 | 1.38 | 2.21 | 2.21 | 2.20 | 2.59 | 1.16 | 1.14 | 1.56 | 1.38 | 1.18 | 1.29 | 1.17 | 1.28 |
3 | Caffeic acid | 0.20 | 0.11 | 0.07 | 0.14 | 0.08 | 0.07 | 0.15 | 0.11 | 0.10 | - | 0.10 | 0.15 | 0.08 | 0.12 | 0.10 | 0.06 |
Flavan-3-ols (mg/kg) | |||||||||||||||||
4 | Catechin_gallate | 8.83 | 17.46 | 15.72 | 7.72 | 13.91 | 18.15 | 17.99 | 25.02 | 8.53 | 14.90 | 11.06 | 9.00 | 20.51 | 15.60 | 15.15 | 18.65 |
Flavonols (mg/kg) | |||||||||||||||||
5 | Rutin | 4.65 | 8.48 | 4.02 | 5.99 | 10.63 | 8.95 | 10.67 | 13.39 | 3.68 | 4.71 | 2.28 | 2.38 | 4.07 | 5.21 | 3.54 | 3.79 |
6 | Isorhamnetin 3-O-rutinoside | 8.58 | 5.54 | 4.30 | 5.89 | 14.19 | 11.16 | 13.11 | 13.54 | 2.90 | 2.88 | 2.94 | 3.23 | 5.10 | 5.50 | 4.76 | 4.84 |
7 | Quercetin | 0.76 | 0.92 | 1.10 | 0.98 | 0.63 | 0.49 | 0.37 | 0.48 | 0.70 | 1.01 | 0.69 | 0.72 | 0.45 | 2.89 | 1.79 | 0.23 |
8 | Dihydroquercetin | 0.29 | 0.14 | 0.10 | 0.14 | 0.10 | 0.17 | 0.05 | 0.05 | 0.14 | 0.03 | 0.20 | 0.09 | 0.02 | 0.05 | 0.06 | 0.02 |
9 | Quercetin 3-O-glucoside | 30.79 | 25.99 | 18.50 | 9.03 | 14.74 | 12.64 | 10.29 | 12.05 | 13.53 | 37.56 | 18.45 | 24.17 | 17.69 | 20.76 | 33.46 | 3.84 |
10 | Quercetin 3-O-rhamnoside | 1.57 | 6.27 | 1.62 | 3.10 | 4.65 | 3.11 | 2.84 | 3.88 | 0.65 | 1.01 | 0.23 | 0.17 | 0.25 | 0.52 | 0.58 | 0.20 |
11 | Kaempferol | 0.93 | 0.72 | 0.66 | 0.61 | 0.69 | 0.35 | 0.60 | 0.57 | 0.54 | 0.66 | 0.55 | 0.55 | 0.54 | 1.52 | 1.28 | 0.34 |
12 | Dihydrokaempferol | 0.19 | 0.17 | 0.16 | 0.13 | 0.19 | 0.16 | 0.17 | 0.21 | 0.26 | 0.21 | 0.15 | 0.17 | 0.15 | 0.14 | 0.13 | 0.13 |
13 | Kaempferol 3-O-glucoside | 14.08 | 10.80 | 8.34 | 5.15 | 5.37 | 3.94 | 3.95 | 5.22 | 4.04 | 13.87 | 5.77 | 8.76 | 5.56 | 6.34 | 10.73 | 0.91 |
14 | Myricetin | 0.70 | 4.51 | 1.00 | 3.33 | 8.38 | 13.15 | 7.63 | 9.51 | 4.02 | 2.64 | 4.28 | 4.00 | 0.91 | 5.35 | 1.85 | 1.46 |
15 | Isorhamnetin | 1.18 | 0.25 | 0.52 | 0.23 | 0.36 | 0.28 | 0.30 | 0.13 | 0.41 | 0.44 | 0.43 | 0.63 | 0.29 | 0.88 | 0.68 | 0.16 |
Flavanones (mg/kg) | |||||||||||||||||
16 | Naringenin | 0.10 | 0.09 | 0.07 | 0.05 | 0.06 | 0.06 | 0.05 | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.05 | 0.07 | 0.05 | 0.05 |
17 | Eriodictyol | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.05 | 0.06 | 0.09 | 0.09 | 0.06 | 0.10 | 0.06 | 0.07 | 0.08 | 0.09 | 0.05 |
19 | TPC (g GAE/kg) | 5.70 | 6.40 | 4.59 | 3.17 | 4.83 | 6.43 | 5.58 | 6.30 | 4.42 | 6.76 | 6.11 | 5.25 | 4.04 | 4.17 | 3.82 | 4.20 |
20 | RSA (mmol TE/kg) | 35.57 | 41.69 | 33.59 | 27.58 | 33.80 | 43.81 | 39.85 | 43.49 | 34.55 | 48.55 | 45.09 | 38.34 | 29.42 | 32.24 | 32.37 | 35.40 |
21 | TAC (g mal 3-glu/kg) | 1.90 | 1.64 | 0.67 | 0.92 | 2.21 | 2.33 | 2.25 | 2.89 | 1.07 | 0.71 | 1.38 | 1.19 | 0.82 | 1.04 | 0.68 | 0.99 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
1 | 1.00 | ||||||||||||||||||||
2 | 0.90 *** | 1.00 | |||||||||||||||||||
3 | 0.26 | 0.35 | 1.00 | ||||||||||||||||||
4 | 0.33 | 0.33 | −0.38 | 1.00 | |||||||||||||||||
5 | 0.68 | 0.84 ** | 0.05 | 0.56 | 1.00 | ||||||||||||||||
6 | 0.70 | 0.86 ** | 0.21 | 0.44 | 0.90 *** | 1.00 | |||||||||||||||
7 | −0.32 | −0.37 | 0.06 | −0.14 | −0.24 | −0.29 | 1.00 | ||||||||||||||
8 | 0.40 | 0.31 | 0.50 | −0.58 | −0.12 | 0.02 | −0.11 | 1.00 | |||||||||||||
9 | −0.17 | −0.21 | −0.05 | −0.22 | −0.33 | −0.37 | 0.42 | 0.15 | 1.00 | ||||||||||||
10 | 0.61 | 0.70 | 0.07 | 0.27 | 0.80 * | 0.62 | −0.20 | 0.18 | −0.14 | 1.00 | |||||||||||
11 | −0.22 | −0.18 | 0.26 | −0.11 | −0.14 | −0.11 | 0.91 *** | −0.02 | 0.52 | −0.14 | 1.00 | ||||||||||
12 | 0.22 | 0.22 | −0.10 | −0.10 | 0.23 | 0.12 | −0.29 | 0.18 | 0.13 | 0.17 | −0.24 | 1.00 | |||||||||
13 | −0.08 | −0.09 | 0.08 | −0.26 | −0.23 | −0.27 | 0.31 | 0.29 | 0.94 *** | 0.02 | 0.44 | 0.18 | 1.00 | ||||||||
14 | 0.75 | 0.71 | −0.03 | 0.34 | 0.75 | 0.71 | −0.16 | 0.02 | −0.37 | 0.53 | −0.22 | 0.18 | −0.40 | 1.00 | |||||||
15 | −0.11 | −0.16 | 0.47 | −0.48 | −0.43 | −0.21 | 0.56 | 0.43 | 0.61 | −0.38 | 0.69 | −0.01 | 0.62 | −0.37 | 1.00 | ||||||
16 | 0.29 | 0.30 | 0.33 | −0.05 | 0.15 | 0.13 | 0.18 | 0.54 | 0.33 | 0.39 | 0.32 | 0.20 | 0.53 | −0.18 | 0.48 | 1.00 | |||||
17 | 0.03 | −0.06 | 0.14 | −0.05 | −0.17 | −0.24 | 0.27 | 0.16 | 0.32 | −0.19 | 0.36 | 0.25 | 0.19 | −0.11 | 0.20 | −0.01 | 1.00 | ||||
18 | 0.32 | 0.25 | −0.10 | 0.14 | 0.24 | −0.05 | −0.02 | 0.28 | 0.36 | 0.65 | −0.04 | 0.14 | 0.50 | 0.02 | −0.12 | 0.61 | 0.00 | 1.00 | |||
19 | 0.66 | 0.56 | −0.15 | 0.26 | 0.37 | 0.25 | −0.31 | 0.24 | 0.29 | 0.35 | −0.28 | 0.44 | 0.33 | 0.44 | −0.07 | 0.24 | 0.08 | 0.52 | 1.00 | ||
20 | 0.50 | 0.39 | −0.31 | 0.25 | 0.25 | 0.10 | −0.28 | 0.08 | 0.24 | 0.18 | −0.32 | 0.37 | 0.21 | 0.42 | −0.20 | −0.01 | 0.12 | 0.41 | 0.94 *** | 1.00 | |
21 | 0.91 *** | 0.98 *** | 0.30 | 0.36 | 0.84 ** | 0.88 *** | −0.40 | 0.24 | −0.31 | 0.62 | −0.24 | 0.30 | −0.21 | 0.79 * | −0.20 | 0.19 | −0.03 | 0.13 | 0.55 | 0.41 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović-Cvetković, T.; Sredojević, M.; Natić, M.; Grbić, R.; Akšić, M.F.; Ercisli, S.; Cvetković, M. Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes. Plants 2023, 12, 695. https://doi.org/10.3390/plants12040695
Jovanović-Cvetković T, Sredojević M, Natić M, Grbić R, Akšić MF, Ercisli S, Cvetković M. Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes. Plants. 2023; 12(4):695. https://doi.org/10.3390/plants12040695
Chicago/Turabian StyleJovanović-Cvetković, Tatjana, Milica Sredojević, Maja Natić, Rada Grbić, Milica Fotirić Akšić, Sezai Ercisli, and Miljan Cvetković. 2023. "Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes" Plants 12, no. 4: 695. https://doi.org/10.3390/plants12040695
APA StyleJovanović-Cvetković, T., Sredojević, M., Natić, M., Grbić, R., Akšić, M. F., Ercisli, S., & Cvetković, M. (2023). Exploration and Comparison of the Behavior of Some Indigenous and International Varieties (Vitis vinifera L.) Grown in Climatic Conditions of Herzegovina: The Influence of Variety and Vintage on Physico-Chemical Characteristics of Grapes. Plants, 12(4), 695. https://doi.org/10.3390/plants12040695