Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Measurements of Photosynthetic Parameters and Physiological Indexes
2.3. GST Activity of E. crus-galli
2.4. Protein Extraction, Digestion, and iTRAQ Labeling
2.5. Peptide Fractionation and Quantitative Proteomic Analysis Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS)
2.6. Database Searches and Bioinformatics Analysis
2.7. Protein Annotation and Classification
2.8. Statistical Analysis
3. Results
3.1. Photosynthetic Parameters and Physiological Index Measurements
3.2. GST Activity Analysis
3.3. Identification of Proteins in E. crus-galli Using iTRAQ
3.4. Differentially Accumulated Proteins Species between the Susceptible (SCK) and Resistant (RCK) E. crus-galli Samples
3.5. Identification of DEPs between the Susceptible (Squin) Samples and Resistant (Rquin) E. crus-galli after Quinclorac Treatment
4. Discussion
4.1. Comparative Proteomics Reveal DEPs between Susceptible and Resistant Biotypes of E. crus-galli
4.2. Ecological Fitness Costs Associated with Quinclorac Resistance of E. crus-galli
4.3. Key Differentially Expressed Herbicide-Related Proteins Involved in the E. crus-galli Resistance to Quinclorac
4.4. Plant Defense Involved in Quinclorac-Resistant E. crus-galli
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heap, I. Top 15 Weed Species Resistant to the Most Number of Sites of Action. Available online: http://www.weedscience.com/ (accessed on 13 June 2022).
- Kurniadie, D.; Putri, K.D.; Widianto, R. Resistance test of Echinochloa crus-galli from West Java toward metsulfuron-methyl and penoxsulam. Res. Crops 2021, 22, 53–59. [Google Scholar]
- Fang, J.P.; Liu, T.T.; Zhang, Y.H.; Li, J.; Dong, L.Y. Target site–based penoxsulam resistance in barnyardgrass (Echinochloa crus-galli) from China. Weed Sci. 2019, 67, 281–287. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Norsworthy, J.K.; Jha, P.; Smith, K. Does resistance to propanil or clomazone alter the growth and competitive abilities of barnyardgrass (Echinochloa crus-galli)? Weed Sci. 2011, 59, 353–358. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Norsworthy, J.K.; Smith, K.L.; Neve, P. Modeling the simultaneous evolution of resistance to ALS- and ACCase-inhibiting herbicides in barnyardgrass (Echinochloa crus-galli) in clearfield®rice. Weed Technol. 2017, 28, 89–103. [Google Scholar] [CrossRef]
- Vignola, M.D.; Sainz, M.; Saldain, N.E.; Marchesi, C.; Bonnecarrère, V.; Gadea, P.D. Limited induction of ethylene and cyanide synthesis are observed in quinclorac-resistant barnyardgrass (Echinochloa crus-galli) in Uruguay. Weed Sci. 2020, 68, 348–357. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Heap, I. The International Herbicide-Resistant Weed Database. Available online: www.weedscience.org/ (accessed on 20 June 2022).
- Yang, Q.; Yang, X.; Zhang, Z.C.; Wang, J.P.; Fu, W.G.; Li, Y.F. Investigating the resistance levels and mechanisms to penoxsulam and cyhalofop-butyl in barnyardgrass (Echinochloa crus-galli) from Ningxia Province China. Weed Sci. 2021, 69, 422–429. [Google Scholar] [CrossRef]
- Bi, B.; Wang, Q.; Coleman, J.J.; Porri, A.; Peppers, J.M.; Patel, J.D.; Betz, M.; Lerchl, J.; McElroy, J.S. A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor oxadiazon in Eleusine indica. Pest Manag. Sci. 2020, 76, 1786–1794. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, C.J.; Yu, Q.; Guo, W.L.; Zhang, T.J.; Tian, X.S. Evolution of multiple target-site resistance mechanisms in individual plants of glyphosate-resistant Eleusine indica from China. Pest Manag. Sci. 2021, 77, 4810–4817. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Vargas, J.J.; Breeden, G.K.; Grier, L.; Aponte, R.A.; Tresch, S.; Laforest, M. A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. Planta 2016, 243, 149–159. [Google Scholar] [CrossRef]
- Wang, J.Z.; Peng, Y.J.; Chen, W.; Yu, Q.; Bai, L.Y.; Pan, L. The Ile-2041-Val mutation in the ACCase gene confers resistance to clodinafop-propargyl in American sloughgrass (Beckmannia syzigachne Steud). Pest Manag. Sci. 2021, 77, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.I.; Norsworthy, J.K.; Gonzalez-Torralva, F.; Priess, G.L.; Barber, L.T.; Butts, T.R. Non-target-site resistance mechanism of barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] to florpyrauxifen-benzyl. Pest Manag. Sci. 2022, 78, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Guo, Q.S.; Wang, J.Z.; Shi, L.; Yang, X.; Zhou, Y.Y.; Yu, Q.; Bai, L.Y. CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa cnis-galli. J. Hazard. Mater. 2022, 428, 128225. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yu, Q.; Wang, J.Z.; Han, H.P.; Mao, L.F.; Nyporko, A.; Maguza, A.; Fan, L.J.; Bai, L.Y.; Powles, S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2100136118. [Google Scholar] [CrossRef]
- Xie, S.L.; Nie, L.B.; Zheng, Y.S.; Wang, J.; Zhao, M.R.; Zhu, S.D.; Hou, J.F.; Chen, G.H.; Wang, C.G.; Yuan, L.Y. Comparative proteomic analysis reveals that chlorophyll metabolism contributes to leaf color changes in Wucai (Brassica campestris L.) responding to cold acclimation. J. Proteom. Res. 2019, 18, 2478–2492. [Google Scholar] [CrossRef]
- Xian, L.; Long, Y.X.; Yang, M.; Chen, Z.X.; Wu, J.W.; Liu, X.D.; Wang, L. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice. Plant Sci. 2021, 306, 110859. [Google Scholar] [CrossRef] [PubMed]
- Osawa-Martínez, E.E.; Minjarez, B.; Rodríguez-Yáñez, Y.; Reza-Zaldivar, E.E.; Canales-Aguirre, A.A.; Mena-Munguía, S. Comparative proteomic analysis of hybrid maize MR2008 and its parental lines. J. Agr. Sci. 2022, 159, 570–579. [Google Scholar] [CrossRef]
- Zhu, H.G.; Cheng, W.H.; Tian, W.G.; Li, Y.J.; Liu, F.; Xue, F.; Zhu, Q.H.; Sun, Y.Q.; Sun, J. iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L. Plant Mol. Biol. 2018, 96, 89–102. [Google Scholar] [CrossRef]
- Mustafa, G.; Hasan, M.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Komatsu, S. A comparative proteomic analysis of engineered and bio synthesized silver nanoparticles on soybean seedlings. J. Proteom. 2020, 224, 103833. [Google Scholar] [CrossRef]
- Guo, L.B.; Qiu, J.; Ye, C.Y.; Jin, G.L.; Mao, L.F.; Zhang, H.Q.; Yang, X.F.; Peng, Q.; Wang, Y.Y.; Jia, L.; et al. Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nat. Commun. 2017, 8, 1031. [Google Scholar] [CrossRef]
- Wang, L.F.; Sun, X.P.; Peng, Y.J.; Chen, K.; Wu, S.; Guo, Y.N.; Zhang, J.Y.; Yang, H.N.; Jin, T.; Wu, L.M.; et al. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis, a devastating tetraploid weedy grass in rice fields. Mol. Plant. 2022, 15, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.M.; Yang, H.N.; Li, Z.R.; Wang, L.F.; Peng, Q. Effects of salinity-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crus-galli (L.) Beauv. Agronomy 2022, 12, 1193. [Google Scholar] [CrossRef]
- Wu, L.M.; Fang, Y.; Yang, H.N.; Bai, L.Y. Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli. PLoS ONE 2019, 14, e0214480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wollenweber, B.; Jiang, D.; Liu, F.L.; Zhao, J. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J. Exp. Bot. 2008, 59, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, T.; Damasceno, C.M.; Saravanan, R.S.; He, Y.; Catala, C.; Saladie, M.; Rose, J.K. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat. Protoc. 2006, 1, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.T.; Qi, Y.P.; Lu, Y.B.; Guo, P.; Sang, W.; Feng, H.; Zhang, H.X.; Chen, L.S. iTRAQ protein profile analysis of citrus sinensis roots in response to long-term boron-deficiency. J. Proteom. 2013, 93, 179–206. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, C.; Zhu, S.; Zhou, F.; Ling, X.B.; Liu, G.P.; Chen, L. GoPipe: Streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog. Biochem. Biophys. 2005, 32, 187–190. [Google Scholar]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, R.N.; Machado, B.R.; Hefler, S.M.; Zanette, J. Glutathione S-transferase activity in aquatic macrophytes and halophytes and biotransformation potential for biocides. J. Plant Res. 2021, 134, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Shi, Z.; Zhou, M.Y.; Zhao, B.B.; Li, H.S.; Wang, J.R.; Liu, Y.; Zhao, J.R. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings. Sci. Rep. 2022, 12, 9520. [Google Scholar] [CrossRef]
- Wang, X.J.; Shen, Y.; Sun, D.L.; Bian, N.F.; Shi, P.X.; Zhang, Z.M.; Chen, Z.D.; Liu, Y.H.; Shen, Y.; Wang, X. iTRAQ-based proteomic reveals cell cycle and translation regulation involving in peanut buds cold stress. Russ. J. Plant Physiol. 2020, 67, 103–110. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, D.F.; Feng, N.J.; Shen, X.F. Efects of uniconazole on leaves photosynthesis, root distribution. J. Plant Growth Regul. 2022, 41, 2629–2637. [Google Scholar] [CrossRef]
- Wang, B.F.; Yang, X.L.; Chen, L.; Jiang, Y.Y.; Bu, H.Y.; Jiang, Y.; Li, P.; Cao, C.G. Physiological mechanism of drought-resistant rice coping with drought stress. J. Plant Growth Regul. 2021, 41, 2638–2651. [Google Scholar] [CrossRef]
- Yoshihara, A.; Kobayashi, K. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. J. Exp. Bot. 2022, 73, 2735–2750. [Google Scholar] [CrossRef]
- Pan, X.W.; Cao, P.; Su, X.D.; Liu, Z.F.; Li, M. Structural analysis and comparison of light-harvesting complexes I and II. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148038. [Google Scholar] [CrossRef]
- Ruban, A.V. Light harvesting control in plants. FEBS Lett. 2018, 592, 3030–3039. [Google Scholar] [CrossRef]
- Biswal, A.K.; Pattanayak, G.K.; Pandey, S.S.; Leelavathi, S.; Reddy, V.S.; Govindjee; Tripathy, B.C. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiol. 2012, 159, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pan, X.K.; Sun, X.T.; Li, J.; Dong, L.Y. Is the protection of photosynthesis related to the mechanism of quinclorac resistance in Echinochloa crus-galli var. zelayensis? Gene 2019, 683, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.N.; Silveira, J.A.G.; Aragão, R.M.; Vieira, C.F.; Carvalho, F.E.L. Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiol. Plant. 2018, 41, 4. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef]
- Zhuang, K.Y.; Kong, F.Y.; Zhang, S.; Meng, C.; Yang, M.M.; Liu, Z.B.; Wang, Y.; Ma, N.N.; Meng, Q.W. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol. 2019, 221, 1998–2012. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kaiser, E.; Zhang, Y.T.; Yang, Q.C.; Li, T. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum). Environ. Exp. Bot. 2018, 149, 109–119. [Google Scholar] [CrossRef]
- Singh, J.; Thakur, J.K. Photosynthesis and abiotic stress in plants. In Biotic and Abiotic Stress Tolerance in Plants; Springer: Singapore, 2018; pp. 27–46. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.C.; Gu, T.; Dong, M.C.; Peng, Q.; Bai, L.Y.; Li, Y.F. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass (Echinochloa crus-galli L.). J. Proteom. 2017, 150, 160–169. [Google Scholar] [CrossRef]
- Heil, M.; Baldwin, I.T. Fitness costs of induced resistance: Emerging experimental support for a slippery concept. Trends Plant Sci. 2002, 7, 61–67. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009, 184, 751–767. [Google Scholar] [CrossRef]
- Abreu, I.A.; Farinha, A.P.; Negrao, S.; Goncalves, N.; Fonseca, C.; Rodrigues, M.; Batista, R.; Saibo, N.J.; Oliveira, M.M. Coping with abiotic stress: Proteome changes for crop improvement. J. Proteom. 2013, 93, 145–168. [Google Scholar] [CrossRef]
- Kosova, K.; Vitamvas, P.; Urban, M.O.; Klima, M.; Roy, A.; Prasil, I.T. Biological networks underlying abiotic stress tolerance in temperate crops-a proteomic perspective. Int. J. Mol. Sci. 2015, 16, 20913–20942. [Google Scholar] [CrossRef] [Green Version]
- Cummins, I.; Dixon, D.P.; Freitag-Pohl, S.; Skipsey, M.; Edwards, R. Multipleroles for plant glutathione transferases in xenobiotic detoxification. Drug Meta Rev. 2011, 43, 266–280. [Google Scholar] [CrossRef]
- Chen, W.; Wu, L.M.; Wang, J.Z.; Yu, Q.; Bai, L.Y.; Pan, L. Quizalofop-p-ethyl resistance in Polypogon fugax involves glutathione S-transferases. Pest Manag. Sci. 2020, 76, 3800–3805. [Google Scholar] [CrossRef] [PubMed]
- Nakka, S.; Godar, A.S.; Thompson, C.R.; Peterson, D.E.; Jugulam, M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in palmer amaranth (Amaranthus palmeri). Pest Manag. Sci. 2017, 73, 2236–2243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yan, Y.Y.; Luo, Y.L.; Zou, N.; Liu, W.T.; Wang, J.X. Unravelling mesosulfuron-methyl phytotoxicity and metabolism-based herbicide resistance in Alopecurus aequalis: Insight into regulatory mechanisms using proteomics. Sci. Total Environ. 2019, 670, 486–497. [Google Scholar] [CrossRef]
- Song, D.A.; Jiang, X.H.; Wang, D.B.; Fang, S.; Zhou, H.X.; Kong, F.Y. From the effective herbicide to the environmental contaminant: A review of recent studies on quinclorac. Environ. Exp. Bot. 2022, 193, 104706. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Mclean, M.D.; Stephenson, G.R.; Hall, J.C. Resistance to quinclorac and ALS-inhibitor herbicides in Galium spurium is conferred by two distinct genes. Weed Res. 2004, 44, 355–365. [Google Scholar] [CrossRef]
- Wang, J.; Lv, M.T.; Islam, F.; Gill, R.A.; Yang, C.; Ali, B.; Yan, G.J.; Zhou, W.J. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity. Ecotoxicol. Environ. Saf. 2016, 133, 146–156. [Google Scholar] [CrossRef]
- Hauke, H.; Klaus, G. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 2000, 124, 1437–1448. [Google Scholar]
- Van Eerd, L.L.; Stephenson, G.R.; Kwiatkowski, J.; Grossmann, K.; Hall, J.C. Physiological and biochemical characterization of quinclorac resistance in a false cleavers (Galium spurium L.) biotype. J. Agric. Food Chem. 2005, 53, 1144–1451. [Google Scholar] [CrossRef]
Protein Annotation | Protein | Ratio (RCK/SCK) | p Value (<0.05) |
---|---|---|---|
Photosynthesis related | |||
↓ Oxygen-evolving enhancer protein 3-1 | EC_v6.g069711.t1 | 0.791 | 2.08 × 10−6 |
↓ Oxygen-evolving enhancer protein 1 | EC_v6.g003176.t1 | 0.811 | 0.005587 |
↓ Photosystem I reaction center subunit | EC_v6.g044816.t1 | 0.689 | 0.003137 |
↓ Photosystem I reaction center subunit III | EC_v6.g045919.t1 | 0.764 | 1.41 × 10−5 |
Environmental stimulus response | |||
↑ Linoleate 9S-lipoxygenase 4 | EC_v6.g034212.t1 | 1.253 | 0.0303560 |
↑ Lipoxygenase 2.1 | EC_v6.g007566.t1 | 1.686 | 1.53 × 10−6 |
↓ Chlorophyll a-b-binding protein CP24 | EC_v6.g000874.t1 | 0.777 | 0.000563 |
↓ Chlorophyll a-b-binding protein | EC_v6.g025637.t1 | 0.746 | 4.27 × 10−5 |
↓ Chlorophyll a-b-binding protein 8 | EC_v6.g020029.t1 | 0.826 | 6.50 × 10−5 |
↓ Chlorophyll a-b-binding protein 1 | EC_v6.g011301.t1 | 0.800 | 7.06 × 10−7 |
Protein Annotation | Protein | Ratio (RCK/SCK) | p Value (<0.05) |
---|---|---|---|
Photosynthesis related | |||
↑ Oxygen-evolving enhancer protein 3-1 | EC_v6.g025748.t1 | 1.981 | 5.58 × 10−7 |
↑ Oxygen-evolving enhancer protein 1 | EC_v6.g003176.t1 | 1.693 | 0.000172 |
↑ Oxygen-evolving enhancer protein 2 | EC_v6.g084339.t1 | 1.689 | 2.31 × 10−6 |
↑ Photosystem I reaction center subunit VI | EC_v6.g077844.t1 | 1.829 | 0.001093 |
↑ Photosystem II stability/assembly factor | EC_v6.g057479.t1 | 1.577 | 3.57 × 10−6 |
↑ Photosystem II repair protein PSB27-H1 | EC_v6.g090372.t1 | 1.660 | 3.7 × 10−7 |
↑ Photosystem I reaction center subunit psaK | EC_v6.g095902.t1 | 1.623 | 0.00021 |
↑ Photosystem II 22 kDa protein | EC_v6.g011916.t1 | 1.620 | 1.07 × 10−6 |
↑ Phosphoglycerate kinase | EC_v6.g045755.t1 | 1.411 | 1.73 × 10−6 |
↑ Photosystem I reaction center subunit II | EC_v6.g031932.t1 | 1.703 | 0.000355 |
↑ Photosystem I reaction center subunit N | EC_v6.g001270.t1 | 1.338 | 0.00048 |
↑ Photosystem I reaction center subunit VI | EC_v6.g077844.t1 | 1.829 | 0.001093 |
↑ Photosystem I reaction center subunit III | EC_v6.g031714.t1 | 1.525 | 5.34 × 10−7 |
↑ Photosystem II 10 kDa polypeptide | EC_v6.g005861.t1 | 1.501 | 8.89 × 10−7 |
Environmental stimulus response | |||
↑ Lipoxygenase 2.3 | EC_v6.g043701.t1 | 2.277 | 0.000153 |
↑ Lipoxygenase 2.1 | EC_v6.g007566.t1 | 1.902 | 9.62 × 10−6 |
↑ Chlorophyll a-b-binding protein | EC_v6.g018199.t1 | 1.707 | 1.11 × 10−6 |
↑ Chlorophyll a-b-binding protein 1 | EC_v6.g011301.t1 | 1.567 | 1.4 × 10−7 |
↑ Chlorophyll a-b-binding protein CP24 10A | EC_v6.g000874.t1 | 1.536 | 0.000411 |
↑ 10B Chlorophyll a-b-binding protein CP24 10B | EC_v6.g078443.t1 | 1.932 | 3.12 × 10−7 |
↑ Chlorophyll a-b-binding protein 8 | EC_v6.g107213.t1 | 1.551 | 1.16 × 10−5 |
↑ Chlorophyll a-b-binding protein 8 | EC_v6.g020029.t1 | 1.684 | 2.67 × 10−6 |
↑ Chlorophyll a-b-binding protein CP24 10A | EC_v6.g023390.t1 | 1.617 | 9.02 × 10−6 |
↑ Chlorophyll a-b-binding protein of LHCII | EC_v6.g025637.t1 | 1.307 | 0.000138 |
↑ Chlorophyll a-b-binding protein | EC_v6.g052592.t1 | 1.252 | 0.004444 |
↑ Light-harvesting complex-like protein 3 | EC_v6.g087330.t1 | 1.338 | 0.000663 |
↑ Chlorophyll a-b-binding protein | EC_v6.g095902.t1 | 1.623 | 0.00021 |
↑ Chlorophyll a-b-binding protein CP26 | EC_v6.g052598.t1 | 1.573 | 2.36 × 10−5 |
↑ Chlorophyll a-b-binding protein CP29.2 | EC_v6.g025652.t1 | 1.460 | 2.51 × 10−6 |
↑ Chlorophyll a-b-binding protein 1 | EC_v6.g067789.t1 | 1.957 | 3.84 × 10−7 |
↑ Zeaxanthin epoxidase | EC_v6.g107058.t1 | 1.371 | 0.000274 |
↑ Glutamine synthetase | EC_v6.g047795.t1 | 1.365 | 0.000343 |
↑ Soluble inorganic pyrophosphatase 6 | EC_v6.g072964.t1 | 1.284 | 0.000202 |
↑ Soluble inorganic pyrophosphatase | EC_v6.g042273.t1 | 1.468 | 2.34 × 10−5 |
↑ Glyceraldehyde-3-phosphate dehydrogenase (GAPB) | EC_v6.g096773.t1 | 1.279 | 1.04 × 10−5 |
↑ Glyceraldehyde-3-phosphate dehydrogenase (GAPB) | EC_v6.g052452.t1 | 1.332 | 0.000154 |
↑ Glyceraldehyde-3-phosphate dehydrogenase (GAPB) | EC_v6.g098973.t1 | 1.252 | 0.001558 |
↑ Glyceraldehyde-3-phosphate dehydrogenase A | EC_v6.g023371.t1 | 1.269 | 1.77 × 10−6 |
Abscisic acid regulation | |||
↑ chaperonin | EC_v6.g095910.t1 | 1.391 | 0.000658 |
↓ Abscisic stress-ripening protein 5 | EC_v6.g060659.t1 | 0.669 | 0.001379 |
↓ Abscisic stress-ripening protein 3 | EC_v6.g005261.t1 | 0.409 | 0.008321 |
Ribosome related | |||
↑ Ribosomal protein L5 | EC_v6.g096733.t1 | 1.890 | 1.06 × 10−5 |
↑ Ribosomal protein L12-2 | EC_v6.g107141.t1 | 2.049 | 1.80 × 10−7 |
↑ Ribosomal protein S9 | EC_v6.g041745.t1 | 1.773 | 0.000391 |
↑ Ribosomal protein 2 | EC_v6.g094158.t1 | 1.754 | 0.002046 |
↑ Ribosomal protein L3 | EC_v6.g069774.t1 | 1.616 | 4.27 × 10−5 |
↑ Ribosomal protein L15 | EC_v6.g027262.t1 | 1.407 | 0.014191 |
↑ Ribosomal protein L4 | EC_v6.g059034.t1 | 1.868 | 6.74 × 10−5 |
Herbicide resistance related | |||
↑ Protoporphyrinogen oxidase | EC_v6.g076423.t1 | 1.361 | 7.52 × 10−5 |
↑ Glycosyltransferase family 64 | EC_v6.g029743.t1 | 1.478 | 0.001409 |
↓ Glutathione S-transferase 4 | EC_v6.g031522.t1 | 0.682 | 0.000671 |
↓ Glutathione S-transferase GST 23 | EC_v6.g083691.t1 | 0.507 | 0.000455 |
↑ Glutathione S-transferase GSTU1-like | EC_v6.g031756.t1 | 1.409 | 0.002851 |
↓ Glutathione S-transferase U8 | EC_v6.g028330.t1 | 0.602 | 2.43 × 10−5 |
↓ Glutathione S-transferase GSTF1 | EC_v6.g021913.t1 | 0.642 | 0.037605 |
↓ Glutathione S-transferase Z2 | EC_v6.g011773.t1 | 0.674 | 3.48 × 10−6 |
↑ Glutathione S-transferase F11 | EC_v6.g048450.t1 | 1.201 | 0.000632 |
↓ Glutathione S-transferase | EC_v6.g001351.t1 | 0.627 | 0.018221 |
↓ Glutathione reductase | EC_v6.g080772.t1 | 0.744 | 0.002028 |
↓ Glutathione reductase | EC_v6.g040387.t1 | 0.580 | 0.000583 |
↑ ABC transporter B family member 28 | EC_v6.g079748.t1 | 1.321 | 0.002159 |
↑ ABC transporter I family member 6 | EC_v6.g046423.t1 | 1.294 | 0.017675 |
↑ Glutathione S-transferase F11 | EC_v6.g048450.t1 | 1.201 | 0.000632 |
↓ Cytochrome P450 | EC_v6.g010860.t1 | 0.435 | 6.93 × 10−7 |
↓ Cytochrome P450 | EC_v6.g010858.t1 | 0.677 | 0.03581 |
Defense response | |||
↑ Nodulin-related protein | EC_v6.g047444.t1 | 1.594 | 0.000101 |
↑ Glucan endo-1,3-beta-glucosidase | EC_v6.g083656.t1 | 1.411 | 1.9 × 10−5 |
↑ Patatin-like protein | EC_v6.g067097.t1 | 1.345 | 0.000146 |
↑ Pathogenesis-related protein | EC_v6.g068270.t1 | 1.310 | 0.00011 |
↑ Prohibitin-2 | EC_v6.g042981.t1 | 1.236 | 0.001687 |
Oxidation-reduction related | |||
↑ Peroxidase 70 | EC_v6.g085666.t1 | 2.016 | 0.000473 |
↑ Peroxidase 4 | EC_v6.g048714.t1 | 1.518 | 4.11 × 10−5 |
↑ Peroxidase 52 | EC_v6.g080097.t1 | 1.319 | 0.024639 |
↑ Fructose-1,6-bisphosphatase | EC_v6.g022027.t1 | 1.249 | 0.002185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Wu, C.; Yang, H.; Yang, J.; Wang, L.; Zhou, S. Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli. Plants 2023, 12, 696. https://doi.org/10.3390/plants12040696
Wu L, Wu C, Yang H, Yang J, Wang L, Zhou S. Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli. Plants. 2023; 12(4):696. https://doi.org/10.3390/plants12040696
Chicago/Turabian StyleWu, Lamei, Can Wu, Haona Yang, Jiangshan Yang, Lifeng Wang, and Shangfeng Zhou. 2023. "Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli" Plants 12, no. 4: 696. https://doi.org/10.3390/plants12040696
APA StyleWu, L., Wu, C., Yang, H., Yang, J., Wang, L., & Zhou, S. (2023). Proteomic Analysis Comparison on the Ecological Adaptability of Quinclorac-Resistant Echinochloa crus-galli. Plants, 12(4), 696. https://doi.org/10.3390/plants12040696