A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of the EO
2.2. Enantioselective Analysis of the EO
3. Discussion
3.1. Chemical Composition and Main Components
3.2. Chemical Composition and Main Components
3.3. Biological Activities of Major Components
3.4. Significance of the Enantiomeric Composition
4. Materials and Methods
4.1. Plant Material
4.2. EO Distillation and Sample Preparation
4.3. Qualitative (GC–MS) and Quantitative (GC–FID) Chemical Analyses
4.4. Enantioselective Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 17 November 2022).
- Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Vita Finzi, P.; Zanoni, G.; Vidari, G. New Anthracene Derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; De Mendonça, S.; Oliveira, L.F.S.; Martin-Calero, M.J.; Vidari, G. Anti-secretory, Anti-inflammatory, and Anti-Helicobacter pylori Activities of Several Fractions Isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583–589. [Google Scholar]
- Gilardoni, G.; Tosi, S.; Mellerio, G.; Maldonado, M.E.; Chiriboga, X.; Vidari, G. Lipophilic Components from the Ecuadorian Plant Schistocarpha eupatorioides. Nat. Prod. Commun. 2011, 6, 767–772. [Google Scholar] [CrossRef]
- Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-Secocycloartane and 3,4-Secodammarane Triterpenes from the Ecuadorian Plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946–954. [Google Scholar] [CrossRef]
- Herrera, C.; Pérez, Y.; Morocho, V.; Armijos, C.; Malagón, O.; Brito, B.; Tacán, M.; Cartuche, L.; Gilardoni, G. Preliminary Phytochemical Study of the Ecuadorian Plant Croton elegans Kunth. (Euphorbiaceae). J. Chil. Chem. Soc. 2018, 63, 3875–3877. [Google Scholar] [CrossRef]
- Morocho, V.; Valarezo, L.P.; Tapia, D.A.; Cartuche, L.; Cumbicus, N.; Gilardoni, G. A Rare Dirhamnosyl Flavonoid and Other Radical-scavenging Metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem. Biodivers. 2021, 16, e2100260. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasbourg, France, 2013; p. 743. [Google Scholar]
- Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants 2021, 10, 2171. [Google Scholar] [CrossRef]
- Calvopiña, K.; Malagón, O.; Capetti, F.; Sgorbini, B.; Verdugo, V.; Gilardoni, G. A New Sesquiterpene Essential Oil from the Native Andean Species Jungia rugosa Less (Asteraceae): Chemical Analysis, Enantiomeric Evaluation, and Cholinergic Activity. Plants 2021, 10, 2102. [Google Scholar] [CrossRef]
- Ramírez, J.; Andrade, M.D.; Vidari, G.; Gilardoni, G. Essential Oil and Major Non-Volatile Secondary Metabolites from the Leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramírez, J.; Sgorbini, B.; Bicchi, C.; Cumbicus, N.; Gilardoni, G. A Novel Chemical Profile of a Selective In Vitro Cholinergic Essential Oil from Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), a Native Andean Species of Ecuador. Molecules 2021, 26, 45. [Google Scholar] [CrossRef]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef]
- Malagón, O.; Bravo, C.; Vidari, G.; Cumbicus, N.; Gilardoni, G. Essential Oil and Non-Volatile Metabolites from Kaunia longipetiolata (Sch.Bip. ex Rusby) R. M. King and H. Rob., an Andean Plant Native to Southern Ecuador. Plants 2022, 11, 2972. [Google Scholar] [CrossRef]
- Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. [Google Scholar] [CrossRef]
- Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org (accessed on 17 November 2022).
- Muschler, R. Compositae Peruvianae et Bolivianae. Bot. Jahrb. Syst. 1914, 50, 87. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
- Cozzani, S.; Muselli, A.; Desjobert, J.-M.; Bernardini, A.-F.; Tomi, F.; Casanova, J. Chemical Composition of Essential Oil of Teucrium polium Subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436–441. [Google Scholar] [CrossRef]
- Viña, A.; Murillo, E. Essential Oil Composition from Twelve Varieties of Basil (Ocimum spp.) Grown in Columbia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar] [CrossRef]
- Christensen, L.P.; Jakobsen, H.B.; Paulsen, E.; Hodal, L.; Andersen, K.E. Airborne Compositae Dermatitis: Monoterpenes and No Parthenolide are Released from Flowering Tanacetum parthenium (Feverfew) Plants. Arch. Dermatol. Res. 1999, 291, 425–431. [Google Scholar] [CrossRef]
- Gonny, M.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Analysis of Juniperus communis Subsp. alpina Needle, Berry, Wood and Root Oils by Combination of GC, GC/MS and 13C-NMR. Flavour Fragr. J. 2006, 21, 99–106. [Google Scholar] [CrossRef]
- Pozo-Bayon, M.A.; Ruiz-Rodriguez, A.; Pernin, K.; Cayot, N. Influence of Eggs on the Aroma Composition of a Sponge Cake and on the Aroma Release in Model Studies on Flavored Sponge Cakes. J. Agric. Food Chem. 2007, 55, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.-X.; Zhao, C.-X.; Liang, Y.-Z.; Yang, H.; Fang, H.-Z.; Yi, L.-Z.; Zeng, Z.-D. Comparative Analysis of Volatile Components from Clematis Species Growing in China. Anal. Chim. Acta 2007, 595, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-M.; Liou, S.-E. Volatile Components of Water-Boiled Duck Meat and Cantonese Style Roasted Duck. J. Agric. Food Chem. 1992, 40, 838–841. [Google Scholar] [CrossRef]
- Gancel, A.-L.; Ollitrault, P.; Froelicher, Y.; Tomi, F.; Jacquemond, C.; Luro, F.; Brillouet, J.-M. Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. J. Agric. Food Chem. 2005, 53, 2224–2230. [Google Scholar] [CrossRef]
- Pennarun, A.-L.; Prost, C.; Haure, J.; Demaimay, M. Comparison of Two Microalgal Diets. 2. Influence on Odorant Composition and Organoleptic Qualities of Raw Oysters (Crassostrea gigas). J. Agric. Food Chem. 2003, 51, 2011–2018. [Google Scholar] [CrossRef]
- Fernandez-Segovia, I.; Escriche, I.; Gomez-Sintes, M.; Fuentes, A.; Serra, J.A. Influence of Different Preservation Treatments on the Volatile Fraction of Desalted Cod. Food Chem. 2006, 98, 473–482. [Google Scholar] [CrossRef]
- Brophy, J.J.; Goldsack, R.J.; Bean, A.R.; Forster, P.I.; Lepschi, B.J. Leaf Essential Oils of the Genus Leptospermum (Myrtaceae) in Eastern Australia. Part 5. Leptospermum continentale and Allies. Flavour Fragr. J. 1999, 14, 98–104. [Google Scholar] [CrossRef]
- Píno, J.A.; Marbot, R.; Vázquez, C. Volatile Components of the Fruits of Vangueria madagascariensis J. F. Gmel. from Cuba. J. Essent. Oil Res. 2004, 16, 302–304. [Google Scholar] [CrossRef]
- Nielsen, G.S.; Larsen, L.M.; Poll, L. Formation of Aroma Compounds during Long-Term Frozen Storage of Unblanched Leek (Allium ampeloprasum Var. Bulga) as Affected by Packaging Atmosphere and Slice Thickness. J. Agric. Food Chem. 2004, 52, 1234–1240. [Google Scholar] [CrossRef]
- Rega, B.; Fournier, N.; Nicklaus, S.; Guichard, E. Role of Pulp in Flavor Release and Sensory Perception in Orange Juice. J. Agric. Food Chem. 2004, 52, 4204–4212. [Google Scholar] [CrossRef]
- Fanciullino, A.-L.; Gancel, A.-L.; Froelicher, Y.; Luro, F.; Ollitrault, P.; Brillouet, J.-M. Effects of Nucleo-Cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. J. Agric. Food Chem. 2005, 53, 4517–4523. [Google Scholar] [CrossRef]
- Fröhlich, O.; Duque, C.; Schreier, P. Volatile Constituents of Curuba (Passiflora mollissima) Fruit. J. Agric. Food Chem. 1989, 37, 421–425. [Google Scholar] [CrossRef]
- Gauvin-Bialecki, A.; Marodon, C. Essential Oil of Ayapana triplinervis from Reunion Island: A Good Natural Source of Thymohydroquinone Dimethyl Ether. Biochem. Syst. Ecol. 2009, 36, 853–858. [Google Scholar] [CrossRef]
- Osorio, C.; Alarcon, M.; Moreno, C.; Bonilla, A.; Barrios, J.; Garzon, C.; Duque, C. Characterization of Odor-Active Volatiles in Champa (Campomanesia lineatifolia R.P.). J. Agric. Food Chem. 2006, 54, 509–516. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D.; Agli, M.; Chelghoum, C. Essential Oil Composition of Lavandula stoechas from Algeria. Pharm. Biol. 2006, 44, 60–64. [Google Scholar] [CrossRef]
- Selli, S.; Rannou, C.; Prost, C.; Robin, J.; Serot, T. Characterization of Aroma-Active Compounds in Rainbow Trout (Oncorhynchus mykiss) Eliciting an Off-Odor. J. Agric. Food Chem. 2006, 54, 9496–9502. [Google Scholar] [CrossRef]
- Werkhoff, P.; Güntert, M.; Krammer, G.; Sommer, H.; Kaulen, J. Vacuum Headspace Method in Aroma Research: Flavor Chemistry of Yellow Passion Fruits. J. Agric. Food Chem. 1998, 46, 1076–1093. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and Antimicrobial Activity of the Essential Oil of Six Hypericum Species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146–152. [Google Scholar] [CrossRef]
- Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S. The Leaf Volatile Constituents of Isatis tinctoria by Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry. Planta Med. 2006, 72, 924–928. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Maccioni, S.; Baldini, R. Phytochemical Typologies in Some Populations of Myrtus communis L. on Caprione Promontory (East Liguria, Italy). Food Chem. 2004, 85, 599–604. [Google Scholar] [CrossRef]
- Stevanovic, T.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H.; Vilotic, D.; Petrovic, S.; Ruzic, N.; Pichette, A. The Essential Oil Composition of Pinus mugo Turra from Serbia. Flavour Fragr. J. 2005, 20, 96–97. [Google Scholar] [CrossRef]
- Chassagne, D.; Boulanger, R.; Crouzet, J. Enzymatic Hydrolysis of Edible Passiflora Fruit Glycosides. Food Chem. 1999, 66, 281–288. [Google Scholar] [CrossRef]
- Lota, M.-L.; de Rocca Serra, D.; Tomi, F.; Casanova, J. Chemical Variability of Peel and Leaf Essential Oils of Mandarins from Citrus reticulata Blanco. Biochem. Syst. Ecol. 2000, 28, 61–78. [Google Scholar] [CrossRef]
- Salgueiro, L.R.; Pinto, E.; Goncalves, M.J.; Costa, I.; Palmeira, A.; Cavaleiro, C.; Pina-Vaz, C.; Rodrigues, A.G.; Martinez-De-Oliveira, J. Antifungal Activity of the Essential Oil of Thymus capitellatus against Candida, Aspergillus and Dermatophyte Strains. Flavour Fragr. J. 2006, 21, 749–753. [Google Scholar] [CrossRef]
- Píry, J.; Príbela, A.; Durcanská, J.; Farkas, P. Fractionation of Volatiles from Blackcurrant (Ribes nigrum L.) by Different Extractive Methods. Food Chem. 1995, 54, 73–77. [Google Scholar] [CrossRef]
- Kim, T.H.; Thuy, N.T.; Shin, J.H.; Baek, H.H.; Lee, H.J. Aroma-Active Compounds of Miniature Beefsteak plant (Mosla dianthera Maxim.). J. Agric. Food Chem. 2000, 48, 2877–2881. [Google Scholar] [CrossRef]
- Nielsen, G.S.; Larsen, L.M.; Poll, L. Formation of Aroma Compounds and Lipoxygenase (EC 1.13.11.12) Activity in Unblanced Leek (Allium ampeloprasum Var. Bulga) Slices during Long-Term Frozen Storage. J. Agric. Food Chem. 2003, 51, 1970–1976. [Google Scholar] [CrossRef]
- Parada, F.; Duque, C.; Fujimoto, Y. Free and Bound Volatile Composition and Characterization of Some Glucoconjugates as Aroma Precursors in Melón de Olor Fruit Pulp (Sicana odorifera). J. Agric. Food Chem. 2000, 48, 6200–6204. [Google Scholar] [CrossRef]
- Mayorga, H.; Knapp, H.; Winterhalter, P.; Duque, C. Glycosidically Bound Flavor Compounds of Cape Gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908. [Google Scholar] [CrossRef]
- Chen, C.-C.; Kuo, M.-C.; Liu, S.-E.; Wu, C.-M. Volatile Components of Salted and Pickled Prunes (Prunus mume Sieb. et Zucc.). J. Agric. Food Chem. 1986, 34, 140–144. [Google Scholar] [CrossRef]
- Bertoli, A.; Menichini, F.; Noccioli, C.; Morelli, I.; Pistelli, L. Volatile Constituents of Different Organs of Psoralea bituminosa L. Flavour Fragr. J. 2004, 19, 166–171. [Google Scholar] [CrossRef]
- Shellie, R.; Marriott, P.; Zappia, G.; Mondello, L.; Dugo, G. Interactive Use of Linear Retention Indices on Polar and Apolar Columns with an MS-Library for Reliable Characterization of Australian Tea Tree and Other Melaleuca sp. Oils. J. Essent. Oil Res. 2003, 15, 305–312. [Google Scholar] [CrossRef]
- Kurashov, E.A.; Mitrukova, G.G.; Krylova, Y.V. Variations in the Component Composition of Essential Oil of Ceratophyllum demersum (Ceratophyllaceae) during Vegetation. Plant Resour. (Rastit. Resur.) 2014, 1. in press. [Google Scholar]
- Pala-Paul, J.; Brophy, J.J.; Perez-Alonso, M.J.; Usano, J.; Soria, S.C. Essential Oil Composition of the Different Parts of Eryngium corniculatum Lam. (Apiaceae) from Spain. J. Chromatogr. A 2007, 1175, 289–293. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S. Assessment of the Volatile Composition of Juices of Apricot, Peach, and Pear According to Two Pectolytic Treatments. J. Agric. Food Chem. 2005, 53, 7837–7843. [Google Scholar] [CrossRef]
- Grujic-Jovanovic, S.; Skaltsa, H.D.; Marin, P.; Sokovic, M. Composition and Antibacterial Activity of the Essential Oil of Six Stachys Species from Serbia. Flavour Fragr. J. 2004, 19, 139–144. [Google Scholar] [CrossRef]
- Ka, M.-H.; Choi, E.H.; Chun, H.-S.; Lee, K.-G. Antioxidative Activity of Volatile Extracts Isolated from Angelica tenuissimae Roots, Peppermint Leaves, Pine Needles, and Sweet Flag Leaves. J. Agric. Food Chem. 2005, 53, 4124–4129. [Google Scholar] [CrossRef]
- Yu, E.J.; Kim, T.H.; Kim, K.H.; Lee, H.J. Characterization of Aroma-Active Compounds of Abies nephrolepis (Khingan fir) Needles Using Aroma Extract Dilution Analysis. Flavour Fragr. J. 2004, 19, 74–79. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, M.-S.L.; Sawamura, M. Constituents of the Essential Oil of Cnidium officinale Makino, a Korean Medicinal Plant. Flavour Fragr. J. 2002, 17, 49–53. [Google Scholar] [CrossRef]
- Orav, A.; Kann, J. Determination of Peppermint and Orange Aroma Compounds in Food and Beverages. Proc. Est. Acad. Sci. Chem. 2001, 50, 217–225. [Google Scholar]
- Vichi, S.; Riu-Aumatell, M.; Mora-Pons, M.; Buxaderas, S.; Lopez-Tamames, E. Characterization of Volatiles in Different Dry Gins. J. Agric. Food Chem. 2005, 53, 10154–10160. [Google Scholar] [CrossRef] [PubMed]
- Boti, J.B.; Koukoua, G.; N’Guessan, T.Y.; Casanova, J. Chemical Variability of Conyza sumatrensis and Microglossa pyrifolia from Côte d’Ivoire. Flavour Fragr. J. 2007, 22, 27–31. [Google Scholar] [CrossRef]
- Hachicha, S.F.; Skanji, T.; Barrek, S.; Ghrabi, Z.G.; Zarrouk, H. Composition of the Essential Oil of Teucrium ramosissimum Desf. (Lamiaceae) from Tunisia. Flavour Fragr. J. 2007, 22, 101–104. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Pinto, E.; Gonsales, M.J.; Salguero, L. Antifungal Activity of Juniperus Essential Oils against Dermatophyte, Asrgillus and Candida Strains. J. Appl. Microbiol. 2006, 100, 1333–1338. [Google Scholar] [CrossRef]
- Brophy, J.; Goldsack, R.J.; Bean, A.R.; Forster, P.I.; Lepschi, B.J. Leaf Essential Oils of the Genus Leptospermum (Myrtaceae) in Eastern Australia. Part 6. Leptospermum polygalifolium and Allies. Flavour Fragr. J. 2000, 15, 271–277. [Google Scholar] [CrossRef]
- Andriamaharavo, N.R. Retention Data; NIST Mass Spectrometry Data Center: Schlieren, Switzerland, 2014. [Google Scholar]
- Bendimerad, N.; Bendiab, S.A.T. Composition and Antibacterial Activity of Pseudocytisus integrifolius (Salisb.) Essential Oil from Algeria. J. Agric. Food Chem. 2005, 53, 2947–2952. [Google Scholar] [CrossRef]
- Tunaher, Z.; Kirimer, N.; Baser, K.H.C. Wood Essential Oils of Juniperus foetidissima Willd. Holzforschung 2003, 57, 140–144. [Google Scholar]
- Kukic, J.; Petrovic, S.; Pavlovic, M.; Couladis, M.; Tzakou, O.; Niketic, M. Composition of Essential Oil of Stachys alpina L. ssp. dinarica Murb. Flavour Fragr. J. 2006, 21, 539–542. [Google Scholar] [CrossRef]
- Ledauphin, J.; Basset, B.; Cohen, S.; Payot, T.; Barillier, D. Identification of Trace Volatile Compounds in Freshly Distilled Calvados and Cognac: Carbonyl and Sulphur Compounds. J. Food Comp. Anal. 2006, 19, 28–40. [Google Scholar] [CrossRef]
- Lazarevic, J.; Radulovic, N.; Palic, R.; Zlatkovic, B. Chemical Analysis of Volatile Constituents of Berula erecta (Hudson) Coville Subsp. erecta (Apiaceae) from Serbia. J. Essent. Oil Res. 2010, 22, 153–156. [Google Scholar] [CrossRef]
- Bendiabdellah, A.; El Amine Dib, M.; Djabou, N.; Allali, H.; Tabti, B.; Costa, J.; Myseli, A. Biological Activities and Volatile Constituents of Daucus muricatus L. from Algeria. Chem. Cent. J. 2012, 6, 48. [Google Scholar] [CrossRef]
- Kiss, M.; Csoka, M.; Gyorfi, J.; Korany, K. Comparison of the Fragrance Constituents of Tuber aestivium and Tuber brumale Gathered in Hungary. J. Appl. Bot. Food Qual. 2011, 84, 102–110. [Google Scholar]
- Loghmani-Khouzani, H.; Fini, O.; Safari, J. Essential Oil Composition of Rosa damascena Mill Cultivated in Central Iran. Sci. Iran. 2007, 14, 316–319. [Google Scholar]
- Castioni, P.; Kapetanidis, I. Volatile Constituents from Brunfelsia grandiflora ssp. grandiflora: Qualitative Analysis by GC-MS. Sci. Pharm. 1996, 64, 83–91. [Google Scholar]
- Madruga, M.S.; Arruda, S.G.B.; Narain, N.; Souza, J.G. Castration and Slaughter Age Effects on Panel Assessment and Aroma Compounds of the Mestico Goat Meat. Meat Sci. 2000, 56, 117–125. [Google Scholar] [CrossRef]
- Choi, H.-S. Headspace Analyses of Fresh Leaves and Stems of Angelica gigas Nakai, a Korean medicinal herb. Flavour Fragr. J. 2006, 21, 604–608. [Google Scholar] [CrossRef]
- Benkaci-Ali, F.; Baaliouamer, A.; Meklati, B.Y.; Chemat, F. Chemical Composition of Seed Essential Oils from Algerian Nigella sativa Extracted by Microwave and Hydrodistillation. Flavour Fragr. J. 2007, 22, 148–153. [Google Scholar] [CrossRef]
- Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V. Characterization of Volatile Compounds in Tunisian Fenugreek Seeds. Food Chem. 2009, 115, 1326–1336. [Google Scholar] [CrossRef]
- Schwab, W.; Mahr, C.; Schreier, P. Studies on the Enzymic Hydrolysis of Bound Aroma Components from Carica papaya Fruit. J. Agric. Food Chem. 1989, 37, 1009–1012. [Google Scholar] [CrossRef]
- Zheng, Y.; White, E. Retention Data; NIST Mass Spectrometry Data Center: Schlieren, Switzerland, 2008. [Google Scholar]
- Rostad, C.E.; Pereira, W.E. Kovats and Lee Retention Indices Determined by Gas Chromatography/Mass Spectrometry for Organic Compounds of Environmental Interest. J. High Resolut. Chromatogr. 1986, 9, 328–334. [Google Scholar] [CrossRef]
- Miyazawa, M.; Maehara, T.; Kurose, K. Composition of the Essential Oil from the Leaves of Eruca sativa. Flavour Fragr. J. 2002, 17, 187–190. [Google Scholar] [CrossRef]
- Mondello, L.; Dugo, P.; Basile, A.; Dugo, G. Interactive Use of Linear Retention Indices, on Polar and Apolar Columns, with a MS-Library for Reliable Identification of Complex Mixtures. J. Microcolumn Sep. 1995, 7, 581–591. [Google Scholar] [CrossRef]
- Vedernikov, D.N.; Roschin, V.I. Extractive Compounds of Birch Buds (Betula pendula Roth.): I. Composition of Fatty Acids, Hydrocarbons, and Esters. Russ. J. Bioorg. Chem. 2010, 36, 894–898. [Google Scholar] [CrossRef]
- Sandoval-Montemayor, N.E.; Garcia, A.; Elizondo-Trevino, E.; Garza-Gonzales, E.; Alvarez, L.; Camacho-Corona, M. Chemical Composition of Hexane Extract of Citrus aurantifolia and Anti-Mycobacterium tuberculosis Activity of Some of its Constituents. Molecules 2012, 17, 11173. [Google Scholar] [CrossRef]
- Gil, M.L.; Jimenez, J.; Ocete, M.A.; Zarzuelo, A.; Cabo, M.M. Comparative Study of Different Essential Oils of Bupleurum. gibraltaricum Lamarck. Die Pharm. 1989, 44, 284–287. [Google Scholar]
- Falk, A.A.; Hagberg, M.T.; Lof, A.E.; Wigaeus-Hjelm, E.M.; Wang, Z.P. Uptake, Distribution, and Elimination of alpha-Pinene in Man after Exposure by Inhalation. Scand. J. Work Environ. Health 1990, 16, 372–378. [Google Scholar] [CrossRef]
- Kose, E.O.; Deniz, I.G.; Sarikurkcu, C.; Aktas, O.; Yavuz, M. Chemical Composition, Antimicrobial and Antioxidant Activities of the Essential Oils of Sideritis erythrantha Boiss. and Heldr. (var. erythrantha and var. cedretorum P.H. Davis) Endemic in Turkey. Food Chem. Toxicol. 2010, 48, 2960–2965. [Google Scholar] [CrossRef]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological Activities of alpha-Pinene and beta-Pinene Enantiomers. Molecules 2012, 17, 6305. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, K.A.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.; Carneiro, S.M.; Carvalho, F.A. Syzygium cumini (L.) Skeels Essential Oil and Its Major Constituent alpha-Pinene Exhibit anti-Leishmania Activity through Immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, alpha-Pinene and beta-Caryophyllene from Plectranthus barbatus Essential Oil as Eco-friendly Larvicides against Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Parasitol. Res. 2016, 115, 807–815. [Google Scholar] [CrossRef]
- Perry, N.S.; Houghton, P.J.; Theobald, A.; Jenner, P.; Perry, E.K. In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulaefolia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol. 2000, 52, 895–902. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of Acetylcholinesterase Activity by Bicyclic Monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef]
- Røstelien, T.; Borg-Karlson, A.K.; Fäldt, J.; Jacobsson, U.; Mustaparta, H. The Plant Sesquiterpene Germacrene D Specifically Activates a Major Type of Antennal Receptor Neuron of the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2000, 25, 141–148. [Google Scholar] [CrossRef]
- Mozuraitis, R.; Stranden, M.; Ramirez, M.I.; Borg-Karlson, A.K.; Mustaparta, H. (-)-Germacrene D Increases Attraction and Oviposition by the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2002, 27, 505–509. [Google Scholar] [CrossRef]
- Stranden, M.; Liblikas, I.; Koenig, W.A.; Almaas, T.J.; Borg-Karlson, A.K.; Mustaparta, H. (–)-Germacrene D Receptor Neurones in Three Species of Heliothine Moths: Structure-activity Relationships. J. Comp. Physiol. A 2003, 189, 563–577. [Google Scholar] [CrossRef]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with countless biological properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- de Lacerda Leite, G.M.; de Oliveira Barbosa, M.; Pereira Lopes, M.J.; de Araújo Delmondes, G.; Souza Bezerra, D.; Moura Araújo, I.; Carvalho de Alencar, C.D.; Melo Coutinho, H.D.; Rangel Peixoto, L.; Barbosa-Filho, J.M.; et al. Pharmacological and Toxicological Activities of α-Humulene and Its Isomers: A systematic Review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Youns, M.; El-Readi, M.Z.; Ashour, M.L.; Nibret, E.; Sporer, F.; Herrmann, F.; Reichling, J.; Wink, M. Biological Activity of the Essential Oil of Kadsura longipedunculata (Schisandraceae) and Its Major Components. J. Pharm. Pharmacol. 2010, 62, 1037–1044. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Valková, V.; Ďuranová, H.; Štefániková, J.; Čmiková, N.; Vukic, M.; Vukovic, N.L.; Kowalczewski, P.Ł. Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil. Plants 2022, 11, 358. [Google Scholar] [CrossRef]
- Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; et al. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087–4095. [Google Scholar] [CrossRef] [PubMed]
- Brenna, E.; Fuganti, C.; Serra, S. Enantioselective Perception of Chiral Odorants. Tetrahedron Asymmetry 2003, 14, 1–42. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
N. | Compound | 5% Phenyl-Methylpolysiloxane | Polyethylene Glycol | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LRI a | LRI b | % | σ | Reference | LRI a | LRI b | % | σ | Reference | ||
1 | α-pinene | 933 | 932 | 6.0 | 1.22 | [21] | 1019 | 1019 | 5.3 | 0.75 | [22] |
2 | sabinene | 974 | 969 | 0.3 | 0.03 | [21] | 1115 | 1115 | 0.3 | 0.03 | [23] |
3 | β-pinene | 978 | 974 | 1.6 | 0.37 | [21] | 1104 | 1103 | 1.4 | 0.20 | [24] |
4 | myrcene | 992 | 988 | trace | - | [21] | 1162 | 1162 | 0.2 | 0.04 | [25] |
5 | 2-pentyl furan | 994 | 984 | 0.6 | 0.06 | [21] | 1231 | 1230 | 0.4 | 0.04 | [26] |
6 | n-decane | 1000 | 1000 | 0.2 | 0.01 | [21] | 1000 | 1000 | 0.1 | 0.02 | - |
7 | trans-2-(2-pentenyl)-furan | 1004 | 1004 | [27] | 1302 | 1282 | 0.1 | 0.02 | [28] | ||
8 | α-phellandrene | 1006 | 1002 | 0.1 | 0.02 | [21] | 1157 | 1158 | 0.2 | 0.04 | [29] |
9 | (2E,4E)-heptadienal | 1008 | 1005 | 0.4 | 0.02 | [21] | 1485 | 1488 | 0.1 | 0.01 | [30] |
10 | n-octanal | 1010 | 998 | [21] | 1286 | 1286 | 0.1 | 0.02 | [31] | ||
11 | α-terpinene | 1017 | 1014 | trace | - | [21] | 1172 | 1174 | 0.1 | 0.02 | [32] |
12 | (2E,4Z)-heptadienal | 1023 | 1013 | 0.2 | 0.02 | [33] | 1460 | 1464 | 0.1 | 0.04 | [34] |
13 | p-cymene | 1026 | 1020 | 0.4 | 0.01 | [21] | 1263 | 1265 | 0.3 | 0.06 | [35] |
14 | limonene | 1029 | 1024 | 0.7 | 0.10 | [21] | 1191 | 1190 | 0.1 | 0.03 | [36] |
15 | β-phellandrene | 1031 | 1025 | [21] | 1200 | 1200 | 0.5 | 0.09 | [37] | ||
16 | (E)-β-ocimene | 1048 | 1044 | trace | - | [21] | 1250 | 1250 | 0.2 | 0.03 | [38] |
17 | benzene acetaldehyde | 1055 | 1036 | 0.3 | 0.04 | [21] | 1636 | 1636 | 0.3 | 0.08 | [26] |
18 | terpinolene | 1085 | 1086 | 0.1 | 0.02 | [21] | 1274 | 1271 | 0.1 | 0.02 | [39] |
19 | linalool | 1107 | 1095 | 0.3 | 0.10 | [21] | 1552 | 1552 | 0.3 | 0.07 | [40] |
20 | n-nonanal | 1113 | 1100 | 0.9 | 0.09 | [21] | 1389 | 1389 | 0.9 | 0.20 | [41] |
21 | p-mentha-1,5-dien-8-ol | 1182 | 1166 | 0.1 | 0.16 | [21] | 1722 | 1723 | 0.1 | 0.06 | [42] |
22 | terpinen-4-ol | 1187 | 1174 | [21] | 1593 | 1594 | 0.1 | 0.03 | [43] | ||
23 | octanoic acid | 1190 | 1190 | 0.1 | 0.12 | [44] | - | - | - | - | - |
24 | p-cymen-8-ol | 1198 | 1179 | 0.3 | 0.06 | [21] | 1845 | 1845 | 0.3 | 0.09 | [45] |
25 | cryptone | 1199 | 1183 | [21] | 1647 | 1644 | 2.4 | 2.09 | [46] | ||
26 | α-terpineol | 1204 | 1186 | 0.2 | 0.08 | [21] | 1690 | 1689 | 0.4 | 0.10 | [47] |
27 | n-decanal | 1214 | 1201 | 0.3 | 0.03 | [21] | 1494 | 1492 | 0.2 | 0.12 | [48] |
28 | verbenone | 1220 | 1204 | 0.2 | 0.07 | [21] | - | - | - | - | - |
29 | pulegone | 1228 | 1233 | trace | - | [21] | - | - | - | - | - |
30 | trans-carveol | 1230 | 1215 | trace | - | [21] | 1829 | 1830 | 0.1 | 0.02 | [49] |
31 | nerol | 1233 | 1227 | trace | - | [21] | 1755 | 1755 | 0.3 | 0.20 | [50] |
32 | trans-chrysanthenyl acetate | 1234 | 1235 | trace | - | [21] | - | - | - | - | - |
33 | geraniol | 1260 | 1249 | trace | - | [21] | 1847 | 1847 | 0.2 | 0.06 | [51] |
34 | (2E)-decenal | 1272 | 1260 | 0.3 | 0.06 | [21] | 1634 | 1634 | 0.3 | 0.06 | [52] |
35 | nonanoic acid | 1287 | 1267 | 0.3 | 0.20 | [21] | 2126 | 2124 | 0.1 | 0.06 | [53] |
36 | p-vinylguaiacol | 1323 | 1309 | 0.5 | 0.37 | [21] | 2190 | 2190 | 0.9 | 0.13 | [54] |
37 | (2E,4E)-decadienal | 1331 | 1315 | trace | - | [21] | 1780 | 1780 | 0.1 | 0.04 | [55] |
38 | α-copaene | 1375 | 1374 | 1.2 | 0.16 | [21] | 1475 | 1475 | 0.9 | 0.15 | [51] |
39 | (E)-β-damascenone | 1386 | 1383 | 0.8 | 0.21 | [21] | 1806 | 1803 | 0.7 | 0.09 | [56] |
40 | β-cubebene | 1388 | 1387 | 0.1 | 0.05 | [21] | 1524 | 1522 | 0.2 | 0.06 | [36] |
41 | n-tetradecane | 1400 | 1400 | 0.2 | 0.03 | [21] | 1400 | 1400 | 0.5 | 0.36 | - |
42 | α-gurjunene | 1406 | 1409 | 0.5 | 0.03 | [21] | 1506 | 1507 | 0.5 | 0.10 | [57] |
43 | 4-(2,4,4-trimethylcyclohexa-1,5-dienyl)-but-3-en-2-one | 1416 | 1423 | 0.1 | 0.18 | [58] | - | - | - | - | - |
44 | (E)-β-caryophyllene | 1420 | 1417 | 2.8 | 0.45 | [21] | 1576 | 1575 | 2.4 | 0.54 | [51] |
45 | α-humulene | 1457 | 1452 | 3.2 | 0.54 | [21] | 1648 | 1649 | 3.0 | 0.66 | [36] |
46 | γ-muurolene | 1477 | 1478 | 0.2 | 0.07 | [21] | 1672 | 1675 | 0.3 | 0.07 | [59] |
47 | germacrene D | 1484 | 1480 | 6.5 | 1.71 | [21] | 1689 | 1690 | 4.9 | 1.49 | [29] |
48 | (E)-β-ionone | 1487 | 1487 | [21] | 1920 | 1923 | 0.4 | 0.14 | [39] | ||
49 | (Z,E)-α-farnesene | 1493 | 1491 | 0.6 | 0.18 | [21] | 1725 | 1725 | 0.9 | 0.31 | [60] |
50 | α-zingiberene | 1497 | 1493 | 0.9 | 0.92 | [21] | 1711 | 1713 | 0.8 | 0.50 | [61] |
51 | α-muurolene | 1501 | 1500 | 0.6 | 0.06 | [21] | 1709 | 1706 | trace | - | [62] |
52 | γ-cadinene | 1516 | 1513 | 0.2 | 0.15 | [21] | 1740 | 1738 | trace | - | [63] |
53 | n-tridecanal | 1518 | 1509 | 0.6 | 0.06 | [21] | 1810 | 1809 | trace | - | [64] |
54 | δ-cadinene | 1521 | 1523 | 2.2 | 0.49 | [21] | 1743 | 1744 | 2.3 | 0.76 | [45] |
55 | unidentified (MW = 220) | 1530 | - | 0.7 | 0.12 | [21] | 1805 | - | 0.7 | 0.10 | - |
56 | unidentified (MW = 220) | 1548 | - | 3.5 | 0.71 | [21] | 1894 | - | 3.0 | 0.62 | - |
57 | germacrene D-4-ol | 1583 | 1574 | 2.0 | 0.55 | [21] | 2033 | 2038 | 0.2 | 0.04 | [65] |
58 | spathulenol | 1585 | 1577 | [21] | 2105 | 2106 | 1.6 | 0.57 | [45] | ||
59 | caryophyllene oxide | 1589 | 1582 | 2.2 | 0.77 | [21] | 1952 | 1953 | 1.6 | 0.61 | [66] |
60 | n-hexadecane | 1600 | 1600 | 0.1 | 0.06 | [21] | 1600 | 1600 | 0.2 | 0.05 | - |
61 | viridiflorol | 1601 | 1592 | 0.9 | 0.06 | [21] | 2084 | 2084 | 0.5 | 0.10 | [67] |
62 | ledol | 1611 | 1602 | 0.4 | 0.01 | [21] | 2004 | 2007 | 0.2 | 0.19 | [68] |
63 | unidentified (MW = 220) | 1618 | - | 1.5 | 0.68 | [21] | 2007 | - | 1.2 | 0.35 | - |
64 | cubenol | 1635 | 1645 | 0.2 | 0.10 | [21] | 2043 | 2043 | 0.1 | 0.12 | [68] |
65 | epi-α-cadinol | 1651 | 1638 | 0.7 | 0.54 | [21] | 2159 | 2160 | 1.4 | 0.54 | [49] |
66 | epi-α-muurolol | 1653 | 1640 | 1.3 | 0.25 | [21] | 2174 | 2172 | 1.4 | 0.31 | [69] |
67 | α-muurolol (= torreyol) | 1656 | 1644 | 0.8 | 0.18 | [21] | 2187 | 2187 | 0.9 | 0.27 | [70] |
68 | α-cadinol | 1666 | 1652 | 3.8 | 0.63 | [21] | 2217 | 2218 | 4.4 | 0.85 | [69] |
69 | unidentified (MW = 220) | 1668 | - | 1.3 | 0.55 | [21] | 2145 | - | 1.0 | 0.36 | - |
70 | unidentified (MW = 220) | 1670 | - | [21] | - | - | - | - | - | ||
71 | α-amyl cinnamyl alcohol | 1670 | 1682 | [21] | - | - | - | - | - | ||
72 | ar-turmerone | 1675 | 1668 | 0.1 | 0.06 | [21] | - | - | - | - | - |
73 | khusinol | 1681 | 1679 | 1.2 | 0.12 | [21] | 2423 | - | 1.1 | 0.06 | § |
74 | (1R,7S,E)-7-isopropyl-4,10-dimethylenecyclodec-5-enol | 1698 | 1695 | 1.2 | 0.33 | [71] | - | - | - | - | - |
75 | unidentified (MW = 220) | 1700 | - | [21] | 1433 | - | 0.4 | 0.08 | - | ||
76 | amorpha-4,9-dien-2-ol | 1702 | 1700 | 0.3 | 0.38 | [21] | 2345 | - | 0.5 | 0.26 | § |
77 | n-pentadecanal | 1724 | 1717 | 1.4 | 0.21 | [21] | 2021 | 2020 | 1.0 | 0.38 | [72] |
78 | unidentified (MW = 236) | 1783 | - | 0.4 | 0.13 | [21] | - | - | - | - | - |
79 | n-octadecane | 1800 | 1800 | trace | - | [21] | 1800 | 1800 | 0.3 | 0.15 | - |
80 | 14-hydroxy-δ-cadinene | 1811 | 1803 | 0.1 | 0.03 | [21] | 2588 | 2607 | 0.2 | 0.01 | [73] |
81 | n-hexadecanal | 1828 | 1822 | 0.1 | 0.03 | [74] | 2129 | 2132 | 0.1 | 0.04 | [75] |
82 | (2E,6E)-farnesyl acetate | 1844 | 1845 | 0.2 | 0.02 | [21] | 2263 | 2265 | 0.5 | 0.11 | [25] |
83 | 6,10,14-trimethyl-2-pentadecanone | 1851 | 1848 | 0.3 | 0.02 | [76] | 2120 | 2125 | 0.4 | 0.11 | [77] |
84 | n-hexadecanol | 1891 | 1874 | trace | - | [21] | 2356 | 2355 | 0.7 | 0.13 | [78] |
85 | 9-nonadecene | 1893 | 1893 | [79] | - | - | - | - | - | ||
86 | n-nonadecane | 1900 | 1900 | 0.1 | 0.01 | [21] | 1900 | 1900 | 0.3 | 0.03 | - |
87 | unidentified (MW = 216) | 1908 | - | trace | - | [21] | - | - | - | - | - |
88 | (5E,9E)-farnesyl acetone | 1919 | 1913 | [21] | 2370 | 2375 | 0.3 | 0.06 | [80] | ||
89 | n-heptadecanal | 1929 | 1930 | 0.4 | 0.05 | [81] | 2238 | 2247 | 0.3 | 0.05 | [82] |
90 | phytol | 1950 | 1942 | trace | - | [21] | 2612 | 2611 | 0.2 | 0.06 | [68] |
91 | n-hexadecanoic acid | 1975 | 1975 | 0.6 | 0.11 | [83] | 2850 | 2871 | 0.4 | 0.09 | [84] |
92 | unidentified (MW = 256) | 1979 | - | 0.3 | 0.03 | [21] | - | - | - | - | - |
93 | 1-heptadecanol | 1993 | 1993 | 0.2 | 0.03 | [81] | 2454 | 2451 | 0.1 | 0.06 | [44] |
94 | n-eicosane | 2000 | 2000 | 0.1 | 0.01 | [21] | 2000 | 2000 | 0.7 | 0.46 | - |
95 | 1-octadecanol | 2093 | 2077 | 1.0 | 0.20 | [21] | 2553 | 2558 | 1.2 | 0.32 | [85] |
96 | n-heneicosane | 2100 | 2100 | 0.5 | 0.04 | [21] | 2100 | 2100 | 0.2 | 0.20 | - |
97 | 1-nonadecanol | 2196 | 2195 | 1.9 | 0.36 | [86] | 2654 | 2646 | 1.7 | 1.18 | [44] |
98 | n-docosane | 2200 | 2200 | 0.3 | 0.17 | [21] | 2200 | 2200 | 0.5 | 0.33 | - |
99 | 1-eicosanol | 2296 | 2292 | 1.2 | 0.22 | [87] | 2724 | 2717 | 0.9 | 0.10 | [88] |
100 | n-tricosane | 2300 | 2300 | 3.4 | 0.70 | [21] | 2300 | 2300 | 3.3 | 0.71 | - |
101 | 1-heneicosanol | 2397 | 2380 | 5.8 | 1.49 | [89] | 2887 | - | 4.5 | 1.30 | § |
102 | n-tetracosane | 2400 | 2400 | trace | - | [21] | 2400 | 2400 | 1.1 | 0.27 | - |
103 | 1-docosanol | 2495 | 2493 | 0.2 | 0.04 | [90] | - | - | - | - | - |
104 | n-pentacosane | 2500 | 2500 | 7.1 | 1.99 | [21] | 2500 | 2500 | 5.8 | 1.65 | - |
105 | 1-tricosanol | 2598 | - | 4.5 | 1.11 | § | 3566 | - | 4.0 | 1.00 | § |
106 | n-hexacosane | 2600 | 2600 | [21] | 2600 | 2600 | 0.3 | 0.09 | - | ||
107 | n-tetracosanal | 2644 | 2650 | 0.5 | 0.15 | [91] | - | - | - | - | - |
108 | n-heptacosane | 2700 | 2700 | 3.5 | 0.87 | [21] | 2700 | 2700 | 3.0 | 0.88 | - |
109 | 1-pentacosanol | 2797 | - | 0.5 | 0.11 | § | - | - | - | - | - |
110 | n-octacosane | 2800 | 2800 | [21] | 2800 | 2800 | 0.5 | 0.17 | - | ||
111 | 1-hexacosanol | 2860 | 2862 | 0.8 | 0.23 | [21] | - | - | - | - | - |
112 | n-triacontane | 3000 | 3000 | 0.3 | 0.07 | [21] | - | - | - | - | - |
Monoterpene hydrocarbons | 9.2 | 8.7 | |||||||||
Oxygenated monoterpenes | 1.1 | 4.2 | |||||||||
Sesquiterpene hydrocarbons | 23.2 | 19.9 | |||||||||
Oxygenated sesquiterpenes | 20.1 | 19.2 | |||||||||
Others | 39.4 | 35.3 | |||||||||
Total | 93.0 | 87.3 |
LRI | Enantiomers | Enantiomeric Distribution (%) | e.e. (%) |
---|---|---|---|
918 * | (1S,5S)-(−)-α-pinene | 62.9 | 25.8 |
920 * | (1R,5R)-(+)-α-pinene | 37.1 | |
972 * | (1R,5R)-(+)-β-pinene | 100.0 | 100.0 |
1008 * | (1R,5R)-(+)-sabinene | 72.2 | 44.4 |
1016 * | (1S,5S)-(−)-sabinene | 27.8 | |
1024 * | (S)-(+)-α-phellandrene | 59.1 | 18.2 |
1026 * | (R)-(−)-α-phellandrene | 40.9 | |
1075 * | (S)-(+)-β-phellandrene | 100.0 | 100.0 |
1302 * | (R)-(−)-linalool | 52.4 | 4.8 |
1305 * | (S)-(+)-linalool | 47.6 | |
1317 ** | (1R,2S,6S,7S,8S)-(−)-α-copaene | 4.3 | 91.4 |
1319 ** | (1S,2R,6R,7R,8R)-(+)-α-copaene | 95.7 | |
1335 * | (R)-(−)-terpinen-4-ol | 42.6 | 14.8 |
1380 * | (S)-(+)-terpinen-4-ol | 57.4 | |
1396 * | (S)-(−)-α-terpineol | 50.1 | 0.2 |
1401 * | (R)-(+)-α-terpineol | 49.9 | |
1454 ** | (R)-(+)-germacrene D | 95.5 | 91.0 |
1462 ** | (S)-(−)-germacrene D | 4.5 |
Compound | Normalized % | |
---|---|---|
G. rugulosa | G. miniphylla | |
α-pinene | 10.7 | 15.3 |
α-phellandrene | 0.3 | 17.6 |
β-phellandrene | 0.9 | 3.2 |
trans-myrtanol acetate | - | 9.3 |
(E)-β-caryophyllene | 4.9 | 2.7 |
α-humulene | 5.9 | 2.0 |
germacrene D | 11.7 | 14.8 |
δ-cadinene | 4.2 | 4.6 |
caryophyllene oxide | 3.9 | - |
α-cadinol | 7.7 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 849. https://doi.org/10.3390/plants12040849
Maldonado YE, Malagón O, Cumbicus N, Gilardoni G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants. 2023; 12(4):849. https://doi.org/10.3390/plants12040849
Chicago/Turabian StyleMaldonado, Yessenia E., Omar Malagón, Nixon Cumbicus, and Gianluca Gilardoni. 2023. "A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses" Plants 12, no. 4: 849. https://doi.org/10.3390/plants12040849
APA StyleMaldonado, Y. E., Malagón, O., Cumbicus, N., & Gilardoni, G. (2023). A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants, 12(4), 849. https://doi.org/10.3390/plants12040849