Willow (Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant material and Growth Conditions
4.2. Preparation of Willow Tree Extracts
4.3. Mineral Element Characterization of Willow Extracts
4.4. Auxin-like Activity of Willow Extracts
4.5. Solution Culture Experiment
4.6. Chlorophyll Content Analysis
4.7. Element Analysis
4.8. Extraction for Protein and Antioxidative Enzyme Assays
4.9. Determination of Antioxidative Enzyme Activities
4.10. Total Bradford Protein Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motha, R.P.; Baier, W. Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Clim. Chang. 2005, 70, 137–164. [Google Scholar] [CrossRef]
- Martíni, A.F.; Favaretto, N.; De Bona, F.D.; Duraes, M.F.; de Paula Souza, L.C.; Goularte, G.D. Impacts of soil use and management on water quality in agricultural watersheds in Southern Brazil. Land Degrad. Dev. 2021, 32, 975–992. [Google Scholar] [CrossRef]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Bose, S.; Fakir, O.A.; Alam, M.K.; Hossain, A.Z.; Hossain, A.; Mymensingh, B.; Rashid, M.H. Effects of salinity on seedling growth of four maize (Zea mays L.) cultivars under hydroponics. J. Agric. Stud. 2018, 6, 56–69. [Google Scholar]
- Kaya, C.; Kirnak, H.; Higgs, D. Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl. Plant Nutr. 2001, 24, 1457–1471. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Othman, Y.; Bataineh, K.; Al-Ajlouni, M.; Alsmairat, N.; Ayad, J.; Shiyab, S.; St Hilaire, R. Soilless culture: Management of growing substrate, water, nutrient, salinity, microorganism and product quality. Fresenius Environ. Bull. 2019, 28, 3249–3260. [Google Scholar]
- D’Amato, R.; Del Buono, D. Use of a Biostimulant to Mitigate Salt Stress in Maize Plants. Agronomy 2021, 11, 1755. [Google Scholar] [CrossRef]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A novel protein hydrolysate-based biostimulant improves tomato performances under drought stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef] [PubMed]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Amirkhani, M.; Netravali, A.N.; Huang, W.; Taylor, A.G. Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience 2016, 51, 1121–1126. [Google Scholar] [CrossRef]
- Godlewska, K.; Biesiada, A.; Michalak, I.; Pacyga, P. The effect of botanical extracts obtained through ultrasound-assisted extraction on white head cabbage (Brassica oleracea L. var. capitata L.) seedlings grown under controlled conditions. Sustainability 2020, 12, 1871. [Google Scholar] [CrossRef]
- Pardo-García, A.I.; Martínez-Gil, A.M.; Cadahía, E.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Res. Int. 2014, 55, 150–160. [Google Scholar] [CrossRef]
- Trevisan, S.; Manoli, A.; Quaggiotti, S. A novel biostimulant, belonging to protein hydrolysates, mitigates abiotic stress effects on maize seedlings grown in hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef]
- Noman, A.; Ali, Q.; Naseem, J.; Javed, M.T.; Kanwal, H.; Islam, W.; Shahid, S. Sugar beet extract acts as a natural bio-stimulant for physio-biochemical attributes in water stressed wheat (Triticum aestivum L.). Acta Physiol. Plant 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, H.; Ali, M.; Hayat, K.; Khan, M.A.; Cheng, Z. Aqueous garlic extract as a plant biostimulant enhances physiology, improves crop quality and metabolite abundance, and primes the defense responses of receiver plants. Appl. Sci. 2018, 8, 1505. [Google Scholar] [CrossRef]
- Mutlu-Durak, H.; Yildiz Kutman, B. Seed Treatment with Biostimulants Extracted from Weeping Willow (Salix babylonica) Enhances Early Maize Growth. Plants 2021, 10, 1449. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Pardo, F.; Alonso, G.L.; Salinas, M.R. An innovative use of vine-shoots residues and their “feedback” effect on wine quality. Innov. Food Sci. Emerg. Technol. 2016, 37, 18–26. [Google Scholar] [CrossRef]
- Yaseen, A.A.; Takacs-Hajos, M. The effect of plant biostimulants on the macronutrient content and ion ratio of several lettuce (Lactuca sativa L.) cultivars grown in a plastic house. S. Afr. J. Bot. 2022, 147, 223–230. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.S. Allelopathy in Crop Production; Scientific Publishers: Jodhapur, India, 2004; pp. 326–332. [Google Scholar]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Tinti, A.; Nardi, S. Biological activity of vegetal extracts containing phenols on plant metabolism. Molecules 2016, 21, 205. [Google Scholar] [CrossRef]
- Wiesneth, S.; Aas, G.; Heilmann, J.; Jürgenliemk, G. Investigation of the flavan-3-ol patterns in willow species during one growing-season. Phytochemistry 2018, 145, 26–39. [Google Scholar] [CrossRef]
- Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-sulfate: A new salicinoid from willow and implications for herbal medicine. Fitoterapia 2018, 127, 166–172. [Google Scholar] [CrossRef]
- El-Sayed, M.; El-Hashash, M.; Mohamed, R.; Abdel-Lateef, E. Phytochemical Investigation and in vitro antioxidant activity of different leaf extracts of Salix mucronata Thunb. J. Appl. Pharm. Sci. 2015, 5, 80–85. [Google Scholar] [CrossRef]
- Kammerer, B.; Kahlich, R.; Biegert, C.; Gleiter, C.H.; Heide, L. HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2005, 16, 470–478. [Google Scholar] [CrossRef]
- Koo, Y.M.; Heo, A.Y.; Choi, H.W. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 2020, 36, 1. [Google Scholar] [CrossRef]
- Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biocide and food products as biorationals. J.Plant Prot. Res. 2016, 56, 3. [Google Scholar] [CrossRef]
- Deniau, M.G.; Bonafos, R.; Chovelon, M.; Parvaud, C.E.; Furet, A.; Bertrand, C.; Marchand, P.A. Willow Extract (Salix cortex), a Basic Substance of Agronomical Interests. Int. J. Bio-Resour. Stress Manag. 2019, 10, 4. [Google Scholar] [CrossRef]
- Wise, K.; Gill, H.; Selby-Pham, J. Willow bark extract and the biostimulant complex Root Nectar® increase propagation efficiency in chrysanthemum and lavender cuttings. Sci. Hortic. 2020, 263, 109108. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 2011, 168, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Eraslan, F.; Inal, A.; Pilbeam, D.J.; Gunes, A. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul. 2008, 55, 207–219. [Google Scholar] [CrossRef]
- Loutfy, N.; El-Tayeb, M.A.; Hassanen, A.M.; Moustafa, M.F.M.; Sakuma, Y.; Inouhe, M. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J. Plant Res. 2012, 125, 173–184. [Google Scholar] [CrossRef]
- Singh, B.; Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 2003, 39, 137–141. [Google Scholar] [CrossRef]
- Martínez, C.; Pons, E.; Prats, G.; León, J. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J. 2004, 37, 209–217. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Asgher, M.; Khan, N.A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Biochem. 2014, 80, 67–74. [Google Scholar] [CrossRef]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 2012. [Google Scholar] [CrossRef]
- Belkhadi, A.; Hediji, H.; Abbes, Z.; Nouairi, I.; Barhoumi, Z.; Zarrouk, M.; Djebali, W. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol. Environ. Saf. 2010, 73, 1004–1011. [Google Scholar] [CrossRef]
- Miura, K.; Tada, Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Katerji, N.; Van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manag. 2000, 43, 99–109. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mashwani, W.K.; Tahir, M.H.; Belhaouari, S.B.; Alrabaiah, H.; Naeem, S.; Chesneau, C. Statistical features analysis and discrimination of maize seeds utilizing machine vision approach. J. Intell. Fuzzy Syst. 2021, 40, 703–714. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2022; Volume 14. [Google Scholar]
- Orhun, G.E. Maize for life. Int. J. Food Sci. Nutr. 2013, 3, 13–16. [Google Scholar]
- Veljković, V.B.; Biberdžić, M.O.; Banković-Ilić, I.B.; Djalović, I.G.; Tasić, M.B.; Nježić, Z.B.; Stamenković, O.S. Biodiesel production from corn oil: A review. Renew. Sust. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.L. Macronutrients in corn and human nutrition. Compr. Rev. Food Sci. Food Saf. 2016, 15, 581–598. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant. Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Cantos, E.; Tudela, J.A.; Gil, M.I.; Espín, J.C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J. Agric. Food Chem. 2002, 50, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.Y.; Wong, C.W. Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale Roscoe). J. Food Sci. Technol. 2018, 55, 3001–3007. [Google Scholar] [CrossRef]
- Pál, M.; Janda, T.; Majláth, I.; Szalai, G. Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. Int. J. Mol. Sci. 2020, 21, 1942. [Google Scholar] [CrossRef]
- Pérez-Llorca, M.; Muñoz, P.; Müller, M.; Munné-Bosch, S. Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Front. Plant Sci. 2019, 10, 136. [Google Scholar] [CrossRef]
- Basu, R.N.; Bose, T.K.; Roy, B.N.; Mukhopadhyay, A. Auxin synergist in rooting of cuttings. Physiol. Plant 1969, 22, 649–652. [Google Scholar] [CrossRef]
- Arberg, B. Plant Growth Regulators. XLI: Monosubstituted Benzoic Acids. Swed. J. Agric. Res. 1981, 11, 93–105. [Google Scholar]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Larqué-Saavedra, A.; Wilkins, H.; Wain, R.L. Promotion of cress root elongation in white light by 3, 5-diiodo-4-hydroxybenzoic acid. Planta 1975, 126, 269–272. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J.K. Understanding and improving salt tolerance in plants. Crop. Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev. 2016, 82, 371–406. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Jini, D.; Joseph, B. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci. 2017, 24, 97–108. [Google Scholar] [CrossRef]
- Jabeen, N.; Ahmad, R. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J. Sci. Food Agric. 2013, 93, 1699–1705. [Google Scholar] [CrossRef]
- Kumar, P.; Dube, S.D.; Chauhan, V.S. Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). Indian J. Plant Physiol. 1999, 4, 327–330. [Google Scholar]
- Jain, A.; Srivastava, H.S. Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol. Plant. 1981, 51, 339–342. [Google Scholar] [CrossRef]
- Iqbal, S.; Hussain, S.; Qayyaum, M.A.; Ashraf, M. The response of maize physiology under salinity stress and its coping strategies. Plant Stress Physiol. 2020, 1–25. [Google Scholar] [CrossRef]
- Assaha, D.V.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef]
- Almeida, D.M.; Oliveira, M.M.; Saibo, N.J. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef]
- Ketehouli, T.; Idrice Carther, K.F.; Noman, M.; Wang, F.W.; Li, X.W.; Li, H.Y. Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy 2019, 9, 687. [Google Scholar] [CrossRef]
- Eker, S.; Cömertpay, G.; Konuşkan, Ö.; Ülger, A.C.; Öztürk, L.; Çakmak, İ. Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turk J. Agric. For. 2006, 30, 365–373. [Google Scholar]
- Al-Hakimi, A.M.A.; Hamada, A.M. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol. Plant. 2001, 44, 253–261. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Hochmuth, G.J.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida: HS964/EP081 rev. 10/2012. EDIS 2012, 10. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Mengutay, M.; Ceylan, Y.; Kutman, U.B.; Cakmak, I. Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant Soil 2013, 368, 57–72. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Glutathione reductase. Meth. Enzymol. 1985, 113, 484–490. [Google Scholar]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Sarker, U.; Oba, S. The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assays of Catalases and Peroxidases. Methods Enzymol. 1955, 2, 764–775.7. [Google Scholar]
- Kutman, B.Y.; Kutman, U.B.; Cakmak, I. Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil 2013, 363, 61–75. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | DF | Plant Height | Shoot DW | Root DW | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | 0.019 | 5.4 | <0.001 | 76.9 | 0.123 | 17.0 |
Salinity (B) | 1 | <0.001 | 2.1 | <0.001 | 29.9 | 0.024 | 6.6 |
A × B | 5 | 0.385 | 8.9 | 0.055 | 126.2 | 0.885 | 27.9 |
Source of Variation | DF | Chlorophyll Content | SOD | GR | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | 0.013 | 3.0 | <0.001 | 5.6 | <0.001 | 0.041 |
Salinity (B) | 1 | 0.010 | 1.2 | 0.010 | 2.2 | 0.522 | 0.016 |
A × B | 5 | 0.496 | 4.9 | <0.001 | 9.2 | 0.188 | 0.068 |
Source of Variation | DF | APX | CAT | Protein | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | <0.001 | 0.84 | <0.001 | 20.5 | <0.001 | 0.91 |
Salinity (B) | 1 | 0.009 | 0.33 | <0.001 | 8.0 | 0.861 | 0.35 |
A × B | 5 | 0.685 | 1.38 | 0.144 | 33.7 | 0.278 | 1.49 |
Source of Variation | DF | Na | K | Na/K | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | <0.001 | 0.042 | 0.249 | 0.93 | <0.001 | 0.008 |
Salinity (B) | 1 | <0.001 | 0.016 | <0.001 | 0.36 | <0.001 | 0.003 |
A × B | 5 | <0.001 | 0.068 | 0.469 | 1.52 | <0.001 | 0.013 |
Source of Variation | DF | P | Ca | Mg | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | 0.088 | 0.258 | <0.001 | 0.125 | 0.297 | 0.068 |
Salinity (B) | 1 | <0.001 | 0.100 | <0.001 | 0.049 | 0.004 | 0.026 |
A × B | 5 | 0.010 | 0.422 | 0.521 | 0.205 | 0.863 | 0.111 |
Source of Variation | DF | S | Fe | Zn | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | 0.008 | 0.080 | <0.001 | 22.4 | <0.001 | 11.8 |
Salinity (B) | 1 | <0.001 | 0.031 | <0.001 | 8.7 | <0.001 | 4.6 |
A × B | 5 | 0.069 | 0.132 | 0.017 | 36.7 | <0.001 | 19.4 |
Source of Variation | DF | Mn | Cu | Mo | |||
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Biostimulant (A) | 5 | 0.027 | 31.7 | 0.005 | 1.8 | 0.442 | 0.301 |
Salinity (B) | 1 | <0.001 | 12.3 | 0.907 | 0.7 | <0.001 | 0.117 |
A × B | 5 | 0.971 | 51.9 | 0.397 | 3.0 | 0.264 | 0.493 |
Treatment | Salinity (mM) | Chlorophyll Content (µg/cm2) 30 DAS |
---|---|---|
Control | 0 | 32.9 ± 0.6 ab |
60 | 33.2 ± 2.6 a | |
SA (25 µM) | 0 | 32.3 ± 0.6 ab |
60 | 33.4 ± 2.9 a | |
WB (0.1%) | 0 | 28.1 ± 1.1 b |
60 | 31.9 ± 0.8 ab | |
WB (0.2%) | 0 | 30.4 ± 1.6 ab |
60 | 30.8 ± 3.4 ab | |
WL (0.1%) | 0 | 29.9 ± 1.9 ab |
60 | 32.0 ± 1.5 ab | |
WL (0.2%) | 0 | 29.8 ± 2.7 ab |
60 | 31.4 ± 0.9 ab |
Treatments | Salinity (mM) | SOD | GR | APX | CAT |
---|---|---|---|---|---|
(U g−1 FW) | (-µmol [NADPH] g−1 FW min−1) | (-µmol H2O2 g−1 FW min−1) | |||
Control | 0 | 27.2 ± 6.0 a–d | 0.182 ± 0.074 d | 2.46 ± 0.12 ab | 104 ± 18 b–d |
60 | 27.8 ± 2.0 a–d | 0.159 ± 0.012 cd | 3.04 ± 0.74 bc | 106 ± 9 b–d | |
SA (25 µM) | 0 | 20.6 ± 2.5 b–e | 0.079 ± 0.010 ab | 2.59 ± 0.94 a–c | 102 ± 18 b–d |
60 | 27.4 ± 2.6 a–d | 0.114 ± 0.031 a–c | 2.99 ± 0.51 a–c | 128 ± 18 d | |
WB (0.1%) | 0 | 19.2 ± 3.3 de | 0.126 ± 0.029 a–d | 2.95 ± 0.49 a–c | 82 ± 30 ab |
60 | 20.0 ± 2.7 c–e | 0.099 ± 0.015 a–c | 3.92 ± 1.04 c | 119 ± 26 cd | |
WB (0.2%) | 0 | 15.6 ± 2.0 e | 0.115 ± 0.030 a–d | 2.59 ± 0.78 a–c | 89 ± 3 a–c |
60 | 28.7 ± 9.2 a–c | 0.130 ± 0.051 b–d | 3.02 ± 0.41 a–c | 106 ± 7 b–d | |
WL (0.1%) | 0 | 34.8 ± 2.1 a | 0.093 ± 0.024 a–c | 2.44 ± 0.23 ab | 95 ± 16 a–d |
60 | 30.6 ± 4.0 a | 0.074 ± 0.023 ab | 2.49 ± 0.49 ab | 103 ±5 b–d | |
WL (0.2%) | 0 | 29.8 ± 2.1 ab | 0.072 ± 0.012 ab | 1.65 ± 0.41 a | 62 ± 9 a |
60 | 30.2 ± 3.4 a | 0.061 ± 0.013 a | 1.91 ± 0.30 ab | 74 ± 10 ab |
Treatments | Salinity (mM) | Na (%) | K (%) | Na/K |
---|---|---|---|---|
Control | 0 | 0.0002 ± 0.0001 d | 6.95 ± 0.11 a–c | 0.0000 ± 0.0000 c |
60 | 0.2999 ± 0.0455 a | 5.57 ± 0.66 c | 0.0541 ± 0.0082 a | |
SA (25 µM) | 0 | 0.0004 ± 0.0001 d | 7.08 ± 0.37 a–c | 0.0001 ± 0.0000 c |
60 | 0.2599 ± 0.0323 ab | 6.54 ± 1.27 a–c | 0.0407 ± 0.0090 ab | |
WB (0.1%) | 0 | 0.0009 ± 0.0003 d | 7.25 ± 0.28 a | 0.0001 ± 0.0000 c |
60 | 0.2334 ± 0.0360 ab | 5.61 ± 0.11 c | 0.0417 ± 0.0068 ab | |
WB (0.2%) | 0 | 0.0007 ± 0.0001 d | 7.17 ± 0.21 ab | 0.0001 ± 0.0000 c |
60 | 0.2153 ± 0.0321 bc | 5.94 ± 0.32 a–c | 0.0364 ± 0.0065 b | |
WL (0.1%) | 0 | 0.0016 ± 0.0004 d | 7.16 ± 0.23 a–c | 0.0002 ± 0.0001 c |
60 | 0.1944 ± 0.0506 bc | 6.47 ± 1.29 a–c | 0.0303 ± 0.0077 b | |
WL (0.2%) | 0 | 0.0008 ± 0.0001 d | 6.76 ± 0.45 a–c | 0.0001 ± 0.0000 c |
60 | 0.1598 ± 0.0338 c | 5.72 ± 0.44 bc | 0.0284 ± 0.0078 b |
Treatments | Salinity (mM) | P (%) | Ca (%) | Mg (%) | S (%) |
---|---|---|---|---|---|
Control | 0 | 1.08 ± 0.05 c | 0.80 ± 0.02 a | 0.35 ± 0.01 a | 0.60 ± 0.01 bc |
60 | 1.85 ± 0.21 a | 0.65 ± 0.12 ab | 0.39 ± 0.06 a | 0.52 ± 0.07 c | |
SA (25 µM) | 0 | 1.07 ± 0.06 c | 0.71 ± 0.03 ab | 0.34 ± 0.01 a | 0.61 ± 0.02 bc |
60 | 1.76 ± 0.29 ab | 0.66 ± 0.15 ab | 0.42 ± 0.09 a | 0.59 ± 0.11 bc | |
WB (0.1%) | 0 | 1.22 ± 0.18 c | 0.80 ± 0.08 a | 0.37 ± 0.03 a | 0.63 ± 0.02 a–c |
60 | 1.76 ± 0.27 ab | 0.61 ± 0.06 ab | 0.40 ± 0.04 a | 0.52 ± 0.03 c | |
WB (0.2%) | 0 | 1.22 ± 0.05 c | 0.74 ± 0.09 ab | 0.36 ± 0.02 a | 0.65 ± 0.02 a–c |
60 | 1.46 ± 0.09 a–c | 0.55 ± 0.06 bc | 0.39 ± 0.03 a | 0.57 ± 0.03 bc | |
WL (0.1%) | 0 | 1.18 ± 0.07 c | 0.72 ± 0.04 ab | 0.37 ± 0.01 a | 0.67 ± 0.03 ab |
60 | 1.78 ± 0.28 ab | 0.56 ± 0.13 bc | 0.40 ± 0.09 a | 0.57 ± 0.11 bc | |
WL (0.2%) | 0 | 1.15 ± 0.06 c | 0.59 ± 0.05 bc | 0.32 ± 0.02 a | 0.76 ± 0.05 a |
60 | 1.38 ± 0.13 bc | 0.40 ± 0.06 c | 0.35 ± 0.03 a | 0.56 ± 0.01 bc |
Treatments | Salinity (mM) | Fe (mg.kg−1) | Zn (mg.kg−1) | Mn (mg.kg−1) | Cu (mg.kg−1) | Mo (mg.kg−1) |
---|---|---|---|---|---|---|
Control | 0 | 83 ± 6 bc | 53 ± 7 b–d | 102 ± 7 de | 8.5 ± 0.7 a | 2.29 ± 0.43 a |
60 | 130 ± 37 a | 90 ± 13 a | 157 ± 21 a–c | 8.3 ± 1.0 a | 0.57 ± 0.19 b | |
SA (25 µM) | 0 | 73 ± 4 bc | 42 ± 2 d | 94 ± 7 e | 8.5 ± 0.5 a | 2.05 ± 0.13 a |
60 | 120 ± 31 a | 68 ± 11 bc | 149 ± 23 a–d | 9.3 ± 2.2 a | 0.49 ± 0.13 b | |
WB (0.1%) | 0 | 69 ± 15 bc | 48 ± 4 cd | 124 ± 25 b–e | 8.3 ± 0.8 a | 2.32 ± 0.26 a |
60 | 95 ± 9 ab | 69 ± 6 b | 181 ± 35 a | 8.5 ± 1.5 a | 0.57 ± 0.13 b | |
WB (0.2%) | 0 | 58 ± 3 c | 40 ± 5 d | 108 ± 7 c–e | 6.9 ± 0.4 a | 2.22 ± 0.24 a |
60 | 76 ± 11 bc | 45 ± 6 d | 153 ± 14 a–d | 7.1 ± 0.3 a | 0.37 ± 0.12 b | |
WL (0.1%) | 0 | 62 ± 2 bc | 51 ± 3 b-d | 124 ± 26 b–e | 9.4 ± 0.2 a | 2.24 ± 0.12 a |
60 | 70 ± 8 bc | 65 ± 15 bc | 173 ± 8 ab | 9.7 ± 2.5 a | 0.52 ± 0.13 b | |
WL (0.2%) | 0 | 61 ± 7 bc | 44 ± 6 d | 126 ± 28 b–e | 9.4 ± 0.5 a | 2.39 ± 0.14 a |
60 | 66 ± 14 bc | 43 ± 5 d | 168 ± 25 ab | 7.7 ± 1.0 a | 0.33 ± 0.14 b |
Elements | Extracts | ||
---|---|---|---|
WB | WL | ||
Macronutrient Concentrations (%) | Ca | 0.001 ± 0.001 | 0.023 ± 0.002 |
K | 0.018 ± 0.000 | 0.057 ± 0.014 | |
Mg | 0.002 ± 0.000 | 0.006 ± 0.000 | |
P | 0.005 ± 0.000 | 0.003 ± 0.000 | |
S | 0.010 ± 0.001 | 0.038 ± 0.003 | |
Micronutrient Concentrations (mg.L−1) | B | 0.082 ± 0.380 | 2.360 ± 0.246 |
Cu | 0.040 ± 0.043 | 0.083 ± 0.091 | |
Fe | 0.038 ± 0.065 | 0.030 ± 0.027 | |
Mn | 0.139 ± 0.015 | 1.326 ± 0.098 | |
Zn | 0.709 ± 0.196 | 0.000 ± 0.007 | |
Mo | 0.007 ± 0.012 | 0.002 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutlu-Durak, H.; Arikan, Y.; Kutman, B.Y. Willow (Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture. Plants 2023, 12, 856. https://doi.org/10.3390/plants12040856
Mutlu-Durak H, Arikan Y, Kutman BY. Willow (Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture. Plants. 2023; 12(4):856. https://doi.org/10.3390/plants12040856
Chicago/Turabian StyleMutlu-Durak, Hande, Yagmur Arikan, and Bahar Yildiz Kutman. 2023. "Willow (Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture" Plants 12, no. 4: 856. https://doi.org/10.3390/plants12040856
APA StyleMutlu-Durak, H., Arikan, Y., & Kutman, B. Y. (2023). Willow (Salix babylonica) Extracts Can Act as Biostimulants for Enhancing Salinity Tolerance of Maize Grown in Soilless Culture. Plants, 12(4), 856. https://doi.org/10.3390/plants12040856