Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera
Abstract
:1. Introduction
2. Results
2.1. Assessment of Primer Specificity and Amplification Efficiency
2.2. Confirmation of Viral Infection and Sampling
2.3. Expression Analysis of the 13 Selected Reference Genes by RT-qPCR
2.4. Stability Analysis of the 13 Selected Reference Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Virus Inoculation
4.2. Total RNA Isolation and cDNA Synthesis
4.3. Selection of Candidate Reference Genes
4.4. RT-PCR Confirmation of Viral Infection and RT-qPCR
4.5. Evaluation of the Expression Stability of Reference Genes Using GeNorm, NormFinder, Delta-CT, BestKeeper, and RefFinder
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauhan, P.; Singla, K.; Rajbhar, M.; Singh, A.; Das, N.; Kumar, K. A systematic review of conventional and advanced approaches for the control of plant viruses. J. Appl. Biol. Biotechnol. 2019, 7, 89–98. [Google Scholar]
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef]
- Wang, T.; Brown, M.J. mRNA Quantification by Real Time TaqMan Polymerase Chain Reaction: Validation and Comparison with RNase Protection. Anal. Biochem. 1999, 269, 198–201. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Mallona, I.; Lischewski, S.; Weiss, J.; Hause, B.; Egea-Cortines, M. Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol. 2010, 10, 4. [Google Scholar] [CrossRef]
- Chervoneva, I.; Li, Y.; Schulz, S.; Croker, S.; Wilson, C.; Waldman, S.A.; Hyslop, T. Selection of optimal reference genes for normalization in quantitative RT-PCR. BMC Bioinform. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Thellin, O.; Zorzi, W.; Lakaye, B.; De Borman, B.; Coumans, B.; Hennen, G.; Grisar, T.; Igout, A.; Heinen, E. Housekeeping genes as internal standards: Use and limits. J. Biotechnol. 1999, 75, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Levanon, E.Y. Human housekeeping genes, revisited. Trends Genet. 2013, 29, 569–574. [Google Scholar] [CrossRef]
- Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genom. 2010, 283, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, L.; Han, C.; Yu, J.; Li, D.; Zhang, Y. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE 2012, 7, e46451. [Google Scholar] [CrossRef]
- Rotenberg, D.; Thompson, T.S.; German, T.L.; Willis, D.K. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. J. Virol. Methods 2006, 138, 49–59. [Google Scholar] [CrossRef]
- Inoue, T.; Tsai, B. How Viruses Use the Endoplasmic Reticulum for Entry, Replication, and Assembly. Cold Spring Harb. Perspect. Biol. 2013, 5, a013250. [Google Scholar] [CrossRef]
- Hyodo, K.; Okuno, T. Host factors used by positive-strand RNA plant viruses for genome replication. J. Gen. Plant Pathol. 2014, 80, 123–135. [Google Scholar] [CrossRef]
- Sirover, M.A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J. Cell. Biochem. 2005, 95, 45–52. [Google Scholar] [CrossRef]
- Sirover, M.A. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehy-drogenase. Biochim. Biophys. Acta 1999, 1432, 159–184. [Google Scholar] [CrossRef]
- Bonafé, N.; Gilmore-Hebert, M.; Folk, N.L.; Azodi, M.; Zhou, Y.; Chambers, S.K. Glyceraldehyde-3-Phosphate Dehydrogenase Binds to the AU-Rich 3′ Untranslated Region of Colony-Stimulating Factor–1 (CSF-1) Messenger RNA in Human Ovarian Cancer Cells: Possible Role in CSF-1 Posttranscriptional Regulation and Tumor Phenotype. Cancer Res. 2005, 65, 3762–3771. [Google Scholar] [CrossRef]
- Wang, R.Y.; Nagy, P.D. Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral ge-nomic RNA synthesis. Cell Host Microbe 2008, 3, 178–187. [Google Scholar] [CrossRef]
- Wang, X.; Ahlquist, P. Filling a GAP(DH) in Asymmetric Viral RNA Synthesis. Cell Host Microbe 2008, 3, 124–125. [Google Scholar] [CrossRef] [PubMed]
- Gross, S.R.; Kinzy, T.G. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat. Struct. Mol. Biol. 2005, 12, 772–778. [Google Scholar] [CrossRef]
- Nishikiori, M.; Dohi, K.; Mori, M.; Meshi, T.; Naito, S.; Ishikawa, M. Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound. J. Virol. 2006, 80, 8459–8468. [Google Scholar] [CrossRef]
- Shin, R.; Park, C.J.; Paek, K.H. A translation elongation factor 1A (CaEF1A) gene from hot pepper (Capsicum annuum L.) is induced by the tobacco mosaic virus and by wounding. J. Plant Biol. 2001, 44, 199–204. [Google Scholar] [CrossRef]
- Jarošová, J.; Kundu, J.K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its History and Future as a Model for Plant–Pathogen Interactions. Mol. Plant-Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Bally, J.; Jung, H.; Mortimer, C.; Naim, F.; Philips, J.G.; Hellens, R.; Bombarely, A.; Goodin, M.M.; Waterhouse, P.M. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. Annu. Rev. Phytopathol. 2018, 56, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fernald, R.D.; Bylund, J.B.; Trinh, L.T.; Awgulewitsch, C.P.; Paik, D.T.; Jetter, C.; Jha, R.; Zhang, J.; Nolan, K.; et al. Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction. J. Comput. Biol. 2005, 12, 1047–1064. [Google Scholar] [CrossRef]
- Wan, H.; Zhao, Z.; Qian, C.; Sui, Y.; Malik, A.A.; Chen, J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010, 399, 257–261. [Google Scholar] [CrossRef]
- Guénin, S.; Mauriat, M.; Pellouxn, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Hu, C.-C.; Lin, N.-S.; Hsu, Y.-H. Unusual roles of host metabolic enzymes and housekeeping proteins in plant virus replication. Curr. Opin. Virol. 2012, 2, 676–682. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, J.Y.; Ruan, H.Y.; Yang, C.L.; Zhang, C.Y. Expression stability of candidate RT-qPCR housekeeping genes in Spodoptera frugiperda (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 2021, 108, e21831. [Google Scholar]
- Lilly, S.T.; Drummond, R.S.M.; Pearson, M.N.; MacDiarmid, R.M. Identification and Validation of Reference Genes for Normalization of Transcripts from Virus-Infected Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2011, 24, 294–304. [Google Scholar] [CrossRef]
- Remans, T.; Smeets, K.; Opdenakker, K.; Mathijsen, D.; Vangronsveld, J.; Cuypers, A. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 2008, 227, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Hemler, M.E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 2005, 6, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Florin, L.; Lang, T. Tetraspanin Assemblies in Virus Infection. Front. Immunol. 2018, 9, 1140. [Google Scholar] [CrossRef]
- Zhu, T.; Sun, Y.; Chen, X. Arabidopsis Tetraspanins Facilitate Virus Infection via Membrane-Recognition GCCK/RP Motif and Cysteine Residues. Front. Plant Sci. 2022, 13, 805633. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, R.; Trivedi, P.; Vyas, G.K.; Khandelwal, V. Traditional and novel references towards systematic normalization of qRT-PCR data in plants. Aust. J. Crop. Sci. 2011, 5, 1455–1468. [Google Scholar]
- Ding, S.-W. RNA-based antiviral immunity. Nat. Rev. Immunol. 2010, 10, 632–644. [Google Scholar] [CrossRef]
- Helderman, T.A.; Deurhof, L.; Bertran, A.; Richard, M.M.S.; Kormelink, R.; Prins, M.; Joosten, M.H.A.J.; Burg, H.A. Members of the ribosomal protein S6 (RPS6) family act as pro-viral factor for tomato spotted wilt orthotospovirus infectivity in Nicotiana benthamiana. Mol. Plant Pathol. 2021, 23, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Summer, H.; Grämer, R.; Dröge, P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J. Vis. Exp. 2009, 32, e1485. [Google Scholar]
- Ismayil, A.; Haxim, Y.; Wang, Y.; Li, H.; Qian, L.; Han, T.; Chen, T.; Jia, Q.; Yihao Liu, A.; Zhu, S.; et al. Cotton Leaf Curl Multan virus C4 protein suppresses both tran-scriptional and post-transcriptional gene silencing by interacting with SAM synthetase. PLoS Pathog. 2018, 14, e1007282. [Google Scholar] [CrossRef]
- Pombo, M.A.; Ramos, R.N.; Zheng, Y.; Fei, Z.; Martin, G.B.; Rosli, H.G. Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Li, F.; Zhang, C.; Li, Y.; Wu, G.; Hou, X.; Zhou, X.; Wang, A. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat. Commun. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Q.; Wu, Y.; Huang, F.; Ismayil, A.; Zhang, D.; Li, H.; Gu, H.; Ludman, M.; Fátyol, K.; et al. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 2021, 29, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Grech-Baran, M.; Witek, K.; Poznański, J.T.; Grupa-Urbańska, A.; Malinowski, T.; Lichocka, M.; Jones, J.D.; Hennig, J. The Rysto immune receptor recognises a broadly conserved feature of potyviral coat proteins. New Phytol. 2022, 235, 1179–1195. [Google Scholar] [CrossRef]
- Cui, W.; Wang, S.; Han, K.; Zheng, E.; Ji, M.; Chen, B.; Wang, X.; Chen, J.; Yan, F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. Plant J. 2021, 107, 1183–1197. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quan-titative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, Research0034. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
Genes | Amplicon Length (bp) | E (%) | R2 |
---|---|---|---|
NbeIF4A | 135 | 107.4 | 0.996 |
NbLip | 103 | 99.3 | 0.9963 |
NbL23 | 110 | 99.4 | 0.9951 |
NbKLC | 81 | 106.4 | 0.996 |
NbEF1α | 135 | 110 | 0.9874 |
NbPGK | 105 | 105.5 | 0.9988 |
NbTspan | 104 | 94.8 | 0.9961 |
NbRdR6 | 134 | 103.3 | 0.9960 |
NbF-BOX | 125 | 96.1 | 0.9994 |
NbUBC | 100 | 92.5 | 0.9956 |
NbACT | 145 | 108 | 0.9914 |
NbAGO2 | 121 | 91.9 | 0.9923 |
NbGAPDH | 125 | 96.1 | 0.9907 |
Viruses | Gene | Algorithms | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
GeNorm | NormFinder | BestKeeper | Delta-CT | |||||||
M | R | SV | R | CV | SD | R | SD | R | ||
TMV | NbeIF4A | 0.39 | 6 | 0.09 | 1 | 1.83 | 0.37 | 6 | 1.03 | 1 |
NbLip | 0.11 | 1 | 0.19 | 5 | 0.17 | 0.05 | 1 | 1.06 | 3 | |
NbL23 | 0.43 | 7 | 0.09 | 1 | 2.30 | 0.49 | 7 | 1.06 | 2 | |
NbKLC | 0.34 | 5 | 0.16 | 4 | 1.40 | 0.34 | 5 | 1.06 | 4 | |
NbEF1α | 0.11 | 1 | 0.28 | 7 | 0.46 | 0.08 | 2 | 1.08 | 5 | |
NbPGK | 0.46 | 8 | 0.09 | 3 | 2.79 | 0.62 | 9 | 1.10 | 6 | |
NbTspan | 0.21 | 3 | 0.33 | 8 | 0.70 | 0.16 | 3 | 1.11 | 7 | |
NbRdR6 | 0.26 | 4 | 0.46 | 9 | 0.74 | 0.19 | 4 | 1.15 | 8 | |
NbF-BOX | 0.52 | 9 | 0.27 | 6 | 3.14 | 0.81 | 10 | 1.23 | 9 | |
NbUBC | 0.59 | 10 | 1.00 | 10 | 2.46 | 0.55 | 8 | 1.42 | 10 | |
NbACT | 0.73 | 11 | 1.12 | 11 | 6.57 | 1.39 | 11 | 1.69 | 11 | |
NbAGO2 | 1.07 | 12 | 3.08 | 12 | 8.50 | 2.24 | 12 | 3.11 | 12 | |
NbGAPDH | 1.57 | 13 | 4.30 | 13 | 16.87 | 4.00 | 13 | 4.31 | 13 | |
PMMoV | NbeIF4A | 0.27 | 6 | 0.25 | 6 | 2.66 | 0.53 | 6 | 0.52 | 7 |
NbLip | 0.32 | 8 | 0.42 | 9 | 3.01 | 0.79 | 7 | 0.55 | 8 | |
NbL23 | 0.36 | 10 | 0.51 | 11 | 4.37 | 0.88 | 12 | 0.59 | 10 | |
NbKLC | 0.41 | 12 | 0.40 | 8 | 0.48 | 0.11 | 1 | 0.65 | 12 | |
NbEF1α | 0.29 | 7 | 0.28 | 7 | 4.12 | 0.67 | 11 | 0.49 | 5 | |
NbPGK | 0.38 | 11 | 0.54 | 12 | 4.51 | 0.93 | 13 | 0.62 | 11 | |
NbTspan | 0.10 | 1 | 0.09 | 4 | 1.43 | 0.30 | 3 | 0.50 | 6 | |
NbRdR6 | 0.10 | 1 | 0.05 | 1 | 1.36 | 0.34 | 2 | 0.49 | 4 | |
NbF-BOX | 0.22 | 5 | 0.15 | 5 | 2.47 | 0.60 | 5 | 0.46 | 3 | |
NbUBC | 0.18 | 3 | 0.05 | 1 | 2.35 | 0.52 | 4 | 0.42 | 1 | |
NbACT | 0.20 | 4 | 0.05 | 1 | 3.12 | 0.57 | 8 | 0.43 | 2 | |
NbAGO2 | 0.62 | 13 | 1.73 | 13 | 3.72 | 0.97 | 9 | 1.74 | 13 | |
NbGAPDH | 0.34 | 9 | 0.43 | 10 | 3.89 | 0.76 | 10 | 0.56 | 9 | |
TMGMV | NbeIF4A | 0.53 | 8 | 0.39 | 6 | 3.81 | 0.76 | 8 | 0.96 | 7 |
NbLip | 0.48 | 6 | 0.21 | 3 | 2.02 | 0.53 | 4 | 0.86 | 3 | |
NbL23 | 0.17 | 1 | 0.49 | 9 | 5.54 | 1.13 | 11 | 1.00 | 9 | |
NbKLC | 0.57 | 9 | 0.47 | 8 | 1.08 | 0.25 | 1 | 0.91 | 6 | |
NbEF1α | 0.23 | 3 | 0.25 | 5 | 5.75 | 0.96 | 12 | 0.91 | 5 | |
NbPGK | 0.17 | 1 | 0.45 | 7 | 5.43 | 1.13 | 10 | 0.97 | 8 | |
NbTspan | 0.67 | 10 | 1.01 | 10 | 1.09 | 0.22 | 2 | 1.18 | 10 | |
NbRdR6 | 0.41 | 5 | 0.15 | 2 | 2.51 | 0.64 | 7 | 0.83 | 1 | |
NbF-BOX | 0.51 | 7 | 0.11 | 1 | 2.20 | 0.53 | 5 | 0.84 | 2 | |
NbUBC | 0.74 | 11 | 1.09 | 11 | 2.02 | 0.43 | 3 | 1.26 | 11 | |
NbACT | 0.37 | 4 | 0.23 | 4 | 4.50 | 0.83 | 9 | 0.89 | 4 | |
NbAGO2 | 0.84 | 12 | 1.47 | 12 | 2.30 | 0.61 | 6 | 1.54 | 12 | |
NbGAPDH | 1.16 | 13 | 2.94 | 13 | 14.26 | 3.11 | 13 | 2.96 | 13 | |
ToBRFV | NbeIF4A | 0.19 | 3 | 0.33 | 7 | 3.14 | 0.64 | 10 | 0.80 | 6 |
NbLip | 0.48 | 9 | 0.29 | 6 | 0.33 | 0.10 | 1 | 0.82 | 7 | |
NbL23 | 0.40 | 7 | 0.66 | 11 | 4.10 | 0.89 | 11 | 0.97 | 9 | |
NbKLC | 0.44 | 8 | 0.16 | 4 | 1.03 | 0.25 | 3 | 0.79 | 5 | |
NbEF1α | 0.32 | 5 | 0.04 | 1 | 1.71 | 0.29 | 6 | 0.74 | 2 | |
NbPGK | 0.13 | 1 | 0.28 | 5 | 2.80 | 0.62 | 8 | 0.78 | 4 | |
NbTspan | 0.55 | 10 | 0.62 | 9 | 1.17 | 0.26 | 4 | 0.99 | 10 | |
NbRdR6 | 0.59 | 11 | 0.63 | 10 | 0.89 | 0.23 | 2 | 1.00 | 11 | |
NbF-BOX | 0.13 | 1 | 0.06 | 3 | 2.08 | 0.53 | 7 | 0.74 | 1 | |
NbUBC | 0.30 | 4 | 0.04 | 1 | 1.54 | 0.35 | 5 | 0.75 | 3 | |
NbACT | 0.36 | 6 | 0.44 | 8 | 3.04 | 0.62 | 9 | 0.88 | 8 | |
NbAGO2 | 1.06 | 13 | 2.38 | 13 | 6.33 | 1.70 | 12 | 2.40 | 13 | |
NbGAPDH | 0.82 | 12 | 2.12 | 12 | 9.52 | 2.07 | 13 | 2.14 | 12 | |
ToMMV | NbeIF4A | 0.46 | 7 | 0.13 | 2 | 3.53 | 0.71 | 7 | 0.90 | 2 |
NbLip | 0.20 | 1 | 0.82 | 10 | 0.45 | 0.13 | 2 | 1.09 | 9 | |
NbL23 | 0.62 | 10 | 0.40 | 6 | 5.36 | 1.12 | 11 | 1.10 | 10 | |
NbKLC | 0.29 | 4 | 0.54 | 7 | 0.84 | 0.20 | 4 | 0.98 | 5 | |
NbEF1α | 0.34 | 5 | 0.27 | 5 | 2.18 | 0.36 | 5 | 0.92 | 3 | |
NbPGK | 0.53 | 8 | 0.15 | 4 | 4.07 | 0.87 | 8 | 0.96 | 4 | |
NbTspan | 0.20 | 1 | 0.72 | 9 | 0.54 | 0.12 | 1 | 1.03 | 8 | |
NbRdR6 | 0.39 | 6 | 0.13 | 1 | 1.97 | 0.50 | 6 | 0.88 | 1 | |
NbF-BOX | 0.57 | 9 | 0.14 | 3 | 3.61 | 0.92 | 10 | 0.99 | 6 | |
NbUBC | 0.26 | 3 | 0.67 | 8 | 0.78 | 0.17 | 3 | 1.03 | 7 | |
NbACT | 0.71 | 11 | 0.86 | 11 | 7.27 | 1.47 | 12 | 1.36 | 11 | |
NbAGO2 | 0.87 | 12 | 1.89 | 12 | 3.46 | 0.89 | 9 | 1.93 | 12 | |
NbGAPDH | 1.29 | 13 | 3.62 | 13 | 16.14 | 3.70 | 13 | 3.63 | 13 | |
TuMV | NbeIF4A | 0.17 | 4 | 0.10 | 2 | 0.83 | 0.16 | 5 | 0.64 | 1 |
NbLip | 0.30 | 7 | 0.43 | 9 | 0.78 | 0.22 | 4 | 0.78 | 9 | |
NbL23 | 0.39 | 9 | 0.25 | 7 | 2.47 | 0.50 | 9 | 0.77 | 7 | |
NbKLC | 0.26 | 6 | 0.14 | 5 | 1.10 | 0.26 | 6 | 0.70 | 5 | |
NbEF1α | 0.22 | 5 | 0.11 | 4 | 1.70 | 0.27 | 7 | 0.71 | 6 | |
NbPGK | 0.09 | 1 | 0.05 | 1 | 0.37 | 0.08 | 2 | 0.64 | 2 | |
NbTspan | 0.12 | 3 | 0.18 | 6 | 0.45 | 0.10 | 3 | 0.67 | 4 | |
NbRdR6 | 0.09 | 1 | 0.10 | 3 | 0.29 | 0.07 | 1 | 0.66 | 3 | |
NbF-BOX | 0.36 | 8 | 0.27 | 8 | 1.80 | 0.45 | 8 | 0.77 | 8 | |
NbUBC | 0.47 | 10 | 0.88 | 11 | 2.67 | 0.56 | 10 | 1.04 | 10 | |
NbACT | 0.55 | 11 | 0.76 | 10 | 4.45 | 0.87 | 11 | 1.05 | 11 | |
NbAGO2 | 0.70 | 12 | 1.61 | 12 | 4.46 | 1.13 | 12 | 1.64 | 12 | |
NbGAPDH | 0.96 | 13 | 2.37 | 13 | 10.29 | 2.20 | 13 | 2.38 | 13 | |
ChiRSV | NbeIF4A | 0.15 | 1 | 0.35 | 9 | 1.96 | 0.39 | 8 | 0.52 | 7 |
NbLip | 0.33 | 8 | 0.34 | 7 | 0.48 | 0.14 | 2 | 0.56 | 8 | |
NbL23 | 0.47 | 12 | 0.62 | 12 | 2.87 | 0.57 | 11 | 0.70 | 12 | |
NbKLC | 0.37 | 9 | 0.34 | 8 | 1.50 | 0.35 | 6 | 0.58 | 9 | |
NbEF1α | 0.15 | 1 | 0.24 | 5 | 1.96 | 0.31 | 9 | 0.48 | 5 | |
NbPGK | 0.23 | 4 | 0.25 | 6 | 1.51 | 0.32 | 7 | 0.47 | 3 | |
NbTspan | 0.22 | 3 | 0.04 | 1 | 1.07 | 0.23 | 4 | 0.43 | 1 | |
NbRdR6 | 0.29 | 6 | 0.12 | 3 | 0.79 | 0.19 | 3 | 0.48 | 4 | |
NbF-BOX | 0.31 | 7 | 0.17 | 4 | 1.23 | 0.29 | 5 | 0.49 | 6 | |
NbUBC | 0.27 | 5 | 0.11 | 2 | 0.36 | 0.08 | 1 | 0.47 | 2 | |
NbACT | 0.44 | 11 | 0.53 | 11 | 2.92 | 0.50 | 12 | 0.68 | 11 | |
NbAGO2 | 0.61 | 13 | 1.38 | 13 | 4.28 | 1.09 | 13 | 1.41 | 13 | |
NbGAPDH | 0.40 | 10 | 0.52 | 10 | 2.59 | 0.47 | 10 | 0.66 | 10 | |
ChiVMV | NbeIF4A | 0.11 | 3 | 0.16 | 4 | 1.10 | 0.22 | 4 | 0.35 | 2 |
NbLip | 0.28 | 10 | 0.20 | 6 | 0.56 | 0.16 | 1 | 0.45 | 10 | |
NbL23 | 0.17 | 6 | 0.32 | 10 | 1.44 | 0.28 | 9 | 0.43 | 8 | |
NbKLC | 0.25 | 9 | 0.20 | 5 | 0.94 | 0.22 | 3 | 0.44 | 9 | |
NbEF1α | 0.19 | 7 | 0.15 | 3 | 1.87 | 0.30 | 11 | 0.39 | 5 | |
NbPGK | 0.08 | 1 | 0.29 | 9 | 1.38 | 0.29 | 8 | 0.40 | 6 | |
NbTspan | 0.12 | 4 | 0.14 | 2 | 1.13 | 0.25 | 5 | 0.34 | 1 | |
NbRdR6 | 0.33 | 12 | 0.32 | 11 | 0.88 | 0.21 | 2 | 0.51 | 11 | |
NbF-BOX | 0.21 | 8 | 0.13 | 1 | 1.23 | 0.29 | 6 | 0.39 | 4 | |
NbUBC | 0.08 | 1 | 0.24 | 7 | 1.30 | 0.29 | 7 | 0.38 | 3 | |
NbACT | 0.15 | 5 | 0.28 | 8 | 1.63 | 0.28 | 10 | 0.40 | 7 | |
NbAGO2 | 0.49 | 13 | 1.33 | 13 | 4.32 | 1.10 | 13 | 1.34 | 13 | |
NbGAPDH | 0.31 | 11 | 0.46 | 12 | 2.15 | 0.39 | 12 | 0.54 | 12 | |
PePMoV | NbeIF4A | 0.07 | 1 | 0.04 | 1 | 0.49 | 0.10 | 3 | 0.72 | 2 |
NbLip | 0.07 | 1 | 0.04 | 1 | 0.28 | 0.08 | 1 | 0.71 | 1 | |
NbL23 | 0.34 | 7 | 0.50 | 8 | 1.94 | 0.41 | 7 | 0.89 | 8 | |
NbKLC | 0.12 | 3 | 0.07 | 3 | 0.48 | 0.11 | 2 | 0.73 | 3 | |
NbEF1α | 0.41 | 8 | 0.45 | 7 | 2.71 | 0.46 | 10 | 0.89 | 7 | |
NbPGK | 0.29 | 6 | 0.41 | 6 | 1.64 | 0.35 | 6 | 0.84 | 6 | |
NbTspan | 0.14 | 4 | 0.08 | 4 | 0.68 | 0.15 | 4 | 0.74 | 4 | |
NbRdR6 | 0.53 | 10 | 0.63 | 10 | 2.50 | 0.62 | 8 | 1.00 | 10 | |
NbF-BOX | 0.22 | 5 | 0.13 | 5 | 0.90 | 0.22 | 5 | 0.77 | 5 | |
NbUBC | 0.48 | 9 | 0.59 | 9 | 2.52 | 0.55 | 9 | 0.96 | 9 | |
NbACT | 0.59 | 11 | 0.83 | 11 | 3.16 | 0.64 | 11 | 1.10 | 11 | |
NbAGO2 | 1.07 | 13 | 2.36 | 13 | 8.10 | 2.06 | 13 | 2.39 | 13 | |
NbGAPDH | 0.84 | 12 | 2.19 | 12 | 7.35 | 1.54 | 12 | 2.23 | 12 | |
PVX | NbeIF4A | 0.43 | 6 | 0.50 | 7 | 2.15 | 0.42 | 7 | 0.67 | 7 |
NbLip | 0.67 | 13 | 0.68 | 13 | 2.46 | 0.70 | 9 | 0.78 | 13 | |
NbL23 | 0.38 | 5 | 0.45 | 4 | 2.15 | 0.43 | 6 | 0.65 | 5 | |
NbKLC | 0.65 | 12 | 0.67 | 12 | 3.59 | 0.82 | 12 | 0.76 | 12 | |
NbEF1α | 0.62 | 11 | 0.61 | 10 | 4.61 | 0.78 | 13 | 0.72 | 10 | |
NbPGK | 0.50 | 8 | 0.22 | 2 | 2.65 | 0.53 | 10 | 0.56 | 2 | |
NbTspan | 0.13 | 1 | 0.48 | 6 | 0.64 | 0.14 | 1 | 0.64 | 4 | |
NbRdR6 | 0.54 | 9 | 0.54 | 8 | 2.41 | 0.58 | 8 | 0.72 | 9 | |
NbF-BOX | 0.13 | 1 | 0.42 | 3 | 0.85 | 0.20 | 2 | 0.61 | 3 | |
NbUBC | 0.19 | 3 | 0.59 | 9 | 0.98 | 0.21 | 3 | 0.70 | 8 | |
NbACT | 0.47 | 7 | 0.10 | 1 | 2.09 | 0.38 | 5 | 0.52 | 1 | |
NbAGO2 | 0.23 | 4 | 0.66 | 11 | 1.17 | 0.30 | 4 | 0.76 | 11 | |
NbGAPDH | 0.58 | 10 | 0.47 | 5 | 3.21 | 0.61 | 11 | 0.66 | 6 | |
PoPeVYV | NbeIF4A | 0.10 | 1 | 0.15 | 3 | 1.22 | 0.25 | 7 | 0.26 | 4 |
NbLip | 0.24 | 10 | 0.31 | 9 | 1.17 | 0.34 | 6 | 0.37 | 9 | |
NbL23 | 0.22 | 9 | 0.34 | 12 | 1.91 | 0.40 | 13 | 0.38 | 10 | |
NbKLC | 0.27 | 11 | 0.32 | 10 | 1.08 | 0.25 | 5 | 0.39 | 12 | |
NbEF1α | 0.15 | 5 | 0.17 | 6 | 1.53 | 0.27 | 12 | 0.28 | 6 | |
NbPGK | 0.10 | 1 | 0.15 | 5 | 1.23 | 0.26 | 8 | 0.26 | 3 | |
NbTspan | 0.11 | 3 | 0.06 | 1 | 0.88 | 0.19 | 4 | 0.24 | 1 | |
NbRdR6 | 0.31 | 13 | 0.38 | 13 | 1.48 | 0.37 | 11 | 0.42 | 13 | |
NbF-BOX | 0.17 | 6 | 0.07 | 2 | 0.60 | 0.15 | 2 | 0.24 | 2 | |
NbUBC | 0.19 | 8 | 0.17 | 6 | 0.58 | 0.13 | 1 | 0.28 | 7 | |
NbACT | 0.19 | 7 | 0.15 | 4 | 0.79 | 0.15 | 3 | 0.27 | 5 | |
NbAGO2 | 0.29 | 12 | 0.33 | 11 | 1.30 | 0.36 | 10 | 0.38 | 11 | |
NbGAPDH | 0.14 | 4 | 0.20 | 8 | 1.29 | 0.25 | 9 | 0.29 | 8 |
Genes | Tobamovirus | Potyvirus | Potexvirus | Polerovirus | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TMV | PMMoV | TMGMV | ToBRFV | ToMMV | TuMV | ChiRSV | ChiVMV | PePMoV | PVX | PoPeVYV | |
NbeIF4A | 2 | 7 | 10 | 7 | 4 | 3 | 6 | 2 | 2 | 7 | 3 |
NbLip | 1 | 9 | 3 | 5 | 3 | 7 | 8 | 6 | 1 | 13 | 10 |
NbL23 | 4 | 11 | 8 | 11 | 10 | 8 | 12 | 11 | 7 | 6 | 11 |
NbKLC | 5 | 6 | 7 | 6 | 7 | 6 | 9 | 8 | 3 | 12 | 9 |
NbEF1α | 3 | 8 | 6 | 3 | 5 | 5 | 3 | 7 | 7 | 11 | 8 |
NbPGK | 8 | 12 | 5 | 4 | 8 | 1 | 5 | 5 | 6 | 4 | 4 |
NbTspan | 6 | 3 | 9 | 10 | 2 | 4 | 1 | 1 | 4 | 2 | 1 |
NbRdR6 | 7 | 1 | 2 | 8 | 1 | 2 | 4 | 10 | 10 | 10 | 13 |
NbF-BOX | 9 | 5 | 1 | 1 | 9 | 9 | 7 | 4 | 5 | 1 | 2 |
NbUBC | 10 | 2 | 11 | 2 | 6 | 10 | 2 | 3 | 9 | 5 | 5 |
NbACT | 11 | 4 | 4 | 9 | 12 | 11 | 11 | 9 | 11 | 3 | 6 |
NbAGO2 | 12 | 13 | 12 | 13 | 11 | 12 | 13 | 13 | 13 | 8 | 12 |
NbGAPDH | 13 | 10 | 13 | 12 | 13 | 13 | 10 | 12 | 12 | 9 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Zhang, Z.; Wan, Q.; Zhou, H.; Jiao, M.; Zheng, H.; Lu, Y.; Rao, S.; Wu, G.; Chen, J.; et al. Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. Plants 2023, 12, 857. https://doi.org/10.3390/plants12040857
Zhang G, Zhang Z, Wan Q, Zhou H, Jiao M, Zheng H, Lu Y, Rao S, Wu G, Chen J, et al. Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. Plants. 2023; 12(4):857. https://doi.org/10.3390/plants12040857
Chicago/Turabian StyleZhang, Ge, Zhuo Zhang, Qionglian Wan, Huijie Zhou, Mengting Jiao, Hongying Zheng, Yuwen Lu, Shaofei Rao, Guanwei Wu, Jianping Chen, and et al. 2023. "Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera" Plants 12, no. 4: 857. https://doi.org/10.3390/plants12040857
APA StyleZhang, G., Zhang, Z., Wan, Q., Zhou, H., Jiao, M., Zheng, H., Lu, Y., Rao, S., Wu, G., Chen, J., Yan, F., Peng, J., & Wu, J. (2023). Selection and Validation of Reference Genes for RT-qPCR Analysis of Gene Expression in Nicotiana benthamiana upon Single Infections by 11 Positive-Sense Single-Stranded RNA Viruses from Four Genera. Plants, 12(4), 857. https://doi.org/10.3390/plants12040857