Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill
Abstract
:1. Introduction
2. Results
2.1. GC-MS Profile of the Whole Leaf Extract of A. arborescens Mill
2.2. Antioxidant Activity of the Whole Leaf Extract
2.3. Antibacterial Activity of the Whole Leaf Extract
2.4. Effect of the Extract on the Bacterial Respiratory Chain Dehydrogenase
2.5. Effect of the Leaf Extract on the Bacterial Cell Integrity
2.6. Effect of the Extract on the Bacterial Cell Membrane Permeability
3. Discussion
4. Materials and Methods
4.1. Chemicals and Media
4.2. Bacterial Strains
4.3. Plant Selection and Sampling
4.4. Extraction of the Phytochemicals
4.5. Analysis of Volatile Phytochemicals of the Extract
4.6. Antioxidant Activity of the Extract
4.6.1. DPPH Radical Scavenging Activity of the Extract
4.6.2. ABTS Radical Scavenging Activity of the Extract
4.7. Determination of Antibacterial Activity
4.7.1. MIC of the Leaf Extract
4.7.2. MBC of the Extract
4.8. Determination of the Antibacterial Mechanisms of Action of the Extract
4.8.1. Effect of the Extract on the Bacterial Respiratory Chain Dehydrogenase
4.8.2. Effect of the Extract on the Integrity of the Bacterial Cell Membranes
4.8.3. Effect of the Extract on the Outer Bacterial Cell Membrane Permeability
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nam, J.B.; Oh, G.H.; Yang, S.M.; Lee, S.E.; Kang, S.G. Evaluation of antioxidant activities of water extract from microwave torrefied oak wood. J. Korean Wood Sci. Technol. 2018, 46, 178–188. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Pietrucha, B.; Heropolitanska-Pliszka, E.; Maciejczyk, M.; Car, H.; Sawicka-Powierza, J.; Motkowski, R.; Karpinska, J.; Hryniewicka, M.; Zalewska, A.; Pac, M.; et al. Comparison of selected parameters of redox homeostasis in patients with ataxia-telangiectasia and nijmegen breakage syndrome. Oxid. Med. Cell. Longev. 2017, 2017, 6745840. [Google Scholar] [CrossRef]
- Sardaro, N.; Della Vella, F.; Incalza, M.A.; Di Stasio, D.; Lucchese, A.; Contaldo, M.; Laudadio, C.; Petruzzi, M. Oxidative stress and oral mucosal diseases: An overview. In Vivo 2019, 33, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral Biol. 2018, 92, 8–17. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornienko, J.S.; Smirnova, I.S.; Pugovkina, N.A.; Ivanova, J.S.; Shilina, M.A.; Grinchuk, T.M.; Shatrova, A.N.; Aksenov, N.D.; Zenin, V.V.; Nikolsky, N.N.; et al. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci. Rep. 2019, 9, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol. 2019, 37, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Barış, E.; Go, D.S.; Lofgren, H.; Osorio-Rodarte, I.; Thierfelder, K. Assessing the global poverty effects of antimicrobial resistance. World Dev. 2018, 111, 148–160. [Google Scholar] [CrossRef]
- Ozioma, E.O.J.; Chinwe, O.A.N. Herbal medicines in African traditional medicine. Herb. Med. 2019, 10, 191–214. [Google Scholar]
- Chikezie, P.C.; Ojiako, O.A. Herbal medicine: Yesterday, today and tomorrow. Altern. Integr. Med. 2015, 4, 1000195. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Eskin, N.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A promising weapon in the arsenal against antibiotic-resistant bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef]
- Smith, G.F.; Klopper, R.R.; Figueiredo, E.; Crouch, N.R. Aspects of the taxonomy of Aloe arborescens Mill. (Asphodelaceae: Alooideae). Bradleya 2012, 2012, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Klopper, R.R.; Crouch, N.R.; Smith, G.F.; van Wyk, A.E. A synoptic review of the aloes (Asphodelaceae, Alooideae) of KwaZulu-Natal, an ecologically diverse province in eastern South Africa. PhytoKeys 2020, 142, 1. [Google Scholar] [CrossRef]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Coopoosamy, R.M.; van Staden, J. Antimicrobial activity, phenolic content, and cytotoxicity of medicinal plant extracts used for treating dermatological diseases and wound healing in KwaZulu-Natal, South Africa. Front. Pharmacol. 2016, 7, 320. [Google Scholar] [CrossRef] [Green Version]
- Mhlongo, F.; Cordero-Maldonado, M.L.; Crawford, A.D.; Katerere, D.; Sandasi, M.; Hattingh, A.C.; Koekemoer, T.C.; van de Venter, M.; Viljoen, A.M. Evaluation of the wound healing properties of South African medicinal plants using zebrafish and in vitro bioassays. J. Ethnopharmacol. 2022, 286, 114867. [Google Scholar] [CrossRef]
- Nazeam, J.A.; Gad, H.A.; El-Hefnawy, H.M.; Singab, A.N.B. Chromatographic separation and detection methods of Aloe arborescens Miller constituents: A systematic review. J. Chromatogr. B 2017, 1058, 57–67. [Google Scholar] [CrossRef]
- Cock, I.E. The Genus Aloe: Phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. Prog. Drug Res. 2015, 70, 179–235. [Google Scholar] [PubMed]
- Kumar, S.; Yandav, J.P. Ethnobotanical and pharmacological properties of Aloe vera: A review. J. Med. Plant Res. 2014, 8, 1387–1398. [Google Scholar]
- Babu, S.N.; Noor, A. Bioactive constituents of the genus Aloe and their potential therapeutic and pharmacological applications: A review. J. Appl. Pharm. Sci. 2020, 10, 133–145. [Google Scholar]
- Mahlangu, Z.P.; Botha, F.S.; Madoroba, E.; Chokoe, K.; Elgorashi, E.E. Antimicrobial activity of Albizia gummifera (JF Gmel.) CA Sm leaf extracts against four Salmonella serovars. S. Afr. J. Bot. 2017, 108, 132–136. [Google Scholar] [CrossRef]
- Šírová, K.; Vaculík, M. Toxic effects of cadmium on growth of Aloe ferox Mill. S. Afr. J. Bot. 2022, 147, 1181–1187. [Google Scholar] [CrossRef]
- Galli, C.L.; Cinelli, S.; Ciliutti, P.; Melzi, G.; Marinovich, M. Aloe-emodin, a hydroxyanthracene derivative, is not genotoxic in an in vivo comet test. Regul. Toxicol. Pharmacol. 2021, 124, 104967. [Google Scholar] [CrossRef] [PubMed]
- Azam, S.; Hadi, N.; Khan, N.U.; Hadi, S.M. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med. Sci. Monit. 2003, 9, BR325-30. [Google Scholar] [PubMed]
- El-Kalyoubi, S.; Agili, F.; Zordok, W.A.; El-Sayed, A.S. Synthesis, in silico prediction and in vitro evaluation of antimicrobial activity, DFT calculation and theoretical investigation of novel xanthines and uracil containing imidazolone derivatives. Int. J. Mol. Sci. 2021, 22, 10979. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.A.; Rosa, M.F.; Sá-Correia, I.; Novais, J.M. Inhibition of yeast growth by octanoic and decanoic acids produced during ethanolic fermentation. Appl. Environ. Microbiol. 1989, 55, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S. A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020, 6, 1–19. [Google Scholar] [CrossRef]
- Salehi, B.; Albayrak, S.; Antolak, H.; Kręgiel, D.; Pawlikowska, E.; Sharifi-Rad, M.; Uprety, Y.; Tsouh Fokou, P.V.; Yousef, Z.; Amiruddin Zakaria, Z.; et al. Aloe genus plants: From farm to food applications and phytopharmacotherapy. Int. J. Mol. Sci. 2018, 19, 2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Burgos, W.J.; Serra, J.L.; MarsigliaF, R.M.; Montoya, P.; Sarmiento-Vásquez, Z.; Marin, O.; Gallego-Cartagena, E.; Paternina-Arboleda, C.D. Aloe vera: From ancient knowledge to the patent and innovation landscape–A review. S. Afr. J. Bot. 2022, 147, 993–1006. [Google Scholar] [CrossRef]
- Semerel, J.; John, N.; Dehaen, W.; Fardim, P. Valorization of Aloe barbadensis Miller.(Aloe vera) processing waste. J. Renew. Mater. 2022, 0, 31. [Google Scholar] [CrossRef]
- Nxumalo, C.I.; Ngidi, L.S.; Shandu, J.S.E.; Maliehe, T.S. Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complement. Med. Ther. 2020, 20, 300. [Google Scholar] [CrossRef]
- Cardarelli, M.; Rouphael, Y.; Pellizzoni, M.; Colla, G.; Lucini, L. Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind. Crops Prod. 2017, 108, 44–51. [Google Scholar] [CrossRef]
- Andrea, B.; Dumitrița, R.; Florina, C.; Francisc, D.; Anastasia, V.; Socaci, S.; Adela, P. Comparative analysis of some bioactive compounds in leaves of different Aloe species. BMC Chem. 2020, 14, 67. [Google Scholar] [CrossRef]
- Pawłowicz, K.; Ludowicz, D.; Karaźniewicz-Łada, M.; Wdowiak, K.; Cielecka-Piontek, J. Analysis of the composition of lyophilisates obtained from Aloe arborescens gel of leaves of different ages from controlled crops. Molecules 2021, 26, 3204. [Google Scholar] [CrossRef] [PubMed]
- Adu, O.T.; Mohamed, F.; Naidoo, Y.; Adu, T.S.; Chenia, H.; Dewir, Y.H.; Rihan, H. Green synthesis of silver nanoparticles from Diospyros villosa extracts and evaluation of antioxidant, antimicrobial and anti-quorum sensing potential. Plants 2022, 11, 2514. [Google Scholar] [CrossRef] [PubMed]
- Maliehe, T.S.; Mbambo, M.; Nqotheni, M.I.; Senzo, N.S.; Shandu, J.S.E. Antibacterial effect and mode of action of secondary metabolites from fungal endophyte associated with Aloe ferox Mill. Microbiol. Res. 2022, 13, 90–101. [Google Scholar] [CrossRef]
- Mboyazi, S.N.; Nqotheni, M.I.; Maliehe, T.S.; Shandu, J.S. In vitro antibacterial and in silico toxicity properties of phytocompounds from Ricinus communis leaf extract. Pharmacogn. J. 2020, 12, 977–983. [Google Scholar] [CrossRef]
- Bisi-Johnson, M.A.; Obi, C.L.; Samuel, B.B.; Eloff, J.N.; Okoh, A.I. Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. BMC Complement. Altern. Med. 2017, 17, 321. [Google Scholar] [CrossRef]
- Borisov, V.B.; Murali, R.; Verkhovskaya, M.L.; Bloch, D.A.; Han, H.; Gennis, R.B.; Verkhovsky, M.I. Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode. Proc. Natl. Acad. Sci. USA 2011, 108, 17320–17324. [Google Scholar] [CrossRef]
- Maliehe, T.S.; Mbambo, M.; Ngidi, L.S.; Shandu, J.S.E.; Pooe, O.J.; Masoko, P.; Selepe, T.N. Bioprospecting of endophytic actinobacterium associated with Aloe ferox Mill for antibacterial activity. BMC Complement. Med. Ther. 2022, 22, 258. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2017, 63, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Dang, Q.; Liu, C.; Yan, J.; Wang, T.; Fan, B.; Cha, D.; Li, X.; Liang, S.; Zhang, Z. 3, 6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohydr. Polym. 2016, 149, 102–111. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Chen, W.; Dou, Z.M.; Chen, R.; Hu, Y.; Chen, W.; Chen, H. Antimicrobial effect of black pepper petroleum ether extract for the morphology of Listeria monocytogenes and Salmonella typhimurium. J. Food. Sci. Technol. 2017, 54, 2067–2076. [Google Scholar] [CrossRef]
- Hao, K.; Xu, B.; Zhang, G.; Lv, F.; Wang, Y.; Ma, M.; Si, H. Antibacterial activity and mechanism of Litsea cubeba L. essential oil against Acinetobacter baumannii. Nat. Prod. Commun. 2021, 16, 1934578X21999146. [Google Scholar] [CrossRef]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [Green Version]
- Tsilo, P.H.; Maliehe, S.T.; Shandu, J.S.; Khan, R. Chemical composition and some biological activities of the methanolic Encephalartos ferox fruit extract. Pharmacogn. J. 2020, 12, 1190–1197. [Google Scholar] [CrossRef]
- Arya, K.; Gupta, R.; Verma, H.; Pal, G.K.; Saxena, V.L. Drug designing to combat MDR bacteria using potential bioactive compounds from medicinal plant. Trends Bioinform. 2019, 12, 7–19. [Google Scholar]
- Ngidi, L.S.; Nxumalo, C.I.; Shandu, J.S.; Maliehe, T.S.; Rene, K. Antioxidant, anti-quorum sensing and cytotoxic properties of the endophytic Pseudomonas aeruginosa CP043328.1 ‘s extract. Pharmacogn. J. 2021, 13, 332–340. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 71–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkala, B.A. The Cytotoxic Effects, Anti-Iflammatory, Antioxidant, Antibacterial, and Antidiabetic Properties of Eight Selected South African Plants for Medicinal Purposes. Ph.D. Thesis, University of KwaZulu Natal, Durban, South Africa, 2020. [Google Scholar]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef] [PubMed]
- Turgis, M.; Han, J.; Caillet, S.; Lacroix, M. Antimicrobial activity of mustard essential oil against Escherichia coli O157: H7 and Salmonella typhi. Food Control 2009, 20, 1073–1079. [Google Scholar] [CrossRef]
Phytocompounds | Area % |
---|---|
Indole | 5.03 |
Morpholine, 4-[3-(4-fluoro-3-nitrophenylsulfonyl)propyl]- | 4.85 |
Octanoic acid | 3.67 |
Acetate, (2-(3-hydroxy-3-methyl-2-oxotetrahydro-1H-1-pyrrolyl)ethyl] ester | 3.72 |
N,N’-Trimethyleneurea | 10.56 |
Thiazolo[3,2-a]pyridinium, 3-hydroxy-2-methyl-, acetate | 2.70 |
1,1’-Bicyclohexyl, 2-(1-methylethyl)-, cis- | 2.77 |
Xanthine | 8.57 |
4-Hexyl-1-(7-methoxycarbonylheptyl)bicyclo[4.4.0]deca-2,5,7-triene | 7.10 |
2,5-Di-O-acetyl-3,4,6-tri-O-methyl-D-gluconitrile | 2.81 |
Hexa-t-butylcyclotrisilane | 2.15 |
Methyl trans-9-(2-butylcyclopentyl)nonanoate | 2.84 |
3-Propylglutaric acid, monomethyl ester | 3.63 |
D-Galactitol, 3,6-anhydro-1,2,4,5-tetra-O-methyl | 5.58 |
1,3-Cyclohexanediacetic acid, 2-oxo-, dimethyl ester | 3.70 |
Pyrrolidin-2-one, 5-[3-ethylenedithio-1-pentyl]- | 4.99 |
Decanoic acid, 10-bromo-, trimethylsilyl ester | 1.63 |
Cyclohexanone, 2,6-diethyl- | 1.91 |
2H-Furo[3,2-b]pyran-2-one, hexahydro-3,4(or 3,8)-dihydroxy-8(or 4)-methoxy-6,7,8-trimethyl- | 2.78 |
Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- | 4.98 |
Pentanoic acid, 2-(methoxymethyl)-4-oxo- | 3.02 |
4-Amino-furazan-3-carboxylic acid (2-acetylamino-ethyl)-amide | 2.17 |
Cedran-diol, 8S,13- | 2.40 |
3-(1,3-Dihydroxyisopropyl)-1,5,8,11-tetraoxacyclotridecane | 2.61 |
Cyclopropanebutanoic acid, 2-[[2-[[2-[(2-pentylcyclopropyl)methyl]cyclopropyl]methyl]cyclopropyl]methyl]-, methyl ester | 1.94 |
1,7-Dioxa-10-thia-4,13-diazacyclopentadeca-5,9,12-trione | 1.95 |
Assay | Leaf Extract (mg/mL) | Ascorbic Acid (mg/mL) | BHA (mg/mL) |
---|---|---|---|
DPPH | 0.065 ± 1.64 | 0.022 ± 1.20 | 0.015 ± 0.57 |
ABTS | 0.052 ± 2.54 | 0.019 ± 0.74 | 0.022 ± 2.71 |
Bacteria | Leaf Extract | Ciprofloxacin | ||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (µg/mL) | MBC (µg/mL) | |
S. aureus | 0.07 | 1.25 | 0.02 | 0.03 |
E. faecalis | 0.14 | 1.25 | 0.02 | 0.06 |
P. aeruginosa | 0.63 | 2.25 | 0.04 | 0.24 |
E. coli | 1.13 | >2.25 | 0.02 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliehe, T.S.; Nqotheni, M.I.; Shandu, J.S.; Selepe, T.N.; Masoko, P.; Pooe, O.J. Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill. Plants 2023, 12, 869. https://doi.org/10.3390/plants12040869
Maliehe TS, Nqotheni MI, Shandu JS, Selepe TN, Masoko P, Pooe OJ. Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill. Plants. 2023; 12(4):869. https://doi.org/10.3390/plants12040869
Chicago/Turabian StyleMaliehe, Tsolanku Sidney, Mduduzi Innocent Nqotheni, Jabulani Siyabonga Shandu, Tlou Nelson Selepe, Peter Masoko, and Ofentse Jacob Pooe. 2023. "Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill" Plants 12, no. 4: 869. https://doi.org/10.3390/plants12040869
APA StyleMaliehe, T. S., Nqotheni, M. I., Shandu, J. S., Selepe, T. N., Masoko, P., & Pooe, O. J. (2023). Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill. Plants, 12(4), 869. https://doi.org/10.3390/plants12040869