The Role of Gorse (Ulex parviflorus Pourr. Scrubs) in a Mediterranean Shrubland Undergoing Climate Change: Approach by Hyperspectral Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Individuals
2.3. Spectral Measurements
2.4. Spectral Post-Treatment
2.5. Spectral Indices
2.6. Statistical Analysis
2.7. Scanning Electronic Microscopy (SEM) Observations
3. Results
3.1. Spectral Signature of Ulex Parviflorus
3.2. Hyperspectral Response of Interspecific Assemblages
3.3. Hyperspectral Response to Climate Aridification
3.4. Analyses of SPECTRAL indices of Vegetation
3.4.1. Water-Content Index: The Ratio R975/R900
3.4.2. Chlorophyll-a Fluorescence and Photosynthesis Index: NIRvP
3.4.3. Nitrogen-Content Index and Other Vegetation Indices
3.4.4. Morphology and Anatomy of Ulex parviflorus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Ramirez, N.; Santonja, M.; Baldy, V.; Ballini, C.; Montès, N. Shrub Species Richness Decreases Negative Impacts of Drought in a Mediterranean Ecosystem. J. Veg. Sci. 2017, 28, 985–996. [Google Scholar] [CrossRef]
- Gimeno-García, E.; Andreu, V.; Rubio, J.L. Influence of Mediterranean Shrub Species on Soil Chemical Properties in Typical Mediterranean Environment. Commun. Soil Sci. Plant Anal. 2001, 32, 1885–1898. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Corcobado, G. Fires Enhance Flammability in Ulex Parviflorus. New Phytol. 2012, 193, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pausas, J.G.; Moreira, B. Flammability as a Biological Concept. New Phytol. 2012, 194, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2007, 63, 90–104. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting Future Extreme Precipitation Trends in the Mediterranean. Weather. Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Liberati, D.; de Dato, G.; Guidolotti, G.; De Angelis, P. Linking Photosynthetic Performances with the Changes in Cover Degree of Three Mediterranean Shrubs under Climate Manipulation. Oikos 2018, 127, 1633–1645. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Artetxe, U.; Duñabeitia, M.K.; Becerril, J.M. Role of Photoprotective Systems of Holm-Oak (Quercus Ilex) in the Adaptation to Winter Conditions. J. Plant Physiol. 1999, 155, 625–630. [Google Scholar] [CrossRef]
- Nuche, P.; Komac, B.; Camarero, J.J.; Alados, C.L. Developmental Instability as an Index of Adaptation to Drought Stress in a Mediterranean Oak. Ecol. Indic. 2014, 40, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Santini, F.; Serrano, L.; Kefauver, S.C.; Abdullah-Al, M.; Aguilera, M.; Sin, E.; Voltas, J. Morpho-Physiological Variability of Pinus Nigra Populations Reveals Climate-Driven Local Adaptation but Weak Water Use Differentiation. Environ. Exp. Bot. 2019, 166, 103828. [Google Scholar] [CrossRef]
- Behmann, J.; Steinrücken, J.; Plümer, L. Detection of Early Plant Stress Responses in Hyperspectral Images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 98–111. [Google Scholar] [CrossRef]
- Heim, R.; Jürgens, N.; Große-Stoltenberg, A.; Oldeland, J. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae). Remote Sens. 2015, 7, 16901–16914. [Google Scholar] [CrossRef] [Green Version]
- Thornley, R.H.; Verhoef, A.; Gerard, F.F.; White, K. The Feasibility of Leaf Reflectance-Based Taxonomic Inventories and Diversity Assessments of Species-Rich Grasslands: A Cross-Seasonal Evaluation Using Waveband Selection. Remote Sens. 2022, 14, 2310. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Sun, L.; Foloni, J.S.S.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; et al. Classification of Soybean Genotypes Assessed Under Different Water Availability and at Different Phenological Stages Using Leaf-Based Hyperspectral Reflectance. Remote Sens. 2021, 13, 172. [Google Scholar] [CrossRef]
- Medina Machín, A.; Marcello, J.; Hernández-Cordero, A.I.; Martín Abasolo, J.; Eugenio, F. Vegetation Species Mapping in a Coastal-Dune Ecosystem Using High Resolution Satellite Imagery. GISci. Remote Sens. 2019, 56, 210–232. [Google Scholar] [CrossRef]
- Mevy, J.-P.; Biryol, C.; Boiteau-Barral, M.; Miglietta, F. The Optical Response of a Mediterranean Shrubland to Climate Change: Hyperspectral Reflectance Measurements during Spring. Plants 2022, 11, 505. [Google Scholar] [CrossRef]
- Dechant, B.; Ryu, Y.; Badgley, G.; Köhler, P.; Rascher, U.; Migliavacca, M.; Zhang, Y.; Tagliabue, G.; Guan, K.; Rossini, M.; et al. NIRVP: A Robust Structural Proxy for Sun-Induced Chlorophyll Fluorescence and Photosynthesis across Scales. Remote Sens. Environ. 2022, 268, 112763. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.L. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and Near-Infrared Reflectance Techniques for Diagnosing Plant Physiological Status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Mänd, P.; Hallik, L.; Peñuelas, J.; Nilson, T.; Duce, P.; Emmett, B.A.; Beier, C.; Estiarte, M.; Garadnai, J.; Kalapos, T.; et al. Responses of the Reflectance Indices PRI and NDVI to Experimental Warming and Drought in European Shrublands along a North–South Climatic Gradient. Remote Sens. Environ. 2010, 114, 626–636. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Liu, Z.; Li, Z.-L.; Nerry, F.; Huo, H.; Li, X. Estimation of Solar-Induced Fluorescence Using the Canopy Reflectance Index. Int. J. Remote Sens. 2015, 36, 5239–5256. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely Estimating Aerial N Status of Phenologically Differing Winter Wheat Cultivars Grown in Contrasting Climatic and Geographic Zones in China and Germany. Field Crops Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Herrmann, I.; Karnieli, A.; Bonfil, D.J.; Cohen, Y.; Alchanatis, V. SWIR-Based Spectral Indices for Assessing Nitrogen Content in Potato Fields. Int. J. Remote Sens. 2010, 31, 5127–5143. [Google Scholar] [CrossRef]
- Morier, T.; Cambouris, A.N.; Chokmani, K. In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop. Agron. J. 2015, 107, 1295–1309. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Montès, N.; Maestre, F.T.; Ballini, C.; Baldy, V.; Gauquelin, T.; Planquette, M.; Greff, S.; Dupouyet, S.; Perret, J.-B. On the Relative Importance of the Effects of Selection and Complementarity as Drivers of Diversity–Productivity Relationships in Mediterranean Shrublands. Oikos 2008, 117, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Viñas, I.C.R.d.; Ayanz, A.S.M. Biomass of Root and Shoot Systems of Quercus Coccifera Shrublands in Eastern Spain. Ann. For. Sci. 2000, 57, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Rego, F. Root Distribution of a Mediterranean Shrubland in Portugal. Plant Soil 2003, 255, 529–540. [Google Scholar] [CrossRef]
- Ribeiro da Luz, B.; Crowley, J.K. Spectral Reflectance and Emissivity Features of Broad Leaf Plants: Prospects for Remote Sensing in the Thermal Infrared (8.0–14.0 Μm). Remote Sens. Environ. 2007, 109, 393–405. [Google Scholar] [CrossRef]
- Saijo, Y.; Loo, E.P. Plant Immunity in Signal Integration between Biotic and Abiotic Stress Responses. New Phytol. 2020, 225, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Ariza, C.; Tielboerger, K. An Evolutionary Approach to Studying the Relative Importance of Plant-Plant Interactions along Environmental Gradients. Funct. Ecol. 2011, 25, 932–942. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. ABA-Based Chemical Signalling: The Co-Ordination of Responses to Stress in Plants. Plant Cell Environ. 2002, 25, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Jamil, F.; Mukhtar, H.; Fouillaud, M.; Dufossé, L. Rhizosphere Signaling: Insights into Plant–Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022, 10, 899. [Google Scholar] [CrossRef]
- Castells, E.; Peñuelas, J.; Valentine, D.W. Are Phenolic Compounds Released from the Mediterranean Shrub Cistus Albidus Responsible for Changes in N Cycling in Siliceous and Calcareous Soils? New Phytol. 2004, 162, 187–195. [Google Scholar] [CrossRef]
- Evans, J.R.; Clarke, V.C. The Nitrogen Cost of Photosynthesis. J. Exp. Bot. 2019, 70, 7–15. [Google Scholar] [CrossRef]
- Evans, J.R. Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Xu, W.; Zhou, G.; Bai, Y.; Li, J.; Tang, X.; Chen, D.; Liu, Q.; Ma, W.; Xiong, G.; et al. Patterns of Plant Carbon, Nitrogen, and Phosphorus Concentration in Relation to Productivity in China’s Terrestrial Ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033–4038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenberg, C.; Berry, J. 3.10—Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 143–162. ISBN 978-0-12-803221-3. [Google Scholar]
Index | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Phaeophytinization index | NPQI | (R415 − R435)/(R415 + R435) | [19] |
Normalized Difference Vegetation Index (Nitrogen) | NDVI (N) | R565 − 708/R565 + R708 | [20] |
Normalized Difference Vegetation Index (Nitrogen) | NDVI (N) 2 | (R730 − R759)/(R730 + R759) | [20] |
Normalized Difference Vegetation Index (Nitrogen) | NDVI (N) 3 | (R717 − R770)/(R717 + R770) | [20] |
Normalized Difference Vegetation Index (Nitrogen) | NDVI (N) 4 | (R720 − R839)/(R720 + R839) | [20] |
Water Index | WI | R900/R970 | [21] |
Normalized Difference Vegetation Index | NDVI | (R800 − R680)/(R800 + R680) | [22] |
Photochemical Reflectance Index | PRI | (R531 − R570)/(R531 + 570) | [23] |
Solar Induce Florescence A proxy | SIFa | R740/R630 | [24] |
Solar Induce Florescence B proxy | SIFb | R685/R850 | [24] |
Enhansed vegetation index | EVI | 2.5 × [(NIRref − REDref)/(NIRref + 6 × REDref − 7.5 × BLUEref)] + 1 | [25] |
Normalized Difference Index | NDI | (R850 − R710)/(R850 + R680) | [26] |
Normalized Difference Red Edge | NDRE | (R800 − R720)/(R800 + R720) | [19] |
Red Edge Index | RE | R740/R720 | [27] |
Red Edge Chlorophyll Index 1 | CI1 | (R800/R740) − 1 | [28] |
Modified Chlorophyll Absorption in Reflectance Index | MCARI | [(R700 − R1510) − 0.2(R700 − R550)] × (R700/R1510) | [29] |
Nitrogen Planar Domain Index 2 | NPDI2 | (CI2 − CI2MIN)/(CI2MAX − CI2MIN) | [30] |
Red Edge Chlorophyll Index 2 | CI2 | (R740/R550) − 2 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marteau, A.; Fourmaux, M.; Mevy, J.-P. The Role of Gorse (Ulex parviflorus Pourr. Scrubs) in a Mediterranean Shrubland Undergoing Climate Change: Approach by Hyperspectral Measurements. Plants 2023, 12, 879. https://doi.org/10.3390/plants12040879
Marteau A, Fourmaux M, Mevy J-P. The Role of Gorse (Ulex parviflorus Pourr. Scrubs) in a Mediterranean Shrubland Undergoing Climate Change: Approach by Hyperspectral Measurements. Plants. 2023; 12(4):879. https://doi.org/10.3390/plants12040879
Chicago/Turabian StyleMarteau, Audrey, Martin Fourmaux, and Jean-Philippe Mevy. 2023. "The Role of Gorse (Ulex parviflorus Pourr. Scrubs) in a Mediterranean Shrubland Undergoing Climate Change: Approach by Hyperspectral Measurements" Plants 12, no. 4: 879. https://doi.org/10.3390/plants12040879
APA StyleMarteau, A., Fourmaux, M., & Mevy, J. -P. (2023). The Role of Gorse (Ulex parviflorus Pourr. Scrubs) in a Mediterranean Shrubland Undergoing Climate Change: Approach by Hyperspectral Measurements. Plants, 12(4), 879. https://doi.org/10.3390/plants12040879