Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat
Abstract
:1. Introduction
2. The Relationship between Aegilops tauschii and Wheat
3. The Research Progress of Aegilops tauschii
4. Discovery of Disease Resistance Genes from Aegilops tauschii
4.1. Discovery of Rust Resistance Genes from Aegilops tauschii
4.1.1. Discovery of Stripe Rust Resistance Genes from Aegilops tauschii
4.1.2. Discovery of Leaf Rust Resistance Gene from Aegilops tauschii
4.1.3. Discovery of Stem Rust Resistance Genes from Aegilops tauschii
4.2. Discovery of Powdery Mildew Resistance Genes from Aegilops tauschii
4.3. Discovery of Other Disease Resistance Genes from Aegilops tauschii
Classification | Gene | Types | Chromosome | Cloned | Reference |
---|---|---|---|---|---|
stripe rust resistance genes | Yr28 | ASR | 4DS | Yes | [55] |
leaf rust resistance genes | Lr21 | ASR | 1DS | Yes | [67] |
Lr22a | APR | 2DS | Yes | [68] | |
Lr32 | ASR | 3DS | No | [69] | |
Lr39 | ASR | 2DS | No | [70] | |
Lr42 | ASR | 1DS | Yes | [71] | |
stem rust resistance genes | Sr33 | ASR | 1DS | Yes | [111] |
Sr45 | APR | 1DS | Yes | [116] | |
Sr46 | APR | 2DS | Yes | [108] | |
powdery mildew resistance genes | Pm2a | ASR | 5DS | Yes | [133] |
Pm19 | ND | 7D | No | [134] | |
Pm34 | ND | 5DL | No | [135] | |
Pm35 | ND | 5DL | No | [136] | |
Pm58 | ND | 2DS | No | [137] | |
septoria tritici blotch resistance genes | Stb5 | ASR | 7DS | No | [146] |
brown spot resistance genes | Tsr3 | ND | 3D | No | [148] |
5. Application of Disease-Resistant Genes from Aegilops tauschii in Wheat Breeding
5.1. Application of Rust Resistance Genes from Aegilops tauschii in Wheat Breeding
5.1.1. Application of Stripe Rust Resistance Genes from Aegilops tauschii in Wheat Breeding
5.1.2. Application of Leaf Rust Resistance Genes from Aegilops tauschii in Wheat Breeding
5.1.3. Application of Stem Rust Resistance Genes from Aegilops tauschii in Wheat Breeding
5.2. Application of Powdery Mildew Resistance Genes from Aegilops tauschii in Wheat Breeding
5.3. Application of Other Disease-Resistant Genes from Aegilops tauschii in Wheat Breeding
6. Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar]
- The Food and Agriculture Organization of the United Nations Home Page. Available online: https://www.fao.org/director-general/news/news-article/zh/c/1301879/ (accessed on 15 November 2022).
- Cheng, F.; Wu, J.; Cai, X.; Liang, J.L.; Freeling, M.; Wang, X.W. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 2018, 4, 258–268. [Google Scholar] [CrossRef]
- Liang, Y.M.; Liu, H.J.; Yan, J.B.; Tian, F. Natural variation in crops: Realized understanding, continuing promise. Annu. Rev. Plant Biol. 2021, 72, 357–385. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, J.; Luo, M.C.; Yang, Z.L.; Zhang, H.B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 1998, 97, 657–670. [Google Scholar] [CrossRef]
- Wang, J.R.; Luo, M.C.; Chen, Z.X.; You, F.M.; Wei, Y.M.; Zheng, Y.L.; Dvorak, J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 2013, 198, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.F.; Sui, B.F.; Zhang, C.X.; Huang, H.J.; Wei, S.H. The basis of resistance mechanism to mesosulfuron-methyl in Tausch’s goatgrass (Aegilops tauschii Coss.). Pestic. Biochem. Physiol. 2019, 155, 126–131. [Google Scholar] [CrossRef]
- Hegde, S.G.; Valkoun, J.; Waines, J.G. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species—A preliminary survey. Crop Sci. 2002, 42, 608–614. [Google Scholar] [CrossRef]
- Zhang, D.L.; Zhou, Y.; Zhao, X.P.; Lü, L.L.; Zhang, C.C.; Li, J.H.; Sun, G.L.; Li, S.P.; Song, C.P. Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii × Hexaploid wheat) as donor. Front. Plant Sci. 2018, 9, 1113. [Google Scholar] [CrossRef]
- Masahiro, K. An update of recent use of Aegilops species in wheat Breeding. Front. Plant. Sci. 2019, 10, 585. [Google Scholar]
- Zhou, Y.; Bai, S.L.; Li, H.; Sun, G.L.; Zhang, D.L.; Ma, F.F.; Zhao, X.P.; Nie, F.; Li, J.Y.; Chen, L.Y.; et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 2021, 7, 774–786. [Google Scholar] [CrossRef]
- Wei, H.T.; Li, J.; Peng, Z.S.; Lu, B.R.; Zhao, Z.J.; Yang, W.Y. Relationships of Aegilops tauschii revealed by DNA fingerprits: The evidence for agriculture exchange between China and the West. Prog. Nat. Sci.-Mater. 2008, 18, 1525–1531. [Google Scholar] [CrossRef]
- Maciej, M.; Michał, T.K.; Joanna, M.; Halina, W. Aegilops tauschii accessions with geographically diverse origin show differences in chromosome organization and polymorphism of molecular markers linked to leaf rust and powdery mildew resistance genes. Front. Plant Sci. 2017, 8, 1149. [Google Scholar]
- Ward, R.W.; Yang, Z.L.; Kim, H.S.; Yen, C. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor. Appl. Genet. 1998, 96, 312–318. [Google Scholar] [CrossRef]
- Su, Q.; Liu, L.X.; Zhao, M.Y.; Zhang, C.C.; Zhang, D.L.; Li, Y.Y.; Li, S.P. The complete chloroplast genomes of seventeen Aegilops tauschii: Genome comparative analysis and phylogenetic inference. PeerJ 2020, 8, e8678. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.P.; Zhou, Y.; Lü, L.L.; Li, S.P.; Zhang, D.L. Genetic diversity of Aegilops tauschii Coss. and its utilization in improving common wheat. Biol. Bull. 2019, 35, 181–189. (In Chinese) [Google Scholar]
- Zhang, C.Z.; Huang, L.; Zhang, H.F.; Hao, Q.Q.; Lyu, B.; Wang, M.N.; Epstein, L.; Liu, M.; Kou, C.L.; Qi, J.; et al. An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley. Nat. Commun. 2019, 10, 4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Islam, S.; Yu, Z.T.; She, M.Y.; Nevo, E.; Ma, W.J. Current progress in understanding and recovering the wheat genes lost in evolution and domestication. Int. J. Mol. Sci. 2020, 21, 5836. [Google Scholar] [CrossRef]
- Marcussen, T.; Sandve, S.R.; Heier, L.; Spannagl, M.; Pfeifer, M.; The International Wheat Genome Sequencing Consortium; Jakobsen, K.S.; Wulff, B.B.H.; Steuernagel, B.; Mayer, K.F.X.; et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014, 345, 1250092. [Google Scholar] [CrossRef]
- Li, L.F.; Liu, B.; Olsen, K.M.; Wendel, J.F. A re-evaluation of the homoploid hybrid origin of Aegilops tauschii, the donor of the wheat D-subgenome. New Phytol. 2015, 208, 4–8. [Google Scholar] [CrossRef]
- Alison, B.; Peter, W.J.; John, D. The origins of wheat in China and potential pathways for its introduction: A review. Quat. Int. 2014, 348, 158–168. [Google Scholar]
- Liu, J.; Yao, Y.Y.; Xin, M.M.; Peng, H.R.; Ni, Z.F.; Sun, Q.X. Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits. J. Integr. Plant Biol. 2021, 64, 536–563. [Google Scholar] [CrossRef] [PubMed]
- Ben, T.; Megan, N.H.; Elizabeth, S.D.; Peacock, W.J. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 2007, 12, 352–357. [Google Scholar]
- Wang, Y.H.; Liu, H.; Huang, Y.; Wang, J.F.; Wang, Z.Z.; Gu, F.X.; Xin, M.H.; Kang, G.Z.; Feng, W.; Guo, T.C. Effects of cultivation management on the winter wheat grain yield and water utilization efficiency. Sci. Rep. 2019, 9, 12733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.M.; Geng, M.M.; Hao, Y.R.; Zhang, Y.; Zhang, L.J.; Wen, S.M.; Wang, R.H.; Liu, G.R. Screening for differential expression of genes for resistance to Sitodiplosis mosellana in bread wheat via BSR-seq analysis. Theor. Appl. Genet. 2019, 132, 3201–3221. [Google Scholar] [CrossRef]
- Li, J.B.; Dundas, I.; Dong, C.M.; Li, G.R.; Trethowan, R.; Yang, Z.J.; Hoxha, S.; Zhang, P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 2020, 133, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Sun, S.L.; Ge, W.Y.; Zhao, L.F.; Hou, B.Q.; Wang, K.; Lyu, Z.F.; Chen, L.Y.; Xu, S.S.; Guo, J.; et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, eaba5435. [Google Scholar] [CrossRef] [PubMed]
- Banach, J.K.; Majewska, K.; ŻukGołaszewska, K. Effect of cultivation system on quality changes in durum wheat grain and flour produced in North-Eastern Europe. PLoS ONE 2021, 16, e0236617. [Google Scholar] [CrossRef]
- Wang, H.M.; Zheng, J.; Fan, J.L.; Zhang, F.C.; Huang, C.H. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crop. Res. 2021, 270, 108210. [Google Scholar] [CrossRef]
- Yang, H.K.; Xiao, Y.; Zhang, X.; Huang, X.L.; Fan, G.Q. Maize straw mulching with uniconazole application increases the tillering capacity and grain yield of dryland winter wheat (Triticum aestivum L.). Field Crop. Res. 2022, 284, 108573. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, G.Y.; Chen, Y.Q.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H.M. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crop. Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jia, H.Y.; Li, T.; Wu, J.Z.; Nagarajan, R.; Lei, L.; Powers, C.; Kan, C.C.; Hua, W.; Liu, Z.Y.; et al. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science 2022, 376, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.Z.; Zhao, S.C.; Kong, X.Y.; Li, Y.R.; Zhao, G.Y.; He, W.M.; Appels, R.; Pfeifer, M.; Tao, Y.; Zhang, X.Y.; et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.C.; Gu, Y.Q.; You, F.M.; Deal, K.R.; Ma, Y.Q.; Hu, Y.Q.; Huo, N.X.; Wang, Y.; Wang, J.R.; Chen, S.Y.; et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc. Natl. Acad. Sci. USA 2013, 110, 7940–7945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.C.; Gu, Y.Q.; Puiu, D.; Wang, H.; Twardziok, S.O.; Deal, K.R.; Huo, N.X.; Zhu, T.T.; Wang, L.; Wang, Y.; et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017, 551, 498–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.Y.; Zou, C.; Li, K.; Wang, K.; Li, T.B.; Gao, L.F.; Zhang, X.X.; Wang, H.J.; Yang, Z.J.; Liu, X.; et al. The Aegilops tauschii genome reveals multiple impacts of transposons. Nat. Plants 2017, 3, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, R.F.; Lagudah, E.S.; Appels, R.; Hannah, M.; Kollmorgen, J.F. Triticum aestivum: A novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust. J. Agric. Res. 1991, 42, 69–77. [Google Scholar]
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Raupp, W.J. Catalogue of gene symbols for wheat: 2021 supplement. Annu. Wheat Newsl. 2021, 67, 104–113. [Google Scholar]
- Lage, J.; Skovmand, B.; Andersen, S.B. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum×Aegilops tauschii Crosses. J. Econ. Entomol. 2003, 96, 202. [Google Scholar] [CrossRef]
- Wan, H.S.; Yang, Y.M.; Li, J.; Zhang, Z.F.; Yang, W.Y. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 2015, 205, 275–285. [Google Scholar] [CrossRef]
- Delorean, E.; Gao, L.L.; Lopez, J.F.C.; Open Wild Wheat Consortium; Wulff, B.B.H.; Ibba, M.I.; Poland, J. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Commun. Biol. 2021, 1242, 1–9. [Google Scholar]
- Cummins, I.; Bryant, D.N.; Edwards, R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides). Plant Biotechnol. J. 2009, 7, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.B.; Ma, G.Y.; Geng, Y.L.; Liu, X.M.; Wang, H.; Li, J.; Song, S.S.; Pan, W.L.; Hun, Z.Y. Seed dressing with mefenpyr-diethyl as a safener for mesosulfuron-methyl application in wheat: The evaluation and mechanisms. PLoS ONE 2021, 16, e0256884. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Wellings, C.; Chen, X.M.; Kang, Z.S.; Liu, T.G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, H.L.; Wang, H.G. Two new methods for severity assessment of wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Front. Plant Sci. 2022, 3, 1–18. [Google Scholar]
- Sinha, P.; Chen, X.M. Potential infection risks of the wheat stripe rust and stem rust pathogens on Barberry in Asia and Southeastern Europe. Plants 2021, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Li, Z.; Tan, F.; Jiang, C.; Luo, P.G. Advances in Identifying Stripe Rust Resistance Genes in Cereals; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 39–80. [Google Scholar]
- Krattinger, S.G.; Lagudah, E.S.; Spielmeyer, W.; Singh, R.P.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.; Selter, L.L.; Keller, B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 2009, 323, 1360–1363. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.L.; Uauy, C.; Distelfeld, A.; Blechl, A.; Epstein, L.; Chen, X.M.; Sela, H.; Fahima, T.; Dubcovsky, J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 2009, 323, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.W.; Herrera-Foessel, S.; Lan, C.; Schnippenkoetter, W.; Ayliffe, M.; Huerta-Espino, J.; Lillemo, M.; Viccars, L.; Milne, R.; Periyannan, S.; et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 2015, 47, 1494–1498. [Google Scholar] [CrossRef]
- Marchal, C.; Zhang, J.; Zhang, P.; Fenwick, P.; Steuernagel, B.; Adamski, N.M.; Boyd, L.; McIntosh, R.; Wulff, B.B.H.; Berry, S.; et al. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat. Plants 2018, 4, 662–668. [Google Scholar] [CrossRef]
- Klymiuk, V.; Yaniv, E.; Huang, L.; Raats, D.; Fatiukha, A.; Chen, S.; Feng, L.; Frenkel, Z.; Krugman, T.; Lidzbarsky, G.; et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat. Commun. 2018, 9, 3735. [Google Scholar] [CrossRef]
- Athiyannan, N.; Abrouk, M.; Boshoff, W.H.P.; Cauet, S.; Rodde, N.; Kudrna, D.; Mohammed, N.; Bettgenhaeuser, J.; Botha, K.S.; Derman, S.S.; et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 2022, 54, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, V.; Chawlam, H.S.; Wiebe, K.; Ens, J.; Fatiukha, A.; Govta, L.; Fahima, T.; Pozniak, C.J. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing. Commun. Biol. 2022, 5, 826. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Nelson, J.C.; Sorrells, M.E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 2000, 40, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.C.; Zhang, L.Q.; Yan, Z.H.; Lan, X.J.; Zheng, Y.L. Stripe rust resistance in Aegilops tauschii and its genetic analysis. Genet. Resour. Crop Evol. 2010, 57, 325–328. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, L.Q.; Liu, B.L.; Yan, Z.H.; Zhang, B.; Zhang, H.G.; Zheng, Y.L.; Liu, D.C. Molecular tagging of a stripe rust resistance gene in Aegilop stauschii. Euphytica 2011, 179, 313–318. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, C.Z.; Yuan, C.L.; Zhang, L.Q.; Huang, L.; Wu, J.J.; Wang, J.R.; Zheng, Y.L.; Zhang, H.G.; Liu, D.C.; et al. Stripe rust resistance in Aegilops tauschii germplasm. Crop Sci. 2013, 53, 2014–2020. [Google Scholar] [CrossRef]
- Athiyannan, N.; Zhang, P.; McIntosh, R.; Chakraborty, S.; Hewitt, T.; Bhatt, D.; Forrest, K.; Upadhyaya, N.; Steuernagel, B.; Arora, S.; et al. Haplotype variants of the stripe rust resistance gene Yr28 in Aegilops tauschii. Theor. Appl. Genet. 2022, 29, 1–10. [Google Scholar] [CrossRef]
- Bolton, M.D.; Kolmer, J.A.; Garvin, D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 2008, 9, 563–575. [Google Scholar] [CrossRef]
- Huerta-Espino, J.; Singh, R.P.; Germán, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Bhardwaj, S.C.; Goyeau, H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [Google Scholar] [CrossRef]
- Khan, M.H.; Bukhari, A.; Dar, Z.A.; Rizvi, S.M. Status and strategies in breeding for rust resistance in wheat. Agric. Sci. 2013, 4, 292–301. [Google Scholar] [CrossRef]
- Xu, X.Y.; Kolmer, J.; Li, G.Q.; Tan, C.C.; Carver, B.F.; Bian, R.L.; Bernardo, A.; Bai, G.H. Identification and characterization of the novel leaf rust resistance gene Lr81 in wheat. Theor. Appl. Genet. 2022, 135, 2725–2734. [Google Scholar] [CrossRef] [PubMed]
- Bariana, H.S.; Babu, P.; Forrest, K.L.; Park, R.F.; Bansal, U.K. Discovery of the new leaf rust resistance gene Lr82 in wheat: Molecular mapping and marker development. Genes 2022, 13, 964. [Google Scholar] [CrossRef] [PubMed]
- Dinh, H.X.; Singh, D.; Periyannan, S.; Park, R.F.; Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 2020, 133, 2035–2050. [Google Scholar] [CrossRef]
- Yan, X.C.; Li, M.M.; Zhang, P.P.; Yin, G.H.; Zhang, H.Z.; Gebrewahid, T.W.; Zhang, J.P.; Dong, L.L.; Liu, D.Q.; Liu, Z.Y.; et al. High-temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis. Mol. Plant 2021, 14, 1029–1032. [Google Scholar] [CrossRef]
- Rowland, G.G.; Kerber, E.R. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 1974, 16, 137–144. [Google Scholar] [CrossRef]
- Dyck, P.L.; Kerber, E.R. Inheritance in hexaploid wheat of adult plant leaf resistance derived from Aegilops squarrosa. Can. J. Genet. Cytol. 1970, 12, 175–180. [Google Scholar] [CrossRef]
- Kerber, E.R. Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Sci. 1987, 27, 204–206. [Google Scholar] [CrossRef]
- Pretorius, Z.A.; Vanniekerk, B.D.; Kloppers, F.J.; Vorster, A.L. Managing certain recently named Lr genes in breeding wheat for resistance to Puccinia recondita f. sp. tritici in South Africa. S. Afr. J. Plant Soil 1995, 12, 32–37. [Google Scholar] [CrossRef]
- Cox, T.S.; Raupp, W.J.; Gill, B.S. Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci. 1994, 34, 339–343. [Google Scholar] [CrossRef]
- Huang, L.; Gill, B.S. An RGA–like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor. Appl. Genet. 2001, 103, 1007–1013. [Google Scholar] [CrossRef]
- Huang, L.; Brooks, S.A.; Li, W.L.; Fellers, J.P.; Trick, H.N.; Gill, B.S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 2003, 164, 655–664. [Google Scholar] [CrossRef]
- Scofield, S.R.; Huang, L.; Brandt, A.S.; Gill, B.S. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 2005, 138, 2165–2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Brooks, S.; Li, W.L.; Fellers, J.; Nelson, J.C.; Gill, B. Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: Reconstitution of the Lr21 gene in wheat. Genetics 2009, 182, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.B.; Peterson, G.W.; McCallum, B.D.; Li, H. Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21. Theor. Appl. Genet. 2010, 121, 271–281. [Google Scholar] [CrossRef]
- Kolmer, J.A.; Anderson, J.A. First detection in North America of virulence in wheat leaf rust (Puccinia triticina) to seedling plants of wheat with Lr21. Plant Dis. 2011, 95, 1032. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Gina, B.-G.; Li, H. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol. Breed. 2013, 31, 233–237. [Google Scholar]
- Naz, A.A.; Bungartz, A.; Serfling, A.; Kamruzzaman, M.; Schneider, M.; Wulff, B.B.H.; Pillen, K.; Ballvora, A.; Oerke, E.C.; Ordon, F.; et al. Lr21 diversity unveils footprints of wheat evolution and its new role in broad-spectrum leaf rust resistance. Plant Cell Environ. 2021, 44, 3445–3458. [Google Scholar] [CrossRef]
- Pretorius, Z.A. Characterization of adult-plant resistance to leaf rust of wheat conferred by the gene Lr22a. Plant Dis. 1987, 71, 542–545. [Google Scholar] [CrossRef]
- Pretorius, Z.A.; Rijkenberg, F.H.J.; Wilcoxson, R.D. Recessive inheritance of wheat gene Lr22a for adult-plant resistance to leaf rust. Cereal Res. Commun. 1988, 16, 11–17. [Google Scholar]
- Hiebert, C.W.; Thomas, J.B.; Somers, D.J.; McCallum, B.D.; Fox, S.L. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor. Appl. Genet. 2007, 115, 877–884. [Google Scholar] [CrossRef]
- Thind, A.K.; Wicker, T.; Šimková, H.; Fossati, D.; Moullet, O.; Brabant, C.; Vrána, J.; Doležel, J.; Krattinger, S.G. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 2017, 35, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.S.; McCallum, B.D.; Hiebert, C.W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed. 2022, 141, 204–211. [Google Scholar] [CrossRef]
- Kerber, E.R. Telocentric mapping in wheat of the gene Lr32 for resistance to leaf rust. Crop Sci. 1988, 28, 178–179. [Google Scholar] [CrossRef]
- Thomas, J.; Nilmalgoda, S.; Hiebert, C.; McCallum, B.; Humphreys, G.; DePauw, R. Genetic Markers and leaf rust resistance of the wheat gene Lr32. Crop Sci. 2010, 50, 2310–2317. [Google Scholar] [CrossRef]
- Raupp, W.J.; Sukhwinder-Singh; Brown-Guedira, G.L.; Gill, B.S. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor. Appl. Genet. 2001, 102, 347–352. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.D.; Kang, Z.H.; Ren, Z.K.; Bi, W.S.; Yang, W.X.; Liu, D.Q. Suppression subtractive hybridization and microarray analysis reveal differentially expressed genes in the Lr39/41-mediated wheat resistance to Puccinia triticina. Eur. J. Plant Pathol. 2018, 152, 479–492. [Google Scholar] [CrossRef]
- Sun, X.C.; Bai, G.H.; Carver, B.F.; Bowden, R. Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Sci. 2010, 50, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Harsimardeep, S.G.; Li, C.X.; Sidhu, J.S.; Liu, W.X.; Wilson, D.; Bai, G.H.; Gill, B.S.; Sehgal, S.K. Fine mapping of the wheat leaf rust resistance gene Lr42. Int. J. Mol. Sci. 2019, 20, 2445. [Google Scholar]
- Liu, Y.; Chen, H.; Li, C.X.; Zhang, L.R.; Shao, M.Q.; Pang, Y.H.; Xu, X.Y.; Bai, G.H. Development of diagnostic markers for a wheat leaf rust resistance gene Lr42 using RNA-sequencing. Crop J. 2021, 9, 1357–1366. [Google Scholar] [CrossRef]
- Lin, G.F.; Chen, H.; Tian, B.; Sehgal, S.K.; Singh, L.; Xie, J.Z.; Rawat, N.; Juliana, P.; Singh, N.; Shrestha, S.; et al. Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat. Commun. 2022, 13, 3044. [Google Scholar] [CrossRef]
- Wang, G.J.; Zhao, Y.L.; Wang, Y.B. Reviews on harmand prevention of stem rust in wheat. Heilongjiang Agric. Sci. 2010, 12, 169–171. (In Chinese) [Google Scholar]
- Singh, R.P.; Hodson, D.P.; Huertaespino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Herrerafoessel, S.A.; Ward, R.W. Will stem rust destroy the world’s wheat crop? Adv. Agron. 2008, 98, 271–309. [Google Scholar]
- Rahmatov, M.; Rouse, M.N.; Nirmala, J.; Danilova, T.; Friebe, B.; Steffenson, B.J.; Johansson, E. A new 2DS center dot 2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor. Appl. Genet. 2016, 129, 1383–1392. [Google Scholar] [CrossRef]
- Chen, S.S.; Guo, Y.; Briggs, J.; Dubach, F.; Chao, S.A.M.; Zhang, W.J.; Rouse, M.N.; Dubcovsky, J. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor. Appl. Genet. 2018, 131, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.P.; Hewitt, T.C.; Boshoff, W.H.P.; Dundas, I.; Upadhyaya, N.; Li, J.B.; Patpour, M.; Chandramohan, S.; Pretorius, Z.A.; Hovmøller, M.; et al. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021, 12, 3378. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.T.; Matny, O.; Champouret, N.; Steuernagel, B.; Moscou, M.J.; Hernández-Pinzón, I.; Green, P.; Hayta, S.; Smedley, M.; Harwood, W.; et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun. 2022, 13, 1607. [Google Scholar] [CrossRef]
- Saintenac, C.; Zhang, W.J.; Salcedo, A.; Rouse, M.N.; Trick, H.N.; Akhunov, E.; Dubcovsky, J. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 2013, 341, 783–786. [Google Scholar] [CrossRef] [Green Version]
- Periyannan, S.; Moore, J.; Michael, A.; Urmil, B.; Wang, X.J.; Huang, L.; Deal, K.; Luo, M.C.; Kong, X.Y.; Bariana, H.; et al. The gene Sr33, an ortholog of barley mla genes, encodes resistance to wheat stem rust race Ug99. Science 2013, 341, 786–788. [Google Scholar] [CrossRef]
- Mago, R.; Zhang, P.; Vautrin, S.; Hana, Š.; Bansal, U.; Luo, M.C.; Rouse, M.; Karaoglu, H.; Periyannan, S.; Kolmer, J. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat. Plants 2015, 1, 15186. [Google Scholar] [CrossRef]
- Steuernagel, B.; Periyannan, S.K.; Hernández-Pinzón, I.; Witek, K.; Rouse, M.N.; Yu, G.T.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.G.; et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 2016, 34, 652–655. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Abate, Z.; Nirmala, J.; Rouse, M.N.; Dubcovsky, J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA 2017, 114, E9483–E9492. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Zhang, W.J.; Bolus, S.; Rouse, M.N.; Dubcovsky, J.; Keller, B. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet. 2018, 14, e1007287. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Steuernagel, B.; Gaurav, K.; Chandramohan, S. Wulff, B.B.H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019, 37, 139–143. [Google Scholar] [CrossRef]
- Sambasivam, P.K.; Bansal, U.K.; Hayden, M.J.; Lagudah, E.S.; Bariana, H.S. Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In Proceedings of the 11th International Wheat Genet Symposium, Brisbane, QLD, Australia, 24–29 August 2008; Sydney University Press: Sydney, Australia, 2008; pp. 351–353. [Google Scholar]
- Periyannan, S.; Bansal, U.; Bariana, H.; Deal, K.; Luo, M.C.; Dvorak, J.; Lagudah, E. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor. Appl. Genet. 2014, 127, 947–955. [Google Scholar] [CrossRef]
- Yu, G.T.; Zhang, Q.J.; Friesen, T.L.; Rouse, M.N.; Jin, Y.; Zhong, S.B.; Rasmussen, J.B.; Lagudah, E.S.; Xu, S.S. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor. Appl. Genet. 2015, 128, 431–443. [Google Scholar] [CrossRef]
- Olson, E.L.; Rouse, M.N.; Pumphrey, M.O.; Bowden, R.L.; Gill, B.S.; Poland, J.A. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat. Theor. Appl. Genet. 2013, 126, 2477–2484. [Google Scholar] [CrossRef]
- Wiersma, A.T.; Brown, L.K.; Brisco, E.I.; Liu, T.L.; Childs, K.L.; Poland, J.A.; Sehgal, S.K.; Olson, E.L. Fine mapping of the stem rust resistance gene SrTA10187. Theor. Appl. Genet. 2016, 129, 2369–2378. [Google Scholar] [CrossRef]
- Kerber, E.; Dyck, P. Resistance to stem and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In Proceedings of the 5th International Wheat Genetic Symposium, New Delhi, India, 23–28 February 1978; pp. 358–364. [Google Scholar]
- Jones, S.S.; Dvořák, J.; Knott, D.R.; Qualset, C.O. Use of double-ditelosomic and normal chromosome 1D recombinant substitution lines to map Sr33 on chromosome arm 1DS in wheat. Genome 1991, 34, 505–508. [Google Scholar] [CrossRef]
- Han, J.D.; Li, W.H.; Cao, Y.Y.; Gong, Z.Y.; Yao, Q. Mirostellite markers linked to stem rust resistance gene Sr33 in wheat. Acta Agron. Sin. 2012, 38, 1003–1008. (In Chinese) [Google Scholar] [CrossRef]
- Ivaschuk, B.V.; Pirko, Y.V.; Galkin, A.P.; Blume, Y.B. Sr33 and Sr35 gene homolog indentification in genomes of cereals related with Aegilops tauschii and Triticum monococcum. Cytol. Genet. 2016, 50, 26–37. [Google Scholar] [CrossRef]
- Md Hatta, M.A.; Arora, S.; Ghosh, S.; Matny, O.; Smedley, M.A.; Yu, G.T.; Chakraborty, S.; Bhatt, D.; Xia, X.D.; Steuernagel, B.; et al. The wheat Sr22, Sr33, Sr35 and Sr45 genes confer resistance against stem rust in barley. Plant Biotechnol. J. 2020, 19, 273–284. [Google Scholar] [CrossRef]
- Marais, G.F.; Wessels, W.G.; Horn, M.; Toit, D.F. Association of a stem rust resistance gene (Sr45) and two Russian wheat aphid resistance genes (Dn5 and Dn7) with mapped structural loci in common wheat. S. Afr. J. Plant Soil 1998, 15, 67–71. [Google Scholar] [CrossRef]
- Rouse, M.N.; Olson, E.L.; Gill, B.S.; Pumphrey, M.O.; Jin, Y. Stem rust resistance in Aegilops tauschii germplasm. Crop. Sci. 2011, 51, 2074–2078. [Google Scholar] [CrossRef]
- Athiyannan, N.; Long, Y.M.; Kang, H.Y.; Chandramohan, S.; Bhatt, D.; Zhang, Q.J.; Klindworth, D.L.; Rouse, M.N.; Friesen, T.L.; McIntosh, R.; et al. Haplotype variants of Sr46 in Aegilops tauschii, the diploid D genome progenitor of wheat. Theor. Appl. Genet. 2022, 135, 2627–2639. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Yang, M.J.; Huang, K.Y.; Han, Q.D. Research progresses on wheat powdery mildew and its resistance. Mol. Plant Breed 2016, 14, 1244–1254. (In Chinese) [Google Scholar]
- Brunner, S.; Hurni, S.; Herren, G.; Kalinina, O.; Von, B.S.; Zeller, S.L.; Schmid, B.; Winzeler, M.; Keller, B. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol. J. 2011, 9, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Hurni, S.; Brunner, S.; Buchmann, G.; Herren, G.; Jordan, T.; Krukowski, P.; Wicker, T.; Yahiaoui, N.; Mago, R.; Keller, B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013, 76, 957–969. [Google Scholar] [CrossRef]
- Sánchez, M.J.; Steuernagel, B.; Ghosh, S.; Herren, G.; Hurni, S.; Adamski, N.; Vrána, J.; Kubaláková, M.; Krattinger, S.G.; Wicker, T.; et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016, 17, 221. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.H.; Wang, H.; Li, Y.W.; Kong, Z.S.; Tang, D.Z. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018, 218, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.P.; Hu, P.; Liu, J.Q.; Witek, K.; Zhou, S.; Xu, J.F.; Zhou, W.H.; Gao, L.; Huang, Z.P.; Zhang, R.Q.; et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol. Plant 2018, 11, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Hurni, S.; Ruinelli, M.; Brunner, S.; Sanchez, M.J.; Krukowski, P.; Peditto, D.; Buchmann, G.; Zbinden, H. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol. Boil. 2018, 98, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Dong, L.L.; Li, B.B.; Wang, Z.Z.; Xie, J.Z.; Qiu, D.; Li, Y.H.; Shi, W.Q.; Yang, L.J.; Wu, Q.H.; et al. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol. 2020, 228, 1027–1037. [Google Scholar] [CrossRef]
- Lu, P.; Guo, L.; Wang, Z.Z.; Li, B.B.; Li, J.; Li, Y.H.; Qiu, D.; Shi, W.Q.; Yang, L.J.; Wang, N.; et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat. Commun. 2020, 11, 680. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.Z.; Guo, G.H.; Wang, Y.; Hu, T.Z.; Wang, L.L.; Li, J.T.; Qiu, D.; Li, Y.H.; Wu, Q.H.; Lu, P.; et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol. 2020, 228, 1011–1026. [Google Scholar] [CrossRef]
- Hewitt, T.; Mueller, M.C.; Molnár, I.; Mascher, M.; Holušová, K.; Šimková, H.; Kunz, L.; Zhang, J.P.; Li, J.B.; Bhatt, D.; et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognises its corresponding AvrPm1a effector from Blumeria graminis. New Phytol. 2020, 229, 2812–2826. [Google Scholar] [CrossRef]
- Sánchez, M.J.; Widrig, V.; Herren, G.; Wicker, T.; Zbinden, H.; Gronnier, J.; Spörri, L.; Praz, C.R.; Heuberger, M.; Kolodziej, M.C.; et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat. Plants 2021, 7, 327–341. [Google Scholar] [CrossRef]
- Guo, J.; Liu, C.; Zhai, S.N.; Li, H.S.; Liu, A.F.; Cheng, D.G.; Han, R.; Liu, J.J.; Kong, L.R.; Zhao, Z.D.; et al. Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat. J. Agric. Sci. Technol. 2017, 18, 965–970. [Google Scholar]
- Pugsley, A.T.; Carter, M.V. The resistance of twelve varieties of Triticum vulgare to Erysiphe graminis tritici. Aust. J. Biol. Sci. 1953, 6, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Lutz, J.; Hsam, S.L.K.; Limpert, E.; Zeller, F.J. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 1995, 74, 152–156. [Google Scholar] [CrossRef]
- Miranda, L.M.; Murphy, J.P.; Marshall, D.; Leath, S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 1497–1504. [Google Scholar] [CrossRef]
- Miranda, L.M.; Murphy, J.P.; Marshall, D.; Leath, S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2007, 114, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Wiersma, A.T.; Pulman, J.A.; Brown, L.K.; Cowger, C.; Olson, E.L. Identification of Pm58 from Aegilops tauschii. Theor. Appl. Genet. 2017, 130, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Briggle, L.W. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici1. Crop. Sci. 1966, 6, 461–465. [Google Scholar] [CrossRef]
- Mcintosh, R.A.; Baker, E.P. Cytogenetical studies in wheat iv. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica 1970, 19, 71–77. [Google Scholar] [CrossRef]
- Lutz, J.; Hsarn, S.L.K.; Limpert, E.; Zeller, F.J. Powdery mildew resistance in Aegilops tauschii coss. and synthetic hexaploid wheats. Genet. Resour. Crop. Evol. 1994, 41, 151–158. [Google Scholar] [CrossRef]
- Bourras, S.; Mcnally, K.E.; Müller, M.C.; Wicker, T.; Keller, B. Avirulence genes in cereal powdery mildews: The gene-for-gene hypothesis 2.0. Front. Plant Sci. 2016, 7, 241. [Google Scholar] [CrossRef]
- Praz, C.R.; Bourras, S.; Zeng, F.S.; Sánchez, M.J.; Menardo, F.; Xue, M.F.; Yang, L.J.; Roffler, S.; Böni, R.; Herren, G.; et al. AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytol. 2017, 213, 1301–1314. [Google Scholar] [CrossRef] [Green Version]
- Manser, B.; Koller, T.; PRAZ, C.R.; Roulin, A.C.; Zbinden, H.; Arora, S.; Steuernagel, B.; Wulff, B.B.H.; Keller, B.; Sánchez, M.J. Identification ofspecificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2. Plant J. 2021, 106, 993–1007. [Google Scholar] [CrossRef]
- Wiersma, A.T.; Whetten, R.B.; Zhang, G.R.; Sehgal, S.K.; Kolb, F.L.; Poland, J.A.; Mason, R.E.; Carter, A.H.; Cowger, C.; Olson, E.L. Registration of two wheat germplasm lines fixed for Pm58. J. Plant Regist. 2018, 12, 270–273. [Google Scholar] [CrossRef]
- Xue, S.L.; Hu, S.S.; Chen, X.; Ma, Y.Y.; Lu, M.X.; Bai, S.L.; Wang, X.T.; Sun, T.P.; Wang, Y.X.; Wan, H.S.; et al. Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance. Theor. Appl. Genet. 2022, 135, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- Arraiano, L.S.; Worland, A.J.; Ellerbrook, C.; Brown, J.K.M. Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theor. Appl. Genet. 2001, 103, 758–764. [Google Scholar] [CrossRef]
- Maria, R.S.; Khlestkina, E.K.; Castillo, N.S.; Börner, A. Mapping quantitative resistance to septoria tritici blotch in spelt wheat. Eur. J. Plant Pathol. 2010, 128, 317–324. [Google Scholar]
- Tadesse, W.; Schmolke, M.; Hsam, S.L.K.; Mohler, V.; Wenzel, G.; Zeller, F.J. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor. Appl. Genet. 2007, 114, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Li, A.L.; Liu, D.C.; Yang, W.Y.; Kishii, M.; Mao, L. Synthetic hexaploid wheat: Yesterday, today, and tomorrow. Engineering 2018, 4, 552–558. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, L.Q.; Huang, L.; Ning, S.Z.; Yuan, Z.W.; Jiang, B.; Yan, Z.H.; Wu, B.H.; Zheng, Y.L.; Liu, D.C. Genetic improvement of synthesized hexaploid wheat in breeding. J. Plant Genet. Resour. 2022, 23, 40–48. (In Chinese) [Google Scholar]
- Mebrate, S.A.; Dehne, H.W.; Pillen, K.; Oerke, E.C. Postulation of seedling leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop. Sci. 2008, 48, 507–516. [Google Scholar] [CrossRef]
- Gebrewahid, T.W.; Yao, Z.J.; Yan, X.C.; Gao, P.; Li, Z.F. Identification of leaf rust resistance genes in Chinese common wheat cultivars. Plant Dis. 2017, 101, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Khakimova, A.G.; Gultyaeva, E.I.; Mitrofanova, O.P. Resistance of synthetic hexaploid wheat to the leaf rust pathogen. Proc. Appl. Bot. Genet. Breed. 2018, 179, 125–136. [Google Scholar] [CrossRef]
- Zhang, P.P.; Gebrewahid, W.T.; Zhou, Y.; Li, Q.L.; Li, Z.F.; Liu, D.Q. Seedling and adult plant resistance to leaf rust in 46 chinese bread wheat landraces and 39 wheat lines with known Lr genes. J. Integr. Agric. 2019, 18, 1014–1023. [Google Scholar] [CrossRef]
- Huang, J.; Jin, S.L.; Cao, S.Q.; Jia, Q.Z.; Luo, H.S.; Zhang, B.; Sun, Z.Y.; Wang, X.M. Postulation of leaf rust resistance genes of 36 wheat cultivars developed in Gansu and their resistance evaluation at adult plant stage. Plant Prot. 2020, 46, 171–177, 188. (In Chinese) [Google Scholar]
- Atia, M.A.M.; El-Khateeb, E.A.; Abd, E.-M.R.M.; Abou-Zeid, M.A.; Salah, A.; Abdel-Hamid, A.M.E. Mining of leaf rust resistance genes content in Egyptian bread wheat collection. Plants 2021, 10, 1378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.N.; Ren, X.D.; Hu, Y.Y.; Zhang, T.; Zhang, N.; Yang, W.X.; Liu, D.Q. Evaluation of wheat leaf rust resistance of 23 Chinese wheat mini-core collections. Sci. Agric. Sin. 2013, 46, 441–450. (In Chinese) [Google Scholar]
- Hanaa, A.; Eman, E.A.; Walid, E.O. Molecular markers and postulation study of leaf rust resistance genes in various Egyptian wheat cultivars. Biotechnol. J. Int. 2017, 20, 1–13. [Google Scholar]
- Bahar, A.; Iqbal, M.; Aqib, I.; Mian, A.A.; Iram, M.; Muhammad, H. Molecular charactarization of wheat advanced lines for leaf rust resistant genes using SSR markers. Microb. Pathog. 2018, 123, 348–352. [Google Scholar]
- Chen, W.Q.; Qin, Q.M. Studies on utilization of worldwide known genes for leaf rust resistance of wheat in China. Sci. Agric. Sin. 2002, 7, 794–801. (In Chinese) [Google Scholar]
- Wang, W.X.; Zhang, M.Y.; Dong, R.; Zhang, P.P.; Zhang, J.Y.; Li, Z.F.; Liu, D.Q. Identification of leaf rust resistance of 71 wheat cultivars from Henan Province. J. Triticeae Crops 2022, 42, 279–288. (In Chinese) [Google Scholar]
- Cox, T.S.; Sears, R.G.; Gill, B.S.; Jellen, E.N. Registration of KS91WGRC11, KS92WGRC15, and KS92WGRC23 leaf rust-resistant hard red winter wheat germplasms. Crop. Sci. 1994, 34, 546–547. [Google Scholar] [CrossRef]
- Han, Y.; He, Z.h.; Xia, X.C.; Li, X.; Li, Z.F.; Liu, D.Q. Seedling and slow rusting resistances to leaf rust in CIMMYT wheat lines. Acta Agron. Sin. 2011, 37, 1125–1133. (In Chinese) [Google Scholar]
- Liu, T.; Wu, L.J.; Gan, X.L.; Zhang, B.; Liu, B.L.; Chen, W.J.; Zhang, L.Q.; Liu, D.C.; Zhang, H.G. Molecular identification of leaf rust resistance genes in bread wheat cultivars released in Qinghai Province. Acta Agric. Boreali-Occident. Sin. 2018, 27, 1112–1118. (In Chinese) [Google Scholar]
- Ma, Y.; Shao, L.G.; Wang, Y.; Li, C.H.; Che, J.Y.; Gao, F.M.; Zhang, Q.C.; Liu, N.T.; Zhou, D.Y.; Wang, Z.K. Molecular detection of the stem rust resistant gene Sr33 in spring wheat cultivars. J. Triticeae Crops 2013, 33, 34–38. (In Chinese) [Google Scholar]
- Kokhmetova, A.M.; Atishova, M.N. Identification of sources of resistance to wheat stem using molecular markers. Russ. J. Genet. Appl. Res. 2012, 2, 486–493. [Google Scholar] [CrossRef]
- Švec, M.; Szunics, L.; Slováková, T.; Miklovičová, M.; Tisová, V.; Hauptvogel, P. Identification of genes for resistanceto wheat powdery mildew in Hungarian, Polish and Slovak wheat cultivars. Plant Prot. Sci. 2002, 54, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Agnieszka, T.; Roksana, S.; Dorota, W.; Michał, K.; Jerzy, N.; Przemysław, Ł.K.; Mateusz, P. Identification of powdery mildew Blumeria graminis f. sp. tritici resistance genes in selected wheat varieties and development of Multiplex PCR. Open Chem. 2019, 17, 157–165. [Google Scholar]
- Jin, Y.L.; Gu, T.; Liu, H.; An, D.G. Research progress on the wheat powdery mildew resistance gene Pm2. Chin. J. Eco-Agric. 2022, 30, 779–786. (In Chinese) [Google Scholar]
- Huang, J.; ZHAO, Z.H.; Song, F.J.; Wang, X.M.; Xu, H.X.; Huang, Y.; An, D.G.; Li, H.J. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol. Breed. 2012, 30, 1737–1745. [Google Scholar] [CrossRef]
- Li, J.P.; Jin, S.L.; Cao, S.Q.; Chen, Y.R.; Jin, M.G. Effectivity and evaluation of the resistant genes to wheat powdery mildew in Gansu Province. J. Plant Prot. 2003, 1, 30–34. (In Chinese) [Google Scholar]
- Shi, W.Q.; Gong, S.J.; Zeng, F.S.; Xiang, L.B.; Yang, L.J. Evaluation of resistance to powdery mildew in 61 Chinese wheat cultivars and postulation of their resistance genes. J. Plant Prot. 2019, 46, 1086–1099. (In Chinese) [Google Scholar]
- Li, M.J.; Duan, X.Y.; Zhou, Y.L.; Yu, Y.X.; Bi, Y.Q.; Yang, J.H.; Zhang, Q. Postulation of seedlings resistance genes to powdery mildew in wheat commercial cultivars from Yunnan Province. J. Triticeae Crops 2012, 32, 551–556. (In Chinese) [Google Scholar]
- Wang, X.; Song, P.B.; Wang, X.X.; Yang, M.Y.; Zhou, F.; Lv, D.Y.; Sun, D.J. Identification and evaluation of resistance to stripe rust and powdery mildew of 305 domestic and foreign wheat germplasms. J. Triticeae Crops 2021, 41, 689–698. (In Chinese) [Google Scholar]
- El-Shamy, M.M.; Emara, H.M.; Mohamed, M.E. Virulence analysis of wheat powdery mildew (Blumeria graminis f. sp. tritici) and effective genes in Middle Delta, Egypt. Plant Dis. 2016, 100, 1927–1930. [Google Scholar] [PubMed]
- Liu, W.; Wang, Z.H.; Cao, X.R.; Xu, Z.; Shi, Q.Q.; Han, L.P.; Fan, J.R.; Wang, B.T.; Zhou, Y.L. Monitoring and dynamic change of virulence of Blumeria graminis f. sp. tritici population in Shaanxi Province. Plant Prot. 2018, 44, 154–161. (In Chinese) [Google Scholar]
- Yan, R.; Geng, M.M.; Li, X.J.; An, H.J.; Wen, S.M.; Liu, G.R.; Wang, R.H. Phenotyping and marker-assisted gene identification of powdery mildew resistance in wheat commercial varieties and germplasm resources from Hebei Province. J. Plant Genet. Resour. 2020, 21, 683–705. (In Chinese) [Google Scholar]
- Lu, J.L.; Fan, Y.H.; Ma, M.S.; Tian, X.J. Progress on discovery and application of wheat septoria tritici blotch resistance genes. J. Shanxi Agric. Sci. 2021, 49, 1393–1399. (In Chinese) [Google Scholar]
- Liang, S.; Li, X.F. Research progress of wheat leaf blight diseas. Shandong Agric. Sci. 2022, 54, 139–145. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, H.; Zhang, Z.; Yang, Y.; Wei, C.; Xu, L.; Zhang, G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. Plants 2023, 12, 880. https://doi.org/10.3390/plants12040880
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. Plants. 2023; 12(4):880. https://doi.org/10.3390/plants12040880
Chicago/Turabian StyleKou, Hongyun, Zhenbo Zhang, Yu Yang, Changfeng Wei, Lili Xu, and Guangqiang Zhang. 2023. "Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat" Plants 12, no. 4: 880. https://doi.org/10.3390/plants12040880
APA StyleKou, H., Zhang, Z., Yang, Y., Wei, C., Xu, L., & Zhang, G. (2023). Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. Plants, 12(4), 880. https://doi.org/10.3390/plants12040880