Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications
Abstract
:1. Introduction
2. Results
2.1. Characterization of Nepeta racemosa Lam. Essential Oil
2.2. UV-VIS Spectroscopy Analysis
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Micro-Characterization of the Scaffolds
2.5. Antibacterial Activity of Nepeta racemosa Lam. Essential Oil
2.6. Antibacterial Activity of PVA–Pullulan Fims and Gels Loaded with Nepeta racemosa Lam. Essential Oil
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Extraction
4.2. GC-MS Analysis
4.3. Preparation of the Films and Gels
4.4. Characterization of the Films and Gels
4.5. Assessment of the Antibacterial Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization–Antimicrobial Resistance (Fact Sheet). Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10 January 2023).
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; Lopez-Malo, A.; Avila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. food. Sci. Nutr. 2019, 60, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R.Br. ex Benth from Djbouti, In-Vitro Cytotoxicity against Cancer Cell Lines and Antibacterial Activities. Appl. Sci. 2022, 12, 8699. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Falah, F. Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action throughout scanning electron microscopy. Microb. Pathog. 2019, 136, 103716. [Google Scholar] [CrossRef]
- Camele, I.; Elshafie, H.S.; Caputo, L.; De Feo, V. Anti-quorum sensing and antimicrobial effect of Mediterranean plant essential oils against phytopathogenic bacteria. Front. Microbiol. 2019, 10, 2619. [Google Scholar] [CrossRef] [Green Version]
- Oliveura de Veras, B.; Melo de Oliveira, M.B.; da Silva Oliveira, F.G.; dos Santos, Y.Q.; Santurino de Oliveira, J.R.; de Menezes Lima, V.L.; da Silva Almeida, J.R.G.; do Amaral Ferraz Navarro, D.M.; Ribeiro de Oliveira Farias de Aguiar, J.C.; dos Santos Aguiar, J.; et al. Chemical composition and evaluation of the antinociceptive, antioxidant and antimicrobial effects of essential oil from Hymenaea cangaceira (Pinto, Mansano & Azevedo) native to Brazil: A natural medicine. J. Ethnopharma. 2020, 247, 112265. [Google Scholar] [CrossRef]
- Ghabraie, M.; Vu, K.D.; Tata, L.; Salmieri, S.; Lacroix, M. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on the sensorial quality of ground meat. LWR Food Sci. Technol. 2016, 66, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Kiarsi, Z.; Hojjati, M.; Behbahani, B.A.; Noshad, M. In vitro antimicrobial effects of Myristica fragans essential oil on foodborne pathogens and its influence on beef quality during refrigerated storage. J. Food Safe. 2020, 40, e12782. [Google Scholar] [CrossRef]
- Ozogul, Y.; Ozogul, F.; Kulawik, P. The antimicrobial effect of grapefruit peel essential oil and its nanoemulsion on fish spoilage bacteria and food-borne pathogens. LWT Food Sci. Technol. 2021, 136, 110362. [Google Scholar] [CrossRef]
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics 2021, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, P.; Rimbu, C.M.; Horhogea, C.E.; Lobiuc, A.; Neagu, A.N.; Dunca, S.I.; Motrescu, I.; Dimitriu, G.; Aprotosoaie, A.C.; Miron, A. Prenylated phenolics as promising candidates for combination antibacterial therapy: Morusin and kuwanon G. Saudi Pharm. J. 2020, 28, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- European Comission: Horizontal Topics—Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 10 January 2023).
- Lungoci, C.; Ghitau, C.S.; Robu, T. The quantification of some elements of production in the Nepeta racemosa Lam species. J. Hortic. For. Biotechnol. 2021, 25, 104–108. [Google Scholar]
- Lungoci, C.; Jitareanu, C.D.; Ghitau, C.S.; Robu, T. Influence of foliar fertilisers on biochemical and physiological properties in Nepeta racemosa Lam. J. Appl. Life Sci. Environ. 2021, 15, 310–321. [Google Scholar] [CrossRef]
- Lungoci, C.; Motrescu, I.; Filipov, F.; Jitareanu, C.D.; Teliban, G.-C.; Ghitau, C.S.; Puiu, I.; Robu, T. The Impact of Salinity Stress on Antioxidant Response and Bioactive Compounds of Nepeta cataria L. Agronomy 2022, 12, 562. [Google Scholar] [CrossRef]
- Lungoci, C.; Motrescu, I.; Filipov, F.; Rimbu, C.M.; Jitareanu, C.D.; Ghitau, C.S.; Puiu, I.; Robu, T. Salinity Stress Influences the Main Biochemical Parameters of Nepeta racemosa Lam. Plants 2023, 12, 583. [Google Scholar] [CrossRef]
- Rivera Calo, J.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Rao, J.; Chen, B.; McClements, D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.H.; Lorenzo, J.M.; Khaneghah, A.M.; Barba, F.J. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferandez-Pan, I.; Royo, M.; Mate, J.I. Antimicrobial activity of whey proteins isolate edible films with essential oils against food spoiler and foodborne pathogens. J. Food Sci. 2012, 77, M383–M390. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; de Aguiar Andrade, E.H.; de Oliveira, M.S. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Garner, C.M. A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. J. Food Protect. 2022, 85, 1300–1319. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.H.; Trigueiro, P.; Souza, J.S.N.; de Carvalho, M.S.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Montmorillonite with essential oils as antimicrobial agents, packaging, repellents, and insecticides: An overview. Colloids Surf. B 2022, 109, 112186. [Google Scholar] [CrossRef]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Jadhav, S.R. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control 2022, 136, 108883. [Google Scholar] [CrossRef]
- Kong, I.; Lamudji, I.G.; Angkow, K.J.; Insani, R.M.S.; Mas, M.A.; Pui, L.P. Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings 2023, 13, 245. [Google Scholar] [CrossRef]
- Kowalonek, J.; Stachowiak, N.; Bolczak, K.; Richert, A. Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil. Polymers 2023, 15, 260. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Rakkapao, N.; Lekjing, S. Physicochemical and Antimicrobial Characterization of Chitosan and Native Glutinous Rice Starch-Based Composite Edible Films: Influence of Different Essential Oils Incorporation. Membranes 2023, 13, 161. [Google Scholar] [CrossRef]
- Serrano-Aroca, A.; Cano-Vincent, A.; Sabater i Serra, R.; El-Tanani, M.; Aljibali, A.A.A.; Tambuwala, M.M.; Mishra, Y.K. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 2022, 16, 100412. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, A.R.; Arthyram, R.S.; Kim, C.S. Scaffolds with antibacterial properties. In Nanotechnology Applications for Tissue Engineering; Thomas, S., Grohens, Y., Ninan, N., Eds.; William Andrew: Norwich, NY, USA, 2015; pp. 103–123. [Google Scholar] [CrossRef]
- Olmos, D.; González-Benito, J. Polymeric Materials with Antibacterial Activity: A Review. Polymers 2021, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Nastyshyn, S.; Stetsyshyn, Y.; Raczkowska, J.; Nastishin, Y.; Melnyk, Y.; Panchenko, Y.; Budkowski, A. Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers 2022, 14, 4245. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Feng, W.; Sun, H.; Zong, L.; Li, X.; Zhao, L.; Yem, F.; Fu, Y. Fabrication and characterization of antifungal hydroxypropul-β-cyclodextrin/pyrimethanil inclusion compound nanofibers based on electrospinning. J. Agric. Food Chem. 2022, 70, 7911–7920. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
- Agrillo, B.; Balestrieri, M.; Gogliettino, M.; Palmieri, G.; Moretta, R.; Proroga, Y.T.R.; Rea, I.; Cornacchia, A.; Capuano, F.; Smaldone, G.; et al. Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for “Active” Packaging. Int. J. Mol. Sci. 2019, 20, 601. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.-S.; Yang, C.-H.; Huang, S.-L.; Chen, C.-Y.; Lu, Y.-Y.; Lin, Y.-S. Recent Advances in Antimicrobial Polymers: A Mini-Review. Int. J. Mol. Sci. 2016, 17, 1578. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial Polymers in the Nano-World. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Chong, S.F.; Smith, A.A.A.; Zelikin, A.N. Microstructured, functional PVA hydrogels through bioconjucation with oligopeptides under physiological conditions. Small 2012, 9, 942–950. [Google Scholar] [CrossRef]
- Zulkiflee, I.; Fauzi, M.B. Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review. Biomedicines 2021, 9, 979. [Google Scholar] [CrossRef] [PubMed]
- Kamal, Y.; San, T.L.; Zulhemi, I.; Abu JHannifa, A. Solution casting of polyvinyl alcohol-functionalized graphene nanocomposites. Mater. Today Proc. 2019, 17, 640–645. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym Test. 2022, 108, 107516. [Google Scholar] [CrossRef]
- Das, S.; Subuddhi, U. Controlled delivery of ibrupofen from poly(vinyl alcohol)-poly)ethylene glycol) interpenetrating polymeric network hydrogels. J. Pharm. Anal. 2019, 9, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Budhwani, D.; Gurjar, P.; Telange, D.; Lambole, V. Pullulan based derivatives: Synthesis, enhanced physicochemical properties, and applications. Drug Deliv. 2022, 29, 3328–3339. [Google Scholar] [CrossRef]
- Shitole, A.A.; Raut, P.W.; Khandwekar, A.; Sharma, N.; Baruah, M. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J. Polym. Res. 2019, 26, 201. [Google Scholar] [CrossRef]
- Samoila, I.; Dinescu, S.; Pircalabioru, G.G.; Marutescu, L.; Fundueanu, G.; Aflori, M.; Constantin, M. Pullulan/Poly(Vinyl Alcohol) Composite Hydrogels for Adipose Tissue Engineering. Materials 2019, 12, 3220. [Google Scholar] [CrossRef] [Green Version]
- Tabasum, S.; Noreen, A.; Maqsood, M.F.; Umar, H.; Akram, N.; Nazli, Z.; Chatha, S.A.S.; Zia, K.M. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. Int. J. Biol. Molec. 2018, 120A, 603–632. [Google Scholar] [CrossRef]
- Kong, I.; Degraeve, P.; Pui, L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods 2022, 11, 555. [Google Scholar] [CrossRef]
- Luís, Â.; Ramos, A.; Domingues, F. Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics 2020, 9, 681. [Google Scholar] [CrossRef]
- Pillai, S.K.; Maubane, L.; Sinha Ray, S.; Khumalo, V.; Bill, M.; Sivakumar, D. Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging. J. Appl. Polym. Sci. 2016, 133, 43045. [Google Scholar] [CrossRef]
- Ordon, M.; Zdanowicz, M.; Nawrotek, P.; Stachurska, X.; Mizielińska, M. Polyethylene Films Containing Plant Extracts in the Polymer Matrix as Antibacterial and Antiviral Materials. Int. J. Mol. Sci. 2021, 22, 13438. [Google Scholar] [CrossRef] [PubMed]
- Tummala, G.K.; Felde, N.; Gustafsson, S.; Bubholz, A.; Schröder, S.; Mihranyan, A. Light scattering in poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use. Opt. Mater. Express 2017, 7, 2824–2837. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramirez-Alarcon, K.; Stojanovic-Radic, Z.Z.; Antolak, H.; Kregiel, D.; Mileski, K.S.; Sharif-Rad, M.; et al. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018, 80, 104–122. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Epifano, F.; Fiorito, S.; Álvarez-Suarez, J.M. Phytochemical Analysis and Biological Investigation of Nepeta juncea Benth. Different Extracts. Plants 2020, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Zazharskyi, V.V.; Davydenko, P.O.; Kulishenko, O.M.; Borovik, I.V.; Zazharska, N.M.; Brygadyrenko, V.V. Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosys. Divers. 2020, 28, 281–289. [Google Scholar] [CrossRef]
- Flemming, H.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Dabiri, M.; Sefidkon, F. Chemical composition of the essential oil of Nepeta racemosa Lam. from Iran. Flavour Fragr. J. 2003, 18, 157–158. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Ozek, T.; Akgul, A.; Tumen, G. Composition of the essential oil of Nepeta racemosa Lam. J. Essent. Oil Res. 1993, 5, 215–217. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Demirci, B.; Blythe, E.K.; Baser, K.H.C.; Khan, I.A. Chemical composition and biological activity of essential oils from four Nepeta species and hybrids against Aedes aegypti (L.). Rec. Nat. Prod. 2016, 10, 137–147. [Google Scholar]
- Zomorodian, K.; Saharkhiz, M.J.; Rahimi, M.J.; Shariatifard, S.; Pakshir, K.; Khashei, R. Chemical composition and antimicrobial activities of essential oil of nepeta cataria L. against common causes of oral infections. J. Dent. 2013, 10, 329–337. [Google Scholar]
- Fomisano, C.; Rigano, D.; Senatore, F. Chemical constituents and biological activities of Nepeta species. Chem. Biodivers. 2011, 8, 1783–1818. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Gomes, E.N.; Yuan, B.; Lyu, W.; Wu, Q.; Simon, J.E. Investigation of Volatile Iridoid Terpenes in Nepeta cataria L. (Catnip) Genotypes. Molecules 2022, 27, 7057. [Google Scholar] [CrossRef] [PubMed]
- Baranauskiene, R.; Bendziuviene, V.; Ragazinskiene, O.; Venskutonis, P.R. Essential oil composition of five Nepeta species cultivated in Lithuania and evaluation of their bioactivities, toxicity and antioxidant potential of hydrodistillation residues. Food Chem. Toxicol. 2019, 129, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.H.; Shah, A.J.; Zubair, A.; Khalid, S.; Kiani, J.; Ahmed, A.; Rasheed, M.; Ahmad, V.U. Chemical composition and mechanisms underlying the spasmolytic and bronchodilatory properties of the essential oil of Nepeta cataria L. J. Ethnopharmacol. 2009, 121, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Skaltsa, H.D.; Lazari, D.M.; Loukis, A.E.; Constantinidis, T. Essential oil analysis of Nepeta argolica Bory & Chaub. subsp. Argolica (Laminaceae) growing wild in Greece. Flavour Fragr. J. 2000, 15, 96–99. [Google Scholar] [CrossRef]
- Diao, W.R.; Hu, Q.P.; Feng, S.S.; Li, W.Q.; Xu, J.G. Chemical composition and antibacterial activity of the essential oil from green huajiao (Zanthoxyum schinifolium) against selected foodborne pathogens. J. Agric. Food Chem. 2013, 61, 6044–6049. [Google Scholar] [CrossRef]
- Balázs, V.L.; Filep, R.; Répás, F.; Kerekes, E.; Szabó, P.; Kocsis, B.; Böszörményi, A.; Krisch, J.; Horváth, G. Immortelle (Helichrysum italicum (Roth) G. Don) Essential Oil Showed Antibacterial and Biofilm Inhibitory Activity against Respiratory Tract Pathogens. Molecules 2022, 27, 5518. [Google Scholar] [CrossRef]
- Ashrafi, B.; Rashidipour, M.; Marzban, A.; Soroush, S.; Azadpour, M.; Delfani, S.; Ramak, P. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Cabohydr. Polym. 2019, 212, 142–149. [Google Scholar] [CrossRef]
- Mastrangelo, R.; Chelazzi, D.; Poggi, G.; Fratini, E.; Pensabene Buemi, L.; Petruzzellis, M.L.; Baglioni, P. Twin-chain polymer hydrogels based on poly(vinyl alcohol) as new advanced tool for the cleaning of modern and contemporary art. Proc. Nat. Acad. Sci. USA 2020, 117, 7011–7020. [Google Scholar] [CrossRef] [Green Version]
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef]
- Silva, V.; Monteiro, A.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Poeta, P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, A.; Nateghi, L.; Zand, N.; Oromiehie, A.; Garavand, F. Evaluation of Physical, Mechanical and Antibacterial Properties of PintoBean Starch-Polyvinyl Alcohol Biodegradable Films Reinforced with Cinnamon Essential Oil. Polymers 2021, 13, 2778. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Fattahi, E.; Cerruti, P.; Santagata, G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers 2022, 14, 2395. [Google Scholar] [CrossRef] [PubMed]
- Enache, A.A.; Serbezeanu, D.; Vlad-Bubulac, T.; Ipate, A.-M.; Suflet, D.M.; Drobotă, M.; Barbălată-Mândru, M.; Udrea, R.M.; Rîmbu, C.M. Tunable Properties via Composition Modulations of Poly(vinyl alcohol)/Xanthan Gum/Oxalic Acid Hydrogels. Materials 2022, 15, 2657. [Google Scholar] [CrossRef] [PubMed]
- Altaf, F.; Niazi, M.; Jahan, Z.; Ahmad, T.; Akram, M.; Safdar, A.; Butt, M.; Noor, T.; Sher, F. Synthesis and Characterization of PVA/Starch Hydrogel Membranes Incorporating Essential Oils Aimed to be Used in Wound Dressing Applications. J. Polym. Environ. 2021, 29, 156–174. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporatio: Carol Stream, IL, USA, 2007. [Google Scholar]
- Barbălată-Mândru, M.; Serbezeanu, D.; Butnaru, M.; Rîmbu, C.M.; Enache, A.A.; Aflori, M. Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria. Materials 2022, 15, 2493. [Google Scholar] [CrossRef]
- Vlad-Bubulac, T.; Hamciuc, C.; Rîmbu, C.M.; Aflori, M.; Butnaru, M.; Enache, A.A.; Serbezeanu, D. Fabrication of Poly(vinyl alcohol)/Chitosan Composite Films Strengthened with Titanium Dioxide and Polyphosphonate Additives for Packaging Applications. Gels 2022, 8, 474. [Google Scholar] [CrossRef]
Number | RT (min) | Indics Kovats | Compounds | Nepeta racemosa Lam. |
---|---|---|---|---|
1. | 5.85 | 930 | α-Pinene | 0.4 |
2. | 7.03 | 978 | β-Pinene | 0.9 |
3. | 7.19 | 985 | 3-Octanone | 0.3 |
4. | 7.39 | 993 | β-Myrcene | 0.2 |
5. | 8.74 | 1032 | Eucalyptol | 10.7 |
6. | 9.31 | 1048 | cis-β-Ocimene | 1.1 |
7. | 11.20 | 1101 | Linalol | 0.9 |
8. | 14.35 | 1180 | 4-Terpineol | 0.4 |
9. | 17.67 | 1258 | Linalyl acetate | 0.3 |
10. | 21.96 | 1359 | (4aS,7S,7aS)-trans,cis-Nepetalactone | 5.0 |
11. | 22.77 | 1378 | α-Copaene | 1.9 |
12. | 23.14 | 1387 | (4aS,7S,7aR)-cis,trans-Nepetalactone | 1.0 |
13. | 24.57 | 1422 | β-Caryophyllene | 3.7 |
14. | 25.92 | 1455 | α-Humulene | 0.5 |
15. | 27.03 | 1483 | Germacren D | 4.7 |
16. | 27.38 | 1491 | 3-Hydroxy-(4S,4aS,7S,7aS)- Dihydronepetalactone | 5.4 |
17. | 28.70 | 1525 | δ-Cadinene | 1.5 |
18. | 28.96 | 1532 | Nepetalic acid | 55.5 |
19. | 30.95 | 1583 | Spathulenol | 0.3 |
20. | Other compounds | 5.3 |
Bacterial Strains | Mean Diameters of Inhibition Zones (mm) | ||
---|---|---|---|
Gentamicin 10 µg/Φ5 mm | N. racemosa EO 10 µL/Φ5 mm | ||
Gram-positive | S. aureus ATCC 25293 | 20 ± 0.57 | 12.33 ± 0.71 |
MRSA ATCC 33591 | 13.66 ± 0.43 | 19 ± 0.75 | |
MRSA ATCC 43300 | 0 | 12.66 ± 0.45 | |
S. epidermidis ATCC12228 | 30 ± 0.50 | 20 ± 0.49 | |
Gram-negative | E.coli ATCC 25922 | 20 ± 0.57 | 11.33 ± 0.22 |
P. aeruginosa ATCC 9027 | 20 ± 0.50 | 28 ± 0.40 |
Sample Type | Staphylococcus aureus (Gram-Positive) | Escherichia coli (Gram-Negative) | Ps. aeruginosa (Gram-Negative) |
---|---|---|---|
disc Ø 5 mm | Ø mm | Ø mm | Ø mm |
PVA–pullulan-0 (control) | 5 ± 0.25 | 5 ± 0.43 | 5 ± 0.29 |
PVA–pullulan-1 (0.1 mL N. racem. EO) | 10 ± 0.51 | 8 ± 0.53 | 19 ± 0.75 |
PVA–pullulan-2 (0.05 mL N. racem. EO) | 5 ± 0.29 | 5 ± 0.59 | 9 ± 0.51 |
PVA–pullulan-0′ (control) | 5 ± 0.18 | 5 ± 0.50 | 5 ± 0.43 |
PVA–pullulan-1′ (0.1 mL N. racem. EO) | 7 ± 0.41 | 8 ± 0.33 | 10 ± 0.45 |
PVA–pullulan-2′ (0.05 mL N. racem. EO) | 9 ± 0.55 | 10 ± 0.25 | 17 ± 0.41 |
Sample Code | PVA (g) | Pullulan (g) | N. racemosa EO (mL) |
---|---|---|---|
PVA–pullulan-0 | 0.1777 | 0.0211 | - |
PVA–pullulan-1 | 0.1777 | 0.0211 | 0.1 |
PVA–pullulan-2 | 0.1777 | 0.0211 | 0.05 |
Samples Code | PVA (g) | Pullulan (g) | Oxalic Acid (g) | N. racemosa EO (mL) |
---|---|---|---|---|
PVA–pullulan-0′ | 0.1777 | 0.0211 | 0.1 | - |
PVA–pullulan-1′ | 0.1777 | 0.0211 | 0.1 | 0.1 |
PVA–pullulan-2′ | 0.1777 | 0.0211 | 0.1 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lungoci, C.; Rîmbu, C.M.; Motrescu, I.; Serbezeanu, D.; Horhogea, C.E.; Vlad-Bubulac, T.; Ghițău, C.S.; Puiu, I.; Neculai-Văleanu, A.-S.; Robu, T. Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications. Plants 2023, 12, 898. https://doi.org/10.3390/plants12040898
Lungoci C, Rîmbu CM, Motrescu I, Serbezeanu D, Horhogea CE, Vlad-Bubulac T, Ghițău CS, Puiu I, Neculai-Văleanu A-S, Robu T. Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications. Plants. 2023; 12(4):898. https://doi.org/10.3390/plants12040898
Chicago/Turabian StyleLungoci, Constantin, Cristina Mihaela Rîmbu, Iuliana Motrescu, Diana Serbezeanu, Cristina Elena Horhogea, Tăchiță Vlad-Bubulac, Carmen Simona Ghițău, Ioan Puiu, Andra-Sabina Neculai-Văleanu, and Teodor Robu. 2023. "Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications" Plants 12, no. 4: 898. https://doi.org/10.3390/plants12040898
APA StyleLungoci, C., Rîmbu, C. M., Motrescu, I., Serbezeanu, D., Horhogea, C. E., Vlad-Bubulac, T., Ghițău, C. S., Puiu, I., Neculai-Văleanu, A. -S., & Robu, T. (2023). Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications. Plants, 12(4), 898. https://doi.org/10.3390/plants12040898