Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa
Abstract
:1. Introduction
2. Results
2.1. Establishment of A. rugosa Hairy Root Cultures
2.2. Growth Patterns of A. rugosa Hairy Root Cultures
2.3. Rosmarinic Acid Production and Total Phenolic Contents Using Eight Different Sugar Sources
2.4. In Vitro Antibacterial Properties of A. rugosa Hairy Root Cultures
3. Discussion
4. Materials and Methods
4.1. Hairy Root Induction and Cultures
4.2. High-Performance Liquid Chromatography and Determination of Total Phenolic Content
4.3. PCR Analysis
4.4. Screening for Antibacterial Activity
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, M.J.; Sundan, S.; Lee, G.A.; Ko, H.C.; Chung, J.W.; Huh, Y.C.; Gwag, J.G.; Oh, S.J.; Kim, Y.G.; Cho, G.T. Genetic Diversity and Population Structure of Korean Mint Agastache rugosa (Fisch & Meyer) Kuntze (Lamiaceae) Using ISSR Markers. Korean J. Plant Resour. 2013, 26, 362–369. [Google Scholar]
- Kim, M.H.; Chung, W.T.; Kim, Y.K.; Lee, J.H.; Lee, H.Y.; Hwang, B.; Park, Y.S.; Hwang, S.J.; Kim, J.H. The effect of the oil of Agastache rugosa O. Kuntze and three of its components on human cancer cell lines. J. Essent. Oil Res. 2001, 13, 214–218. [Google Scholar] [CrossRef]
- Ohk, H.-C.; Song, J.-S.; Chae, Y.-A. Variability of the Volatile Composition of Agastache rugosa in South Korea. Korean J. Breed. 2002, 34, 100–104. [Google Scholar]
- Lee, S.Y.; Xu, H.; Kim, Y.K.; Park, S.U. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J. Microbiol. Biotechnol. 2008, 24, 969–972. [Google Scholar] [CrossRef]
- Li, H.Q.; Liu, Q.Z.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 2013, 18, 4170–4180. [Google Scholar] [CrossRef]
- Kim, J. Phytotoxic and antimicrobial activities and chemical analysis of leaf essential oil from Agastache rugosa. J. Plant Biol. 2008, 51, 276–283. [Google Scholar] [CrossRef]
- Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115. [Google Scholar] [CrossRef]
- Song, J.-H.; Kim, M.-J.; Kwon, H.-D.; Park, I.-H. Antimicrobial activity and components of extracts from Agastache rugosa during growth period. Prev. Nutr. Food Sci. 2001, 6, 10–15. [Google Scholar]
- Hong, J.-J.; Choi, J.-H.; Oh, S.-R.; Lee, H.-K.; Park, J.-H.; Lee, K.-Y.; Kim, J.-J.; Jeong, T.-S.; Oh, G.T. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett. 2001, 495, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Min, B.S.; Hattori, M.; Lee, H.K.; Kim, Y.H. Inhibitory constituents against HIV-1 protease from Agastache rugosa. Arch. Pharmacal Res. 1999, 22, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Kim, G.S.; Kim, Y.H.; Lee, W.S.; Lee, S.J.; Jin, J.S.; Abd El-Aty, A.; Shin, H.C.; Shim, J.H.; Shin, S.C. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 2016, 30, 225–231. [Google Scholar] [CrossRef]
- Alfieri, A.; Mann, G.E. Bioactive nutraceuticals and stroke: Activation of endogenous antioxidant pathways and molecular mechanisms underlying neurovascular protection. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; Elsevier: Amsterdam, The Netherlands, 2015; pp. 365–379. [Google Scholar]
- Coiai, S.; Campanella, B.; Paulert, R.; Cicogna, F.; Bramanti, E.; Lazzeri, A.; Pistelli, L.; Coltelli, M.-B. Rosmarinic acid and Ulvan from terrestrial and marine sources in anti-microbial bionanosystems and biomaterials. Appl. Sci. 2021, 11, 9249. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, W.-X.; Li, C.; Pan, X.-L.; Xie, X.-G.; Li, T.-H. DFT study on the antioxidant activity of rosmarinic acid. J. Mol. Struct. THEOCHEM 2005, 719, 177–183. [Google Scholar] [CrossRef]
- Petersen, M.; Simmonds, M.S. Rosmarinic acid. Phytochemistry 2003, 62, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Park, N.I.; Park, S.U. Effect of light and dark on the phenolic compound accumulation in Tartary buckwheat hairy roots overexpressing ZmLC. Int. J. Mol. Sci. 2021, 22, 4702. [Google Scholar] [CrossRef]
- Park, C.H.; Xu, H.; Yeo, H.J.; Park, Y.E.; Hwang, G.-S.; Park, N.I.; Park, S.U. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metab. Eng. 2021, 64, 64–73. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Sathasivam, R.; Kim, Y.B.; Kim, J.K.; Park, S.U. Transcriptomic Analysis, Cloning, Characterization, and Expression Analysis of Triterpene Biosynthetic Genes and Triterpene Accumulation in the Hairy Roots of Platycodon grandiflorum Exposed to Methyl Jasmonate. ACS Omega 2021, 6, 12820–12830. [Google Scholar] [CrossRef]
- Cuong, D.M.; Park, C.H.; Bong, S.J.; Kim, N.S.; Kim, J.K.; Park, S.U. Enhancement of glucosinolate production in watercress (Nasturtium officinale) hairy roots by overexpressing cabbage transcription factors. J. Agric. Food Chem. 2019, 67, 4860–4867. [Google Scholar] [CrossRef]
- Park, Y.-E.; Park, C.-H.; Yeo, H.-J.; Chung, Y.-S.; Park, S.-U. Resveratrol biosynthesis in hairy root cultures of tan and purple seed coat peanuts. Agronomy 2021, 11, 975. [Google Scholar] [CrossRef]
- Shameh, S.; Hosseini, B.; Palazon, J. Genetic engineering of tropane alkaloid biosynthesis of hyoscyamus reticulatus L. hairy roots by pmt gene overexpression and feeding with putrescine. Ind. Crops Prod. 2021, 170, 113716. [Google Scholar] [CrossRef]
- Shi, M.; Zhu, R.; Zhang, Y.; Zhang, S.; Liu, T.; Li, K.; Liu, S.; Wang, L.; Wang, Y.; Zhou, W. A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metab. Eng. 2022, 73, 182–191. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, Y.S.; Li, X.; Kim, H.H.; Arasu, M.V.; Al-Dhabi, N.A.; Lee, S.Y.; Park, S.U. Influence of different carbohydrates on flavonoid accumulation in hairy root cultures of Scutellaria baicalensis. Nat. Prod. Commun. 2016, 11, 1934578X1601100625. [Google Scholar] [CrossRef] [Green Version]
- Vinterhalter, B.; Krstić-Milošević, D.; Janković, T.; Pljevljakušić, D.; Ninković, S.; Smigocki, A.; Vinterhalter, D. Gentiana dinarica Beck. hairy root cultures and evaluation of factors affecting growth and xanthone production. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 121, 667–679. [Google Scholar] [CrossRef]
- Praveen, N.; Murthy, H. Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind. Crops Prod. 2012, 35, 241–243. [Google Scholar] [CrossRef]
- Kim, J.-S.; Oh, E.-J.; Lee, S.-Y. Influence of Different Strains of Agrobacterium rhizogenes on Hairy Root Induction and Rosmarinic Acid Production in Agastache rugosa Kuntze. Korean J. Plant Resour. 2010, 23, 14–18. [Google Scholar]
- Yancheva, S.; Georgieva, L.; Badjakov, I.; Dincheva, I.; Georgieva, M.; Georgiev, V.; Kondakova, V. Application of bioreactor technology in plant propagation and secondary metabolite production. J. Cent. Eur. Agric. 2019, 20, 321–340. [Google Scholar] [CrossRef]
- Lam, V.P.; Kim, S.J.; Park, J.S. Optimizing the electrical conductivity of a nutrient solution for plant growth and bioactive compounds of Agastache rugosa in a plant factory. Agronomy 2020, 10, 76. [Google Scholar] [CrossRef]
- Lam, V.P.; Kim, S.J.; Bok, G.J.; Lee, J.W.; Park, J.S. The effects of root temperature on growth, physiology, and accumulation of bioactive compounds of Agastache rugosa. Agriculture 2020, 10, 162. [Google Scholar] [CrossRef]
- Lam, V.P.; Lee, M.H.; Park, J.S. Optimization of indole-3-acetic acid concentration in a nutrient solution for increasing bioactive compound accumulation and production of Agastache rugosa in a plant factory. Agriculture 2020, 10, 343. [Google Scholar] [CrossRef]
- Thompson, M.R.; Thorpe, T.A. Metabolic and non-metabolic roles of carbohydrates. In Cell and Tissue Culture in Forestry; Springer: Berlin/Heidelberg, Germany, 1987; pp. 89–112. [Google Scholar]
- Ahmad, T.; Abbasi, N.A.; Hafiz, I.A.; Ali, A. Comparison of sucrose and sorbitol as main carbon energy sources in microprogation of peach rootstock GF-677. Pak. J. Bot. 2007, 39, 1269. [Google Scholar]
- Fuentes, S.R.; Calheiros, M.B.; Manetti-Filho, J.; Vieira, L.G. The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult. 2000, 60, 5–13. [Google Scholar] [CrossRef]
- Bhagyalakshmi, N.; Thimmaraju, R.; Narayan, M. Various hexoses and di-hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (Beta vulgaris). Plant Cell Tissue Organ Cult. 2004, 78, 183–195. [Google Scholar] [CrossRef]
- Verma, P.C.; Singh, H.; Negi, A.S.; Saxena, G.; Rahman, L.-u.; Banerjee, S. Yield enhancement strategies for the production of picroliv from hairy root culture of Picrorhiza kurroa Royle ex Benth. Plant Signal. Behav. 2015, 10, e1023976. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-H.; Wang, F.-Y.; You, H.-Q.; Wei, Y.-K.; Yang, Z.-Q.; Liang, Z.-S.; Yang, D.-F. Effects of different carbon sources on growth and active component contents in Salvia miltiorrhiza and S. castanea f. tomentosa hairy roots. China J. Chin. Mater. Med. 2020, 45, 2509–2514. [Google Scholar]
- Erbasan, F. Brain abscess caused by Micrococcus luteus in a patient with systemic lupus erythematosus: Case-based review. Rheumatol. Int. 2018, 38, 2323–2328. [Google Scholar] [CrossRef]
- Bhunia, A.K. Bacillus cereus and Bacillus anthracis. Foodborne Microb. Pathog. Mech. Pathog. 2008, 66, 135–148. [Google Scholar]
- Slobodníková, L.; Fialová, S.; Hupková, H.; Grančai, D. Rosmarinic acid interaction with planktonic and biofilm Staphylococcus aureus. Nat. Prod. Commun. 2013, 8, 1934578X1300801223. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Kuhnt, M.; Pröbstle, A.; Rimpler, H.; Bauer, R.; Heinrich, M. Biological and pharmacological activities and further constituents of Hyptis verticillata. Planta Med. 1995, 61, 227–232. [Google Scholar] [CrossRef]
- Zacchino, S.A.; Butassi, E.; Di Liberto, M.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017, 37, 27–48. [Google Scholar] [CrossRef]
- Park, C.H.; Park, H.W.; Yeo, H.J.; Jung, D.H.; Jeon, K.S.; Kim, T.J.; Kim, J.K.; Park, S.U. Combined transcriptome and metabolome analysis and evaluation of antioxidant and antibacterial activities in white, pink, and violet flowers of Angelica gigas. Ind. Crops Prod. 2022, 188, 115605. [Google Scholar] [CrossRef]
- Bučková, M.; Puškárová, A.; Kalászová, V.; Kisová, Z.; Pangallo, D. Essential oils against multidrug resistant gram-negative bacteria. Biologia 2018, 73, 803–808. [Google Scholar] [CrossRef]
- Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Yeo, H.J.; Park, C.; Chung, Y.S.; Park, S.U. The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy 2021, 11, 698. [Google Scholar] [CrossRef]
- Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991, 19, 1349. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Sathasivam, R.; Kim, T.J.; Park, B.B.; Kim, J.K.; Park, S.U. Metabolic profiling and secondary metabolite accumulation during fruit development of Cornus officinalis Sieb. et Zucc. Ind. Crops Prod. 2022, 189, 115779. [Google Scholar] [CrossRef]
Carbohydrates | Dry Weight (mg/30 mL) |
---|---|
Fructose | 0.402 ± 0.012 b 1 |
Mannitol | 0.196 ± 0.015 d |
Sorbitol | 0.189 ± 0.023 d |
Glucose | 0.437 ± 0.032 ab |
Maltose | 0.306 ± 0.021 c |
Galactose | 0.462 ± 0.028 a |
Mannose | 0.193 ± 0.016 d |
Sucrose | 0.460 ± 0.034 a |
Carbohydrates | Rosmarinic Acid (mg/g Dry Weight) |
---|---|
Fructose | 2.069 ± 0.081 d 1 |
Mannitol | 4.551 ± 0.529 c |
Sorbitol | 4.474 ± 0.396 c |
Glucose | 5.538 ± 1.234b c |
Maltose | 4.682 ± 1.144 c |
Galactose | 6.061 ± 0.359 b |
Mannose | 5.448 ± 0.810 bc |
Sucrose | 7.656 ± 0.407 a |
Carbohydrates | Total Phenolic Contents (mg/g GAE) |
---|---|
Fructose | 4.286 ± 0.404 e 1 |
Mannitol | 8.738 ± 0.168 c |
Sorbitol | 6.619 ± 0.539 d |
Glucose | 8.810 ± 0.471 c |
Maltose | 7.643 ± 1.717 cd |
Galactose | 10.095 ± 0.539 b |
Mannose | 8.238 ± 0.606 c |
Sucrose | 12.714 ± 0.202 a |
Group | Bacterial Strains | Zone of Inhibition (mm) | |
---|---|---|---|
Extracts from Hairy Roots Cultured with Sucrose | Extracts from Hairy Roots Cultured with Fructose | ||
Multidrug-resistant bacteria | P. aeruginosa (KBN-10-p01827) | – 1 | – |
P. aeruginosa (KBN-10-p01828) | – | – | |
P. aeruginosa (0225) | – | – | |
P. aeruginosa (0254) | – | – | |
P. aeruginosa (0826) | – | – | |
P. aeruginosa (1113) | – | – | |
P. aeruginosa (1378) | – | – | |
P. aeruginosa (1731) | – | – | |
Pathogens | P. aeruginosa (KCCM 11803) | – | – |
Escherichia coli (KCTC 1682) | – | – | |
Staphylococcus aureus (KCTC 3881) | – | – | |
Salmonella paratyphi C (KCCM 41577) | – | – | |
Shigella flexneri (KCTC 2517) | – | – | |
Chryseobacterium gleum (KCTC 2094) | – | – | |
Staphylococcus epidermidis (KCTC 3958) | – | – | |
Streptococcus mutans (KCTC 3065) | – | – | |
Proteus vulgaris (KCTC 2512) | – | – | |
Proteus mirabilis (KCTC 2510) | – | – | |
Enterococcus avium (ATCC 14025) | – | – | |
Vibrio parahaemolyticus (KCTC 2471) | – | – | |
Corynebacterium xerosis (KCTC 3435) | – | – | |
Klebsiella pneumoniae subsp. pneumonia (KCTC 2690) | – | – | |
Sphingomonas paucimobilis (KCTC 2834) | – | – | |
Micrococcus luteus (KCTC 3063) | 10.7 ± 0.52 **,2 | 6.1 ± 0.34 | |
Bacillus cereus (KCTC 3624) | 7.1 ± 0.21 * | 6.5 ± 0.14 | |
Pathogenic yeast | Candida albicans (ATCC 28367) | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, H.J.; Kwon, M.J.; Han, S.Y.; Jeong, J.C.; Kim, C.Y.; Park, S.U.; Park, C.H. Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa. Plants 2023, 12, 797. https://doi.org/10.3390/plants12040797
Yeo HJ, Kwon MJ, Han SY, Jeong JC, Kim CY, Park SU, Park CH. Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa. Plants. 2023; 12(4):797. https://doi.org/10.3390/plants12040797
Chicago/Turabian StyleYeo, Hyeon Ji, Min Jae Kwon, Sang Yeon Han, Jae Cheol Jeong, Cha Young Kim, Sang Un Park, and Chang Ha Park. 2023. "Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa" Plants 12, no. 4: 797. https://doi.org/10.3390/plants12040797
APA StyleYeo, H. J., Kwon, M. J., Han, S. Y., Jeong, J. C., Kim, C. Y., Park, S. U., & Park, C. H. (2023). Effects of Carbohydrates on Rosmarinic Acid Production and In Vitro Antimicrobial Activities in Hairy Root Cultures of Agastache rugosa. Plants, 12(4), 797. https://doi.org/10.3390/plants12040797