Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review
Abstract
:1. Introduction
2. Aspergillus Infections
3. Current Treatment for Aspergillosis
4. Anti-Aspergillus Activity of Plants
4.1. Crude Extracts
Plant | Family | Extraction Solvent | Phytochemical Constituents/Main Compounds Identified | Aspergillus Species | Antifungal Activity | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
MGI (%) | |||||||||||
Aristolochia indica | Aristolochiaceae | Methanol | Tannins, flavonoids, terpenoids, anthraquinone, phenolics | A. flavus | 79 | [78] | |||||
A. fumigatus | 75 | ||||||||||
Cuscuta pedicellata | Convolvulaceae | Methanol | Tannins, flavonoids, terpenoids, phlobatannins, anthraquinone, phenolics | A. flavus | 88 | ||||||
A. fumigatus | 90 | ||||||||||
Melilotus indicus | Fabaceae | Methanol | Tannins, flavonoids, terpenoids, anthraquinone, phenolics | A. flavus | 63 | ||||||
A. fumigatus | 80 | ||||||||||
Tribulus terrestris | Zygophyllaceae | Methanol | Flavonoids, terpenoids, phlobatannins, anthraquinone, phenolics | A. flavus | 83 (fruit), 79 (leaf) | ||||||
A. fumigatus | 87 (fruit), 85 (leaf) | ||||||||||
MIC (mg/mL) | |||||||||||
Colebrookia oppositifolia | Lamiaceae | Water | Terpenoids, saponins, tannins, sugars, phenolics, flavonoids, cardiac glycosides | A. flavus | 149 | [79] | |||||
ZOI at 100 μg/disc (mm) | |||||||||||
Rhus Punjabensis Stewart | Anacardiaceae | n-hexane | Phenolics, flavonoids | A. fumigatus | n.a. | [80] | |||||
A. niger | 7 (stem) | ||||||||||
A. flavus | n.a. | ||||||||||
Chloroform | Phenolics, flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | n.a. | ||||||||||
Acetone | Phenolics, flavonoids | A. fumigatus | 13 (leaf) | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | n.a. | ||||||||||
Ethyl acetate | Phenolics (gallic acid), flavonoids | A. fumigatus | 7.5 (leaf) | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 11 (stem) | ||||||||||
Ethanol | Phenolics (rutin), flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 9 (leaf) | ||||||||||
Methanol | Phenolics (gallic acid, rutin), flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 14 (leaf) | ||||||||||
Ethanol and chloroform | Phenolics (catechin, gallic acid, apigenin), flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 11.2 (leaf), 9.5 (stem) | ||||||||||
Methanol and chloroform | Phenolics (gallic acid, rutin, apigenin), flavonoids | A. fumigatus | 12 (leaf) | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | n.a. | ||||||||||
Acetone and ethyl acetate | Phenolics, flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 11.5 (leaf), 9 (stem) | ||||||||||
Ethanol and ethyl acetate | Phenolics, flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 10 (leaf) | ||||||||||
Methanol and ethyl acetate | Phenolics, flavonoids | A. fumigatus | n.a. | ||||||||
A. niger | n.a. | ||||||||||
A. flavus | 11 (leaf) | ||||||||||
GI at 7.5 mg/mL (%) | |||||||||||
Astragalus eremophilus | Fabaceae | Methanol (70%) | Phenolics, tannins, saponins, flavonoids | A. flavus | 63.1 | [81] | |||||
A. fumigatus | 61.3 | ||||||||||
A. niger | 57.1 | ||||||||||
Melilotus indicus (L.) | Fabaceae | Methanol (70%) | Phenolics, tannins, saponins, flavonoids | A. fumigatus | 70.1 | ||||||
A. flavus | 67.5 | ||||||||||
A. niger | 64 | ||||||||||
MIC (mg/mL) | |||||||||||
Bauhinia galpinii | Fabaceae | Water | Flavonoids, phenolics | A. parasiticus | 0.39 | [65] | |||||
A. ochraceous | 1.3 | ||||||||||
A. flavus | 1.56 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.1 | |||||||||
A. ochraceous | 0.2 | ||||||||||
A. flavus | 0.02 | ||||||||||
Carpobrotus eludis | Aizoaceae | Water | Flavonoids, phenolics | A. parasiticus | 0.65 | ||||||
A. ochraceous | 1.56 | ||||||||||
A. flavus | 6.25 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.01 | |||||||||
A. ochraceous | 0.1 | ||||||||||
A. flavus | 0.2 | ||||||||||
Harperphylum caffrum | Anacardiaceae | Water | Flavonoids, phenolics | A. parasiticus | 0.65 | ||||||
A. ochraceous | 1.3 | ||||||||||
A. flavus | 2.6 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.04 | |||||||||
A. ochraceous | 0.02 | ||||||||||
A. flavus | 2.6 | ||||||||||
Milletia grandis | Fabaceae | Water | Flavonoids, phenolics | A. parasiticus | 1.17 | ||||||
A. ochraceous | 1.3 | ||||||||||
A. flavus | 1.56 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.01 | |||||||||
A. ochraceous | 0.01 | ||||||||||
A. flavus | 0.1 | ||||||||||
Solanum aculeastrum | Solanaceae | Water | Flavonoids, phenolics | A. parasiticus | 0.2 | ||||||
A. ochraceous | 0.39 | ||||||||||
A. flavus | 0.39 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.2 | |||||||||
A. ochraceous | 0.2 | ||||||||||
A. flavus | 0.2 | ||||||||||
Solanum panduriforme | Solanaceae | Water | Flavonoids, phenolics | A. parasiticus | 0.39 | ||||||
A. ochraceous | 0.78 | ||||||||||
A. flavus | 0.78 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.02 | |||||||||
A. ochraceous | 0.02 | ||||||||||
A. flavus | 0.2 | ||||||||||
Ziziphus mucronata | Rhamnaceae | Water | Flavonoids, phenolics | A. parasiticus | 3.13 | ||||||
A. ochraceous | 1.3 | ||||||||||
A. flavus | 1.56 | ||||||||||
Methanol and dichloromethane | A. parasiticus | 0.2 | |||||||||
A. ochraceous | 0.1 | ||||||||||
A. flavus | 0.4 | ||||||||||
MIC (μg/mL) | ZOI (mm) | ||||||||||
Calendula tripterocarpa | Asteraceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 15.63 | 21.7 | [58] | ||||
Centarea sinaica | Asteraceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 15.63 | 22.8 | |||||
Centarea pseudosinaica | Asteraceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 1.95 | 28.3 | |||||
Koelpinia linearis | Asteraceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 62.5 | 17.3 | |||||
Plectranthus arabicus | Lamiaceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 3.9 | 27.3 | |||||
Plectranthus asirensis | Lamiaceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous, bases, protein and/or amino acids | A. fumigatus | 3.9 | 26.4 | |||||
Tripleurospermum auriculatum | Asteraceae | Ethanol (95%) | Sterols and/or triterpenes, carbohydrates and/or glycosides, flavonoids, tannins, anthraquinones, alkaloids and/or nitrogenous bases, protein and/or amino acids | A. fumigatus | 1.95 | 29.9 | |||||
MIC (μg/mL) | |||||||||||
Hypericum hircinum subsp. majus | Hypericaceae | Methanol | Phenolics (benzoates and cinnamates, ellagic acid, chlorogenic acid, neochlorogenic acid, flavonols, hyperoside, quercetin-3-glucoside, quercetin-3-glucuronide, quercetin-3-sulfate, flavan-3-ols, catechin, epicatechin, procyanidin B2) | A. glaucus | >500 | [82] | |||||
Ethanol (80%) | >500 | ||||||||||
Water (infusion) | 250 | ||||||||||
ZOI at 50 μg/disc (mm) | |||||||||||
Silybum marianum | Asteraceae | Ethanol | Tannins, glycosides, terpenoids, alkaloids, flavonoids | A. oryzae | 7.44 | [83] | |||||
Thymus daenensis | Lamiaceae | Ethanol | Tannins, glycosides, terpenoids, alkaloids, flavonoids | A. oryzae | 10.64 | ||||||
MIC (mg/mL) | MGI at MIC (%) | Total activity (mL/g) | |||||||||
Curtisia dentata | Cornaceae | Acetone (30%) | Vitamin E, γ-sitosterol, α-amyrin, β-amyrin, 24-methyl-9,19-cyclolanost-25-en-3-ol | A. flavus | 0.63 | 8.35 | 2010 | [60] | |||
A. ochraceous | 0.08 | 14.2 | 1583 | ||||||||
Markhamia obtusifolia | Bignoniaceae | Acetone (30%) | 4-((1E)-3-hydroxy-1-propenyl)-2-methoxyphenol (coniferol), neophytadiene, palmitic acid | A. flavus | 0.08 | 18.38 | 958 | ||||
A. ochraceous | 0.16 | 20.4 | 479 | ||||||||
GI at 150 μL (%) | |||||||||||
Adiantum incisum | Pteridaceae | WaterMethanoln-hexane | Alkaloids, cardiac glycosides, coumarins, flavonoids, glycosides, phenols, phlobatannins, saponins, steroids, tannins, terpenoids | A. niger | 50.73-78.3 | [84] | |||||
A. flavus | n.a. | ||||||||||
MIC (μg/mL) | |||||||||||
Aquilaria sinensis | Thymelaeaceae | Ethanol (95%) | Sesquiterpenes, 2-(2-phenylethyl) chromone derivatives | A. niger | 63-590 | [85] | |||||
MIC (mg/mL) | |||||||||||
Catharanthus roseus (L.) G. Don | Apocynaceae | Methanol | Saponins, phenolics (gallic acid, apigenin, kaempferol) | A. niger | >10 | [86] | |||||
ZOI (mm) | |||||||||||
Berberis aristate DC | Berberidaceae | Methanol | Carbohydrates, alkaloids, phenolics, glycosides, acidic compounds, proteins and amino acids, flavonoids, resins, sterols | A. terreus | 14.2 (3000 μg/mL) | [87] | |||||
12.9 (1500 μg/mL) | |||||||||||
11.7 (750 μg/mL) | |||||||||||
10.3 (300 μg/mL) | |||||||||||
MIC (μg/mL) | |||||||||||
Gentiana crassicaulis Duthie ex Burkill | Gentianaceae | Ethanol | Bisphosphocholines (irlbacholine, gentianalines A, B and C) | A. fumigatus | 9.99/12.5 | [88] | |||||
Chloroform | 44.3/100 | ||||||||||
MIC (μg/mL) | MFC (μg/mL) | IZD at 50 mg/mL (mm) | |||||||||
Lycium shawii Roem. & Schult. | Solanaceae | Water | Phenolics, flavonoids, alkaloids, tannins, glycosides, terpenoids, steroids | A. niger | 32 | 64 | 10.6 | [89] | |||
Methanol | 4 | 16 | 54 | ||||||||
Ethanol | 16 | 16 | 34.1 | ||||||||
Ethyl acetate | 16 | 32 | 39.5 | ||||||||
MIC (μg/mL) | |||||||||||
Moringa oleifera | Moringaceae | Ethanol (50%) | Alkaloids, tannins, flavonoids, steroids, saponins, polyphenols, glycosides, carbohydrates, proteins, amino acids | A. niger | 62.5 | [90,91] | |||||
A. flavus | 62.5 | ||||||||||
ZOI at 0.3 mL (mm) | |||||||||||
Trigonella foenum-graecum L. | Fabaceae | Purified water and ethanol (10%) | Saponins, steroidal saponins, flavonoids, phenols, proteins (aqueous and ethanolic extracts) carbohydrates, alkaloids (aqueous extract) | A. niger | 29 | [92] | |||||
Ethanol | 30 | ||||||||||
MIC (mg/mL) | MFC (mg/mL) | ||||||||||
Anabasis articulata | Amaranthaceae | Ethanol (95%) | Apigenin-7-O-glucoside (apigetrin), apigenin-7-O-glucoside (apigetrin), chlorogenic acid, hyperoside, quercetin | A. niger | 12.5 | 25 | [93] | ||||
Rumex vesicarius | Polygonaceae | Ethanol (95%) | Apigenin-7-O-glucoside (apigetrin), apigenin-7-O-glucoside (apigetrin), chlorogenic acid, hyperoside, quercetin | A. niger | 50 | 100 | |||||
MIC (mg/mL) | |||||||||||
Avicennia marina | Acanthaceae | Ethanol (40%) and sequential separation with petroleum ether, ethyl acetate, ethanol, chloroform and water | 1,2-benzenedicarboxylic acid, cis-cinnamic acid, hexadecanoic acid, 2,6,10,14,18,22-tetracosahexae, 25-ethyl-27-norcholesta-5,24(Z), 1-tetradecene, taraxasterol, hydroxymethylfurfural, 1-deoxy-D-altritol | A. fumigatus | 0.25 (ethanol (40%)) | [94] | |||||
n.a. (ethyl acetate, petroleum ether, chloroform, water) | |||||||||||
MIC (mg/mL) | MFC (mg/mL) | ||||||||||
Ilex paraguariensis | Aquifoliaceae | Water | Caffeoylglucose I, caffeoylglucose IV, 6-caffeoylglucose, 4-p-coumaroylquinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-ferruoylquinic acid, 4- ferruoylquinic acid, 5- ferruoylquinic acid, rutin, quercetin-glucoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, isorhamnetin 3-O-acetylglucoside | A. niger | 2.06 | >2.06 | [95] | ||||
Ilex aquifolium L. | Aquifoliaceae | Water | 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-ferruoylquinic acid, 4- ferruoylquinic acid, 5- ferruoylquinic acid, quercetin-pentoside-hexoside, quercetin-7-O-rutinoside, rutin, quercetin-glucoside, kaempferol-3-O-rutinoside | A. niger | 2.06 | >2.06 | |||||
Ilex aquifolium ‘Argentea Marginata’ | Aquifoliaceae | Water | 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 3-ferruoylquinic acid, 4- ferruoylquinic acid, 5- ferruoylquinic acid, quercetin-pentoside-hexoside, quercetin-7-O-rutinoside, rutin, quercetin-glucoside, kaempferol-3-O-rutinoside | A. niger | 2.06 | >2.06 | |||||
Ilex × meserveae ‘Blue Angel’ | Aquifoliaceae | Water | Neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 4,5-dicaffeoylquinic acid, 4- ferruoylquinic acid, 5- ferruoylquinic acid, quercetin-di-glucoside, quercetin-deoxyhexoside-hexoside, flavonoid-derivate, kaempferol-rutinoside-hexoside, isorhamnetin-3-O-gentiobioside, isorhamnetin-rutinoside-glucoside, isorhamnetin derivate, myricetin-hexoside, quercetin-pentoside-hexoside, quercetin-7-O-rutinoside, rutin, quercetin-glucoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, isorhamnetin-3-O-glucoside, isorhamnetin 3-O-acetylglucoside | A. niger | 2.06 | >2.06 | |||||
GI at 20 mg/mL (%) | |||||||||||
Otostegia limbata (Benth.) Boiss. | Lamiaceae | Methanol | Anthocyanin, flavonoids, phenols, isoflavones | A. terreus | 68 | [96] | |||||
ZOI at 100 μL (mm) | AI (%) | ||||||||||
Withania coagulans | Solanaceae | Methanol and chloroform | Withaferin, withanolide | A. niger | 25 | 75 | [97] | ||||
MIC (μg/mL) | |||||||||||
Zygophyllum coccineum L. | Zygophyllaceae | Aqueous ethanol (70%), fractioned in chloroform, ethyl acetate and n-butanol | Isorhamnetin-3-O-glucoside, zygophyloside-G zygophyloside-F, | A. fumigatus | 15.63 | [74] | |||||
1.95 | |||||||||||
3.9 | |||||||||||
31.25 | |||||||||||
ZOI at 4 mg/disc (mm) | AI | ||||||||||
Acacia raddiana Willd | Leguminosae | Ethanol | Octacosanol, monacosanol, β-sitosterol octacosanoate, β-sitosterol acetate, α-amyrin, β-sitosterol, betulin friedelin, D-pinitol | A. niger | n.a. | n.a. | [70] | ||||
A. flavus | n.a. | n.a. | |||||||||
Petroleum ether | Octacosanol, monacosanol, β-sitosterol octacosanoate, β-sitosterol acetate, α-amyrin, β-sitosterol, betulin friedelin, D-pinitol | A. niger | 8 | 0.3 | |||||||
A. flavus | 8.68 | 0.32 | |||||||||
Benzene | Octacosanol, monacosanol, β-sitosterol octacosanoate, β-sitosterol acetate, α-amyrin, β-sitosterol, betulin friedelin, D-pinitol | A. niger | 9.2 | 0.33 | |||||||
A. flavus | 9.25 | 0.34 | |||||||||
Ethyl acetate | Octacosanol, monacosanol, β-sitosterol octacosanoate, β-sitosterol acetate, α-amyrin, β-sitosterol, betulin friedelin, D-pinitol | A. niger | 8.74 | 0.32 | |||||||
A. flavus | 10 | 0.36 | |||||||||
MIC (mg/mL) | |||||||||||
Alchornea laxiflora | Euphorbiaceae | Acetone | Phenolics, flavonoids | A. fumigatus | 1.25 | [66] | |||||
A. flavus | 0.46 | ||||||||||
Methanol | A. fumigatus | 1.25 | |||||||||
A. flavus | >2.50 | ||||||||||
Ethanol | A. fumigatus | 1.56 | |||||||||
A. flavus | 2.5 | ||||||||||
Cold water | A. fumigatus | 0.31 | |||||||||
A. flavus | >2.50 | ||||||||||
Hot water | A. fumigatus | 1.25 | |||||||||
A. flavus | >2.50 | ||||||||||
Ficus exasperata | Moraceae | Acetone | Phenolics, flavonoids | A. fumigatus | 0.46 | ||||||
A. flavus | 0.23 | ||||||||||
Methanol | A. fumigatus | 0.93 | |||||||||
A. flavus | 2.5 | ||||||||||
Ethanol | A. fumigatus | 1.25 | |||||||||
A. flavus | 0.51 | ||||||||||
Cold water | A. fumigatus | 0.62 | |||||||||
A. flavus | 0.15 | ||||||||||
Hot water | A. fumigatus | 0.62 | |||||||||
A. flavus | 0.38 | ||||||||||
Morinda lucida | Rubiaceae | Acetone | Phenolics, flavonoids | A. fumigatus | 1.56 | ||||||
A. flavus | 0.15 | ||||||||||
Methanol | A. fumigatus | 1.25 | |||||||||
A. flavus | 2.5 | ||||||||||
Ethanol | A. fumigatus | 1.25 | |||||||||
A. flavus | 2.5 | ||||||||||
Cold water | A. fumigatus | 0.15 | |||||||||
A. flavus | 0.03 | ||||||||||
Hot water | A. fumigatus | 2.5 | |||||||||
A. flavus | 0.83 | ||||||||||
Jatropha gossypiifolia | Euphorbiaceae | Acetone | Phenolics, flavonoids | A. fumigatus | 0.31 | ||||||
A. flavus | 0.62 | ||||||||||
Methanol | A. fumigatus | 0.62 | |||||||||
A. flavus | 0.83 | ||||||||||
Ethanol | A. fumigatus | 0.62 | |||||||||
A. flavus | 0.62 | ||||||||||
Cold water | A. fumigatus | 0.31 | |||||||||
A. flavus | 0.15 | ||||||||||
Hot water | A. fumigatus | >2.50 | |||||||||
A. flavus | 0.51 | ||||||||||
Ocimum gratissimum | Lamiaceae | Acetone | Phenolics, flavonoids | A. fumigatus | 2.5 | ||||||
A. flavus | 0.03 | ||||||||||
Methanol | A. fumigatus | 1.25 | |||||||||
A. flavus | 1.66 | ||||||||||
Ethanol | A. fumigatus | 2.5 | |||||||||
A. flavus | 1.66 | ||||||||||
Cold water | A. fumigatus | 0.62 | |||||||||
A. flavus | 0.31 | ||||||||||
Hot water | A. fumigatus | >2.50 | |||||||||
A. flavus | >2.50 | ||||||||||
Acalypha wilkesiana | Euphorbiaceae | Acetone | Phenolics, flavonoids | A. fumigatus | 0.07 | ||||||
A. flavus | 0.62 | ||||||||||
Methanol | A. fumigatus | 2.5 | |||||||||
A. flavus | >2.50 | ||||||||||
Ethanol | A. fumigatus | 0.15 | |||||||||
A. flavus | 0.15 | ||||||||||
Cold water | A. fumigatus | 2.5 | |||||||||
A. flavus | >2.50 | ||||||||||
Hot water | A. fumigatus | >2.50 | |||||||||
A. flavus | 0.46 | ||||||||||
MIC (μg/mL) | ZOI (mm) | ||||||||||
Zea mays L. | Poaceae | n-Hexane | Phenolics, flavonoids, alkaloids, masonic acid, saponins | A. niger | n.a. | n.a. | |||||
Chloroform | n.a. | n.a. | |||||||||
Ethyl acetate | 365 | 10.22 | |||||||||
n-Butanol | 260 | 13.45 | |||||||||
Methanol | 200 | 15.25 |
4.2. Essential Oils
Essential Oil | Extraction Method | Phytochemical Constituents/ Main Compounds Identified | Aspergillus Species | Antifungal Activity | Reference | |
---|---|---|---|---|---|---|
ZOI at 75% (mm) | ||||||
Artemisia abrotanum | Clevenger hydro-distillation | Terpenes, terpenoids, aromatic, aliphatic constituents | A. flavus | 11.89 | [107] | |
Cinnamomum zylanicum | Clevenger hydro-distillation | Terpenes, terpenoids, aromatic, aliphatic constituents | A. flavus | n.a. | ||
Clove eugenia caryophyllus | Clevenger hydro-distillation | Terpenes, terpenoids, aromatic, aliphatic constituents | A. flavus | 28.14 | ||
Eucalyptus camaldulensis | Clevenger hydro-distillation | Terpenes, terpenoids, aromatic, aliphatic constituents | A. flavus | 16.56 | ||
Marjoram majorana hortensis | Clevenger hydro-distillation | Terpenes, terpenoids, aromatic, aliphatic constituents | A. flavus | 11.89 | ||
MGI at 8 μL/mL (%) | ||||||
Curcuma longa L. | Clevenger hydro-distillation | Ar-tumerone, tumerone, β-sesquiphellandrene, curcumene | A. flavus | 93.41 | [108] | |
GI at 1500 μL/L (%) | ||||||
Eucalyptus sp. | Clevenger steam distillation | 1,8-cineol | A. tubingensis | 60.88 48.44 | [109] | |
Heracleum persicum | Clevenger steam distillation | Hexyl ester, n-octyl acetate, pulegone, octyl ester | A. flavus | n.a. n.a. | ||
Zhumeria majdae | Clevenger steam distillation | Linalool, camphor | A. flavus A. tubingensis | 25.77 64.4 | ||
MIC (μg/mL) | ZOI (mm) | |||||
Ferulago trifida Boiss | Clevenger hydro-distillation | Germacrene D, caryophyllene oxide | A. niger | n.a. | n.a. | [110] |
MIC (μL/mL) | MFC (μL/mL) | |||||
Luvunga scandens Roxb. | Hydro-distillation | Phenolics | A. flavus | 3.5 | >5.0 | [111] |
MIC (μL/mL) | ||||||
Mentha cardiaca L. | Clevenger hydro-distillation | β-myrcene, limonene, 1,8-cineole, cis-dihydrocarvone, carvone, β-bourbonene | A. flavus | 1.25 | [112] | |
MIC (mg/mL) | MFC (mg/mL) | |||||
Murraya paniculata | Clevenger hydro-distillation | β-caryophyllene, α-caryophyllene, α-zingiberene | A. niger A. fumigatus A. parasiticum | 0.2 0.1 0.2 | 0.2 0.5 0.5 | [103] |
MIC (μg/mL) | ||||||
Abies balsamea | - | β-pinene, δ-3-carene, α-pinene, sylvestrene, bornyl acetate, camphene | A. niger | 1250 | [113] | |
Abies sibirica | - | Camphene, bornyl acetate, α-pinene, δ-3-carene, limonene | A. niger | 625 | ||
Anthemis nobilis | - | α-pinene, isobutyl angelate, methallyl angelate, 3-methylpentyl angelate | A. niger | 625 | ||
Betula lenta | - | Methyl salicylate | A. niger | 625 | ||
Boswellia carteri | - | Limonene, β-caryophyllene, p-cymene, δ-cadinene, α-copaene | A. niger | 625 | ||
Cananga odorata | - | Germacrene D, β-caryophyllene, (E, E)-α-farnesene, benzyl benzoate, geranyl acetate | A. niger | 1250 | ||
Cinnamomum cassia | - | (E)-cinnamaldehyde, (E)-o-methoxycinnamaldehyde | A. niger | 78 | ||
Cinnamomum zeylanicum | - | (E)-cinnamaldehyde, eugenol, (E)-cinnamyl acetate | A. niger | 78 | ||
Cistus ladanifer | - | α-pinene, viridiflorene, bornyl acetate, viridoflorol | A. niger | 625 | ||
Citrus aurantifolia | - | Limonene, β-pinene, γ-terpinene | A. niger | 625 | ||
Citrus aurantium | - | Linalyl acetate, linalool | A. niger | 625 | ||
Citrus bergamia | - | Limonene, linalyl acetate, linalool, γ-terpinene, β-pinene | A. niger | 625 | ||
Citrus limon | - | Limonene, β-pinene, γ-terpinene | A. niger | 625 | ||
Citrus reticulata | - | Limonene | A. niger | 625 | ||
Citrus sinensis | - | Limonene | A. niger | 625 | ||
Citrus × paradisi | - | Limonene | A. niger | 313 | ||
Commiphora myrrha | - | Furanoeudesma-1,3-diene, curzerene, lindestrene, α-pinene, neryl acetate | A. niger | 625 | ||
Copaifera officinalis | - | β-caryophyllene | A. niger | 1250 | ||
Copaifera spp. | - | β-caryophyllene, trans-α-bergamotene, α-copaene, α-humulene | A. niger | 625 | ||
Coriandrum sativum | - | Linalool, (2E)-decenal, (2E)-decen-1-ol, n-decanal | A. niger | 313 | ||
Coriandrum sativum | - | Linalool, α-pinene | A. niger | 625 | ||
Cupressus sempervirens | - | α-pinene, δ-3-carene | A. niger | 1250 | ||
Cymbopogon flexuosus | - | Geranial, neral, geraniol, geranyl acetate | A. niger | 313 | ||
Elettaria cardamomum | - | α-terpinyl acetate, 1,8-cineole, linalyl acetate | A. niger | 625 | ||
Eucalyptus radiata | - | 1,8-cineole, α-terpineol | A. niger | 313 | ||
Eugenia caryophyllata | - | Eugenol, eugenyl acetate, β-caryophyllene | A. niger | 156 | ||
Foeniculum vulgare | - | (E)-anethole, limonene, fenchone | A. niger | 625 | ||
Gualtheria fragrantissima | - | Methyl salicylate | A. niger | 625 | ||
Helichrysum italicum | - | Neryl acetate, α-pinene, γ-curcumene, β-selinene, β-caryophyllene, italicene, valencene | A. niger | 1250 | ||
Helichrysum italicum | - | Neryl acetate, γ-curcumene, α-pinene | A. niger | 625 | ||
Juniperus communis | - | α-pinene, myrcene, sabinene, β-pinene, β-caryophyllene | A. niger | 625 | ||
Juniperus virginiana | - | α-cedrene, cis-thujopsene, cedrol, β-cedrene | A. niger | 625 | ||
Lavandula angustifolia | - | Linalyl acetate, linalool | A. niger | 625 | ||
Melaleuca alternifolia | - | Terpinen-4-ol, γ-terpinene, α-terpinene | A. niger | 625 | ||
Melissa officinalis | - | Geranial, neral, β-caryophyllene | A. niger | 313 | ||
Mentha piperita | - | Menthol, menthone, menthyl acetate, 1,8-cineole | A. niger | 625 | ||
Mentha spicata | - | Carvone, limonene | A. niger | 313 | ||
Myristica fragrans | - | Sabinene, myristicin, α-pinene, β-pinene, sylvestrene | A. niger | 625 | ||
Myrtis communis | - | α-pinene, 1,8-cineole, limonene | A. niger | 1250 | ||
Nardostachys jatamansi | - | Viridiflorene, 6,9-guaiadiene, valeranone, nardosina-7,9,11-triene, β-gurjunene, valerana-7,11-diene, nardol | A. niger | 625 | ||
Nepeta cataria | - | 4aα,7α,7aβ-nepetalactone, 4aα,7α, 7aα- nepetalactone, β-caryophyllene | A. niger | 313 | ||
Ocimum basilicum | - | Linalool, 1,8-cineole, trans-α-bergamotene | A. niger | 313 | ||
Origanum majorana | - | Terpinen-4-ol, γ-terpinene, trans- sabinene hydrate, α-terpinene, sabinene | A. niger | 625 | ||
Origanum vulgare | - | Carvacrol, γ-terpinene | A. niger | 156 | ||
Pelargonium graveolens | - | Citronellol, iso-menthone, geraniol | A. niger | 625 | ||
Picea mariana | - | Bornyl acetate, camphene, α-pinene, δ-3-carene | A. niger | 625 | ||
Piper nigrum | - | β-caryophyllene, limonene, β-pinene, sabinene, α-pinene, δ-3-carene | A. niger | 625 | ||
Pogostemon cablin | - | Patchouli alcohol, α-bulnesene, α-guaiene, seychellene, α-patchoulene | A. niger | 156 | ||
Pseudotsuga menziesii | - | β-pinene, sabinene, terpinolene, δ-3-carene, α-pinene | A. niger | 625 | ||
Rosmarinus officinalis | - | 1,8-cineole, α-pinene, camphor, β-pinene | A. niger | 625 | ||
Salvia officinalis | - | Cis-thujone, camphor, 1,8-cineole, camphene, α-pinene | A. niger | 1250 | ||
Salvia sclarea | - | Linalyl acetate | A. niger | 1250 | ||
Santalum album | - | (Z)-α-santalol, (Z)-β-santalol, (Z)-α-trans-bergamotol | A. niger | 313 | ||
Santalum austrocaledonicum | - | (Z)-α-santalol, (Z)-β-santalol, (Z)-lanceol | A. niger | 313 | ||
Santalum paniculatum | - | (Z)-α-santalol, (Z)-β-santalol, (Z)-lanceol, (Z)-α-trans-bergamotol | A. niger | 156 | ||
Tanacetum annuum | - | Sabinene, myrcene, camphor, α-phellandrene, p-cymene, chamazulene | A. niger | 625 | ||
Thuja plicata | - | Methyl thujate, methyl myrtenate | A. niger | 313 | ||
Thymus vulgaris | - | Thymol, carvacrol, p-cymene, β-caryophyllene, γ-terpinene | A. niger | 156 | ||
Vetiveria zizanoides | - | (E)-isovalencenol, khusimol, α-vetivone | A. niger | 78 | ||
Zingiber officinale | - | α-zingiberene, camphene, β-sesquiphellandrene, ar-curcumene, β-phellandrene, β-bisabolene | A. niger | 625 | ||
MIC (mg/mL) | ||||||
Salvia dolomitica | Hydro-distillation | 1,8-cineole, β-caryophyllene | A. niger A. flavus | 8.13 16.26 | [114] | |
Salvia somalensis | Hydro-distillation | Camphor, bornyl acetate, δ-cadinene | A. niger A. flavus | 8.52 17.04 | ||
MIC (μL/mL) | ||||||
Illicium verum Hook.f. | Clevenger hydro-distillation | Estragole, anethole | A. flavus | 0.7 | [115] | |
MGI (%) | ||||||
Solidago canadensis L. | Clevenger hydro-distillation | α-pinene, limonene, bornyl acetate, β-elemene, germacrene D | A. niger | 15 | [116] | |
MIC (μg/mL) | ||||||
Eupatorium serotinum Michx. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | Germacrene D, palustrol, cyclocolorenone | A. niger | 313 | [117] | |
Eurybia macrophylla (L.) Cass. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | β-pinene, limonene, terpinolene, germacrene D, germacrene B | A. niger | 625 | ||
Eutrochium purpureum (L.) E.E. Lamont | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | Hexanal, (2E)-hexenal, methyl salicylate, eugenol | A. niger | 625 | ||
Polymnia canadensis L. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | α-pinene, α-phellandrene, germacrene D | A. niger | 625 | ||
Rudbeckia laciniata L. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | α-pinene, β-pinene, myrcene, limonene | A. niger | 625 | ||
Solidago altissima L. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | α-pinene, sabinene, myrcene, bornyl acetate, germacrene D | A. niger | 625 | ||
Xanthium strumarium L. | Hydro-distillation using a Likens-Nickerson apparatus with continuous extraction with dichloromethane | (2E)-hexenal, myrcene, limonene, germacrene D | A. niger | 625 | ||
MIC (mg/mL) | ||||||
Myristica fragrans | Hydro-distillation | Elemicin, myristicine, thujanol, methyl eugenol, safrole | A. flavus | 2.75 | [118] | |
MIC (mg/mL) | ZOI (mm) | |||||
Pulicaria crispa (Forsk.) Oliv. | Hydro-distillation | Carvone, caryophyllene, neryl (S)-2-methylbutanoate, 1,4-ditert-butylbenzene | A. niger | 6.25 | 21 | [119] |
Pulicaria undulata (L.) C.A.Mey | Hydro-distillation | Bicyclo, camphor, thymyl acetate, azulenol | A. niger | 6.25 | 22 | |
MIC (μg/mL) | ZOI (mm) | |||||
Thymus decussatus | Hydro-distillation Microwave-assisted extraction | Carvacrol, p-cymene | A. niger | 0.49 | 47.00 48.00 | [100] |
Teucrium polium | Hydro-distillation Microwave-assisted extraction | Aromadendrene, germacrene-D, β-muurolene, α-muurolene, δ-cadinene, germacrene d-4-ol, τ-muurolol, α-cadinol, alloaromadendrene oxide, 6-epi-shyobunol) | A. niger | n.a. | n.a. | |
MGI | ||||||
Thymus kotschyanus | Clevenger hydro-distillation | p-cymene, γ-terpinene, thymol, carvacrol | A. niger | 250 ppm (partial inhibition) ≥500 ppm (fungicidal) | [120] | |
MIC (μg/mL) | ||||||
Centaurea scoparia | Hydro-distillation Microwave-assisted extraction | Trans-caryophyllene, spathulenol, theaspirane A, theaspirane B, methyl hexadecanoate | A. niger | n.a. | [121] | |
Centaurea calcitrapa, | Hydro-distillation Microwave-assisted extraction | Boronal, spathulenol, α-cadinol, aromadendrene oxide-2, α-costol, phytol, paeonol, arachidic acid | A. niger | n.a. | ||
Centaurea glomerata | Hydro-distillation Microwave-assisted extraction | Spathulenol, α-guaiol, eudesmol, aromadendrene oxide-2, α-costol, geranylterpinene, phytol tricosane, 2-phenylethyl octadecanoate | A. niger | n.a. | ||
Centaurea lipii | Hydro-distillation Microwave-assisted extraction | Isothujone, spathulenol, torreyol, aromadendrene oxide-2, icosane, henicosane, 2-phenylethyl octadecanoate | A. niger | 1000 | ||
Centaurea alexandrina | Hydro-distillation Microwave-assisted extraction | 1,8-cineole, isothujone, spathulenol, torreyol, aromadendrene oxide-1, 13-epi-manool, thunbergol, phytol, henicosane, methyl arachidonate, arachidic acid, (Z)-9-octadecenamide, 2-phenylethyl octadecanoate | A. niger | n.a. | ||
MGI (%) | ||||||
Coleus aromaticus | Microwave-assisted solvent-free extraction | Thymol, thymoquinone, creosol, linalool, p-cymene-2,5-diol, p-cymene | A. niger | 79.63 (poisoned food test)70.45 (disc diffusion assay) | [122] | |
MIC (μg/mL) | ZOI (mm) | |||||
Dracocephalum kotschyi Boiss. (Lamiaceae) | Clevenger hydro-distillation | α-pinene, limonene, α-campholenal, cyclohexylallene, Z-citral=neral, geraniol, (E)-citral, methyl geranate | A. niger | 2000 (cultivated plants) 500 (wild plants) | 15 (cultivated plants) | [123] |
A. brasiliensis | 2000 (cultivated plants) 250 (wild plants) | 25 (cultivated plants) 26 (wild plants) | ||||
MIC (μg/mL) | ZOI (mm) | |||||
Asteriscus graveolens (Forssk.) Less. | Clevenger hydro-distillation | p-cineole, α-thujone, camphor, carvacrol | A. niger A. flavus | 24.50 23.74 | 17.01 16.76 | [102] |
5. Novel Delivery Systems for Plants Extracts against Aspergillus spp.
6. Conclusions and Future Prospective
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fausto, A.; Rodrigues, M.L.; Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Stop neglecting fungi. Nat. Microbiol. 2017, 2, 17120. [CrossRef] [PubMed] [Green Version]
- Bengyella, L.; Yekwa, E.L.; Nawaz, K.; Iftikhar, S.; Tambo, E.; Alisoltani, A.; Feto, N.A.; Roy, P. Global invasive Cochliobolus species: Cohort of destroyers with implications in food losses and insecurity in the twenty-first century. Arch. Microbiol. 2018, 200, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Don’t forget the fungi when considering global catastrophic biorisks. Health Secur. 2017, 15, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Dhakad, M.S.; Goyal, R.; Bhalla, P.; Dewan, R. Spectrum of opportunistic fungal infections in HIV/AIDS patients in tertiary care hospital in India. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 2373424. [Google Scholar] [CrossRef]
- Montrucchio, G.; Lupia, T.; Lombardo, D.; Stroffolini, G.; Corcione, S.; De Rosa, F.G.; Brazzi, L. Risk factors for invasive aspergillosis in ICU patients with COVID-19: Current insights and new key elements. Ann. Intensive Care 2021, 11, 136. [Google Scholar] [CrossRef]
- Baddley, J.W. Clinical risk factors for invasive aspergillosis. Med. Mycol. 2011, 49, S7–S12. [Google Scholar] [CrossRef]
- King, J.; Brunel, S.F.; Warris, A. Aspergillus infections in cystic fibrosis. J. Infect. 2016, 72, S50–S55. [Google Scholar] [CrossRef]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef] [Green Version]
- Zanganeh, E.; Zarrinfar, H.; Rezaeetalab, F.; Fata, A.M.; Tohidi, M.; Najafzadeh, M.J.; Alizadeh, M.; Seyedmousavi, S. Predominance of non-fumigatus Aspergillus species among patients suspected to pulmonary aspergillosis in a tropical and subtropical region of the Middle East. Microb. Pathog. 2018, 116, 296–300. [Google Scholar] [CrossRef]
- Rozaliyani, A.; Abdullah, A.; Setianingrum, F.; Sjamsuridzal, W.; Wahyuningsih, R.; Bowolaksono, A.; Fatril, A.E.; Adawiyah, R.; Tugiran, M.; Syam, R.; et al. Unravelling the molecular identification and antifungal susceptibility profiles of Aspergillus spp. isolated from chronic pulmonary aspergillosis patients in Jakarta, Indonesia: The emergence of cryptic species. J. Fungi 2022, 8, 411. [Google Scholar] [CrossRef] [PubMed]
- Ostrowsky, B.; Greenko, J.; Adams, E.; Quinn, M.; O’Brien, B.; Chaturvedi, V.; Berkow, E.; Vallabhaneni, S.; Forsberg, K.; Chaturvedi, S.; et al. Candida auris isolates resistant to three classes of antifungal medications—New York, 2019. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 6–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.K.; Lund Nielsen, J.; Poulsen, J.S.; Madsen, A.M.; Lenart-Boró, A.; Chmiel, M.; Colbeck, I. Antifungal resistance in isolates of aspergillus from a pig farm. Atmosphere 2021, 12, 826. [Google Scholar] [CrossRef]
- Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: Side effects and toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022, 13, 393. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef]
- Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front. Pharmacol. 2021, 12, 2405. [Google Scholar] [CrossRef]
- Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Morais, E.R.; Oliveira, K.C.; Magalhães, L.G.; Moreira, É.B.C.; Verjovski-Almeida, S.; Rodrigues, V. Effects of curcumin on the parasite Schistosoma mansoni: A transcriptomic approach. Mol. Biochem. Parasitol. 2013, 187, 91–97. [Google Scholar] [CrossRef]
- Hussein, A.; Rashed, S.; El Hayawan, I.; El-Sayed, R.; Ali, H. Evaluation of the anti-schistosomal effects of turmeric (Curcuma longa) versus praziquantel in Schistosoma mansoni infected mice. Iran. J. Parasitol. 2017, 12, 587. [Google Scholar] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—Estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Valerio, M.; Álvarez-Uría, A.; Olmedo, M.; Veintimilla, C.; Padilla, B.; De la Villa, S.; Guinea, J.; Escribano, P.; Ruiz-Serrano, M.J.; et al. Invasive pulmonary aspergillosis in the COVID-19 era: An expected new entity. Mycoses 2021, 64, 132–143. [Google Scholar] [CrossRef]
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of direct healthcare costs of fungal diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, W.J.; Marr, K.A.; Anaissie, E.J.; Azie, N.; Quan, S.P.; Meier-Kriesche, H.U.; Apewokin, S.; Horn, D.L. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J. Infect. 2012, 65, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef] [PubMed]
- Tekaia, F.; Latgé, J.P. Aspergillus fumigatus: Saprophyte or pathogen? Curr. Opin. Microbiol. 2005, 8, 385–392. [Google Scholar] [CrossRef]
- K Mazu, T.; A Bricker, B.; Flores-Rozas, H.; Y Ablordeppey, S. The mechanistic targets of antifungal agents: An overview. Mini-Reviews Med. Chem. 2016, 16, 555–578. [Google Scholar] [CrossRef]
- Shishodia, S.K.; Tiwari, S.; Shankar, J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 2019, 10, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Kanafani, Z.A.; Perfect, J.R. Resistance to antifungal agents: Mechanisms and clinical impact. Clin. Infect. Dis. 2008, 46, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshaya, O.A.; Saleh, R.A.; Alshehri, S.D. Voriconazole-induced hepatotoxicity resolved after switching to amphotericin B in Fusarium dimerum central line-associated bloodstream infection. Am. J. Case Rep. 2021, 22, e932544-1. [Google Scholar] [CrossRef] [PubMed]
- Den Hollander, J.G.; van Arkel, C.; Rijnders, B.J.; Lugtenburg, P.J.; de Marie, S.; Levin, M.D. Incidence of voriconazole hepatotoxicity during intravenous and oral treatment for invasive fungal infections. J. Antimicrob. Chemother. 2006, 57, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Pata, R.; Dolkar, T.; Patel, M.; Nway, N. Voriconazole-induced acute liver injury: A case report. Cureus 2021, 13, e20115. [Google Scholar] [CrossRef]
- Cronin, S.; Chandrasekar, P.H. Safety of triazole antifungal drugs in patients with cancer. J. Antimicrob. Chemother. 2009, 65, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Guegan, H.; Prat, E.; Robert-Gangneux, F.; Gangneux, J.P. Azole resistance in Aspergillus fumigatus: A five-year follow up experience in a tertiary hospital with a special focus on cystic fibrosis. Front. Cell. Infect. Microbiol. 2021, 10, 613774. [Google Scholar] [CrossRef]
- Tangwattanachuleeporn, M.; Minarin, N.; Saichan, S.; Sermsri, P.; Mitkornburee, R.; Groß, U.; Chindamporn, A.; Bader, O. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand. Med. Mycol. 2017, 55, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Van Der Linden, J.W.M.; Camps, S.M.T.; Kampinga, G.A.; Arends, J.P.A.; Debets-Ossenkopp, Y.J.; Haas, P.J.A.; Rijnders, B.J.A.; Kuijper, E.J.; Van Tiel, F.H.; Varga, J.; et al. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 2013, 57, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, J.W.M.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.A.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; van Tiel, F.H.; Melchers, W.J.G.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- CDC Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019.
- Carolus, H.; Pierson, S.; Lagrou, K.; Van Dijck, P. Amphotericin B and other polyenes—Discovery, clinical use, mode of action and drug resistance. J. Fungi 2020, 6, 321. [Google Scholar] [CrossRef]
- Ashu, E.E.; Korfanty, G.A.; Samarasinghe, H.; Pum, N.; You, M.; Yamamura, D.; Xu, J. Widespread amphotericin B-resistant strains of Aspergillus fumigatus in Hamilton, Canada. Infect. Drug Resist. 2018, 11, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aruanno, M.; Glampedakis, E.; Lamoth, F. Echinocandins for the treatment of invasive aspergillosis: From laboratory to bedside. Antimicrob. Agents Chemother. 2019, 63, e00399-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, M.; Sibley, G. Antifungal chemistry review. In Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017; pp. 703–716. [Google Scholar]
- Jiménez-Ortigosa, C.; Moore, C.; Denning, D.W.; Perlin, D.S. Emergence of echinocandin resistance due to a point mutation in the fks1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob. Agents Chemother. 2017, 61, e01277-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavassin, F.B.; Baú-Carneiro, J.L.; Vilas-Boas, R.R.; Queiroz-Telles, F. Sixty years of amphotericin B: An overview of the main antifungal agent used to treat invasive fungal infections. Infect. Dis. Ther. 2021, 10, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Zapata, D.; Petraitiene, R.; Petraitis, V. Echinocandins: The expanding antifungal armamentarium. Clin. Infect. Dis. 2015, 61 (Suppl. 6), S604–S611. [Google Scholar] [CrossRef] [Green Version]
- Kumar Mishra, K.; Deep Kaur, C.; Kumar Sahu, A.; Panik, R.; Kashyap, P.; Prasad Mishra, S.; Dutta, S. Medicinal plants having antifungal properties. In Medicinal Plants—Use in Prevention and Treatment of Diseases [Working Title]; IntechOpen: London, UK, 2020; ISBN 978-1-78985-888-4. [Google Scholar]
- Aqil, F.; Ahmad, I. Broad-spectrum antibacterial and antifungal properties of certain traditionally used indian medicinal plants. World J. Microbiol. Biotechnol. 2003, 19, 653–657. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- Al Aboody, M.S.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Yuan, G.; Guan, Y.; Yi, H.; Lai, S.; Sun, Y.; Cao, S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 2019, 11, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, S.K.; Xu, T.; Feng, Q.; Avula, B.; Shi, X.; Pan, X.; Mask, M.M.; Baerson, S.R.; Jacob, M.R.; Ravu, R.R.; et al. Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis. J. Biol. Chem. 2017, 292, 16578–16593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhamgaye, S.; Devaux, F.; Vandeputte, P.; Khandelwal, N.K.; Sanglard, D.; Mukhopadhyay, G.; Prasad, R. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida Albicans. PLoS ONE 2014, 9, 104554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleischer, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and anti-biofilm formation activities against fluconazole-resistant Candida albicans strains. PLoS ONE 2021, 16, e0260956. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleem, M.S.; Awaad, A.S.; Alothman, M.R.; Alqasoumi, S.I. Phytochemical standardization and biological activities of certain desert plants growing in Saudi Arabia. Saudi Pharm. J. 2018, 26, 198–204. [Google Scholar] [CrossRef]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as potentially cytotoxic compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Dikhoba, P.M.; Mongalo, N.I.; Elgorashi, E.E.; Makhafola, T.J. Antifungal and anti-mycotoxigenic activity of selected South African medicinal plants species. Heliyon 2019, 5, e02668. [Google Scholar] [CrossRef] [Green Version]
- Leite, M.C.A.; De Brito Bezerra, A.P.; De Sousa, J.P.; Guerra, F.Q.S.; De Oliveira Lima, E. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evid.-Based Complement. Altern. Med. 2014, 2014, 378280. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.H.; Alfatah, M.; Kong, K.W.; Hoon, S.; Yeo, W.L.; Ching, K.C.; Goh, C.J.H.; Zhang, M.M.; Lim, Y.H.; Wong, F.T.; et al. Chemogenomic profiling in yeast reveals antifungal mode-of-action of polyene macrolactam auroramycin. PLoS ONE 2019, 14, e0218189. [Google Scholar] [CrossRef]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement. Altern. Med. 2019, 19. [Google Scholar] [CrossRef]
- Makhafola, T.J.; Samuel, B.B.; Elgorashi, E.E.; Eloff, J.N. Ochnaflavone and ochnaflavone 7-O-methyl ether two antibacterial biflavonoids from Ochna pretoriensis (Ochnaceae). Nat. Prod. Commun. 2012, 7, 1601–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongalo, N.I.; Dikhoba, P.M.; Soyingbe, S.O.; Makhafola, T.J. Antifungal, anti-oxidant activity and cytotoxicity of South African medicinal plants against mycotoxigenic fungi. Heliyon 2018, 4, 973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olawuwo, O.S.; Famuyide, I.M.; McGaw, L.J. Antibiofilm activity of selected medicinal plant leaf extracts against pathogens implicated in poultry diseases. Front. Vet. Sci. 2022, 9, 820304. [Google Scholar] [CrossRef] [PubMed]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef] [Green Version]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Med. (United Kingdom) 2018, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Choudhary, A.; Ram, R. Pharmacological assessment of the heartwood of Acacia raddiana Willd for antifungal potential. Mater. Today Proc. 2022. [Google Scholar] [CrossRef] [PubMed]
- B, M.; B, O.; V, M. Antifungal activity of stigmasterol, sitosterol and ergosterol from Bulbine natalensis Baker (Asphodelaceae). J. Med. Plants Res. 2012, 6, 5135–5141. [Google Scholar] [CrossRef]
- Qiu, M.; Wang, Y.; Sun, L.; Deng, Q.; Zhao, J. Fatty acids and oxylipins as antifungal and anti-mycotoxin agents in food: A review. Toxins 2021, 13, 852. [Google Scholar] [CrossRef]
- Pratama, O.A.; Tunjung, W.A.S.; Sutikno, S.; Daryono, B.S. Bioactive compound profile of melon leaf extract (Cucumis melo l. ‘Hikapel’) infected by downy mildew. Biodiversitas 2019, 20, 3448–3453. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Khan, R.A.; Abdel-Hafez, A.A.; Abdel-Aziz, M.; Ahmed, E.; Enany, S.; Mahgoub, S.; Al-Rugaie, O.; Alsharidah, M.; Aly, M.S.A.; et al. Phytochemical profiling, in vitro and in silico anti-microbial and anti-cancer activity evaluations and staph gyraseb and h-top-iiβ receptor-docking studies of major constituents of Zygophyllum coccineum L. Aqueous-ethanolic extract and its subsequent fra. Molecules 2021, 26, 577. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formulation: Concept of ayurveda. Pharmacogn. Rev. 2014, 8, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Famewo, E.B.; Clarke, A.M.; Afolayan, A.J. The effect of polyherbal medicines used for the treatment of tuberculosis on other opportunistic organisms of humans infected with tuberculosis. Pharmacogn. Mag. 2017, 13, S539–S543. [Google Scholar] [CrossRef] [PubMed]
- Mussarat, S.; Adnan, M.; Begum, S.; Ur Rehman, S.; Hashem, A.; Abd_Allah, E.F. Antimicrobial screening of polyherbal formulations traditionally used against gastrointestinal diseases. Saudi J. Biol. Sci. 2021, 28, 6829–6843. [Google Scholar] [CrossRef] [PubMed]
- Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med. 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Riaz, T.; Abbasi, M.A.; Siddiqui, S.Z.; Shahid, M.; Fatima, H.; Ashraf, M.; Ejaz, S.A.; Rasool, Z.G.; Abbasi, G.H. Enzyme inhibitory, Antifungal, Antibacterial and hemolytic potential of various fractions of Colebrookia oppositifolia. Pak. J. Pharm. Sci. 2017, 30, 105–112. [Google Scholar]
- Tabassum, S.; Ahmed, M.; Mirza, B.; Naeem, M.; Zia, M.; Shanwari, Z.K.; Khan, G.M. Appraisal of phytochemical and in vitro biological attributes of an unexplored folklore: Rhus Punjabensis Stewart. BMC Complement. Altern. Med. 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Ahmed, M.; Khan, M.W.; Khan, R.A. In vitro pharmacological effects of Astragalus eremophilus and Melilotus parviflora. Acta Biol. Hung. 2018, 69, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Tocci, N.; Perenzoni, D.; Iamonico, D.; Fava, F.; Weil, T.; Mattivi, F. Extracts from Hypericum hircinum subsp. majus exert antifungal activity against a panel of sensitive and drug-resistant clinical strains. Front. Pharmacol. 2018, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Safarpoor, M.; Ghaedi, M.; Asfaram, A.; Yousefi-Nejad, M.; Javadian, H.; Zare Khafri, H.; Bagherinasab, M. Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles. Ultrason. Sonochem. 2018, 42, 76–83. [Google Scholar] [CrossRef]
- Kazmi, Z.; Safdar, N.; Yasmin, A. Biological screening of three selected folklore medicinal plants from Pakistan. Pak. J. Pharm. Sci. 2019, 32, 1477–1484. [Google Scholar] [PubMed]
- Lei, Z.; Zhang, S.; Liu, D.; Gao, X.; Zhao, Y.; Cui, Y. Evaluation of three different artificial agarwood-inducing methods from Aquilaria sinensis using antimicrobial activity. Pak. J. Pharm. Sci. 2019, 32, 905–910. [Google Scholar] [PubMed]
- Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Phytochemical, antioxidant, anti-proliferative and antimicrobial properties of Catharanthus roseus root extract, saponin-enriched and aqueous fractions. Mol. Biol. Rep. 2019, 46, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Rahman, M.A.; Khalid, M.; Khushtar, M.; Mujahid, M. Quality control standardization and evaluation of antimicrobial potential of Daruhaldi (Berberis aristata DC) stem bark. J. Diet. Suppl. 2020, 17, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Deng, K.; Qiu, S.; Wang, M.; Avula, B.; Tripathi, S.K.; Jacob, M.R.; Gong, L.; Wang, W.; Khan, I.A.; et al. Identification of antifungal bisphosphocholines from medicinal Gentiana species. J. Nat. Prod. 2020, 83, 3207–3211. [Google Scholar] [CrossRef]
- Ali, S.S.; El-Zawawy, N.A.; Al-Tohamy, R.; El-Sapagh, S.; Mustafa, A.M.; Sun, J. Lycium shawii Roem. & Schult.: A new bioactive antimicrobial and antioxidant agent to combat multi-drug/pan-drug resistant pathogens of wound burn infections. J. Tradit. Complement. Med. 2020, 10, 13–25. [Google Scholar] [CrossRef]
- Das, P.E.; Majdalawieh, A.F.; Abu-Yousef, I.A.; Narasimhan, S.; Poltronieri, P. Use of a hydroalcoholic extract of Moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities. Materials 2020, 13, 876. [Google Scholar] [CrossRef] [Green Version]
- Das, P.E.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Narasimhan, S.; Poltronieri, P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules 2020, 25, 555. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Hastak, V.; Jadhav, V.; Date, A.A. Fenugreek leaf extract and its gel formulation show activity against Malassezia furfur. Assay Drug Dev. Technol. 2020, 18, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, H.A.A.; Ali, H.M.; Qureshi, K.A.; Alsharidah, M.; Kandil, Y.I.; Said, R.; Mohammed, S.A.A.; Al-Omar, M.S.; Al Rugaie, O.; Abdellatif, A.A.H.; et al. Comparative phytochemical profile and biological activity of four major medicinal halophytes from Qassim flora. Plants 2021, 10, 2208. [Google Scholar] [CrossRef]
- Okla, M.K.; Alatar, A.A.; Al-Amri, S.S.; Soufan, W.H.; Ahmad, A.; Abdel-Maksoud, M.A. Article antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) vierh. Plants 2021, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Paluch, E.; Okińczyc, P.; Zwyrzykowska-Wodzińska, A.; Szperlik, J.; Żarowska, B.; Duda-Madej, A.; Babelewski, P.; Włodarczyk, M.; Wojtasik, W.; Kupczyński, R.; et al. Composition and antimicrobial activity of ilex leaves water extracts. Molecules 2021, 26, 7442. [Google Scholar] [CrossRef]
- Sadaf, H.M.; Bibi, Y.; Ishaque, M.; Nisa, S.; Qayyum, A.; Safdar, N.; Shah, Z.H.; Alsamadany, H.; Chung, G. Determination of ROS scavenging, antibacterial and antifungal potential of methanolic extract of Otostegia limbata (Benth.) Boiss. Plants 2021, 10, 2360. [Google Scholar] [CrossRef] [PubMed]
- Asghar, A.; Aamir, M.N.; Shah, M.A.; Syed, S.K.; Munir, R. Development, characterization and evaluation of in vitro anti-inflammatory activity of Withania coagulans extract and extract loaded microemulsion. Pak. J. Pharm. Sci. 2021, 34, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuzarte, M.; Salgueiro, L. Essential oils in respiratory mycosis: A review. Molecules 2022, 27, 4140. [Google Scholar] [CrossRef]
- Saleh, I.; Abd-Elgawad, A.; El Gendy, A.E.N.; El Aty, A.A.; Mohamed, T.; Kassem, H.; Aldosri, F.; Elshamy, A.; Hegazy, M.E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants 2020, 9, 716. [Google Scholar] [CrossRef]
- Znini, M.; Cristofari, G.; Majidi, L.; Mazouz, H.; Tomi, P.; Paolini, J.; Costa, J. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat. Prod. Commun. 2011, 6, 1763–1768. [Google Scholar] [CrossRef] [Green Version]
- Aljeldah, M.M. Antioxidant and antimicrobial potencies of chemically-profiled essential oil from Asteriscus graveolens against clinically-important pathogenic microbial strains. Molecules 2022, 27, 3539. [Google Scholar] [CrossRef]
- Neta, M.C.S.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.L.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Lagrouh, F.; Dakka, N.; Bakri, Y. The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. J. Mycol. Med. 2017, 27, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Jadhav, S.R. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control 2022, 136, 108883. [Google Scholar] [CrossRef]
- Reis, D.R.; Ambrosi, A.; Luccio, M. Di Encapsulated essential oils: A perspective in food preservation. Futur. Foods 2022, 5, 100126. [Google Scholar] [CrossRef]
- Al-Zubairi, A.S.; Al-Mamary, M.A.; Al-Ghasani, E. The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Glob. Adv. Res. J. Med. Med. Sci. 2017, 6, 224–233. [Google Scholar]
- Hu, Y.; Zhang, J.; Kong, W.; Zhao, G.; Yang, M. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017, 220, 1–8. [Google Scholar] [CrossRef]
- Davari, M.; Ezazi, R. Chemical composition and antifungal activity of the essential oil of Zhumeria majdae, Heracleum persicum and Eucalyptus sp. against some important phytopathogenic fungi. J. Mycol. Med. 2017, 27, 463–468. [Google Scholar] [CrossRef]
- Tavakoli, S.; Vatandoost, H.; Zeidabadinezhad, R.; Hajiaghaee, R.; Hadjiakhoondi, A.; Abai, M.R.; Yassa, N. Gas chromatography, GC/mass analysis and bioactivity of essential oil from aerial parts of Ferulago trifida: Antimicrobial, antioxidant, AChE inhibitory, general toxicity, MTT assay and larvicidal activities. J. Arthropod. Borne. Dis. 2017, 11, 414–426. [Google Scholar] [PubMed]
- Kishore Dubey, N. Efficacy of Luvunga scandens Roxb. essential oil as antifungal, aflatoxin suppressor and antioxidant. J. Food Technol Pres. 2017, 1, 37–41. [Google Scholar]
- Dwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem. Toxicol. 2017, 106, 175–184. [Google Scholar] [CrossRef]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Ruffoni, B.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Activity of Salvia dolomitica and Salvia somalensis essential oils against bacteria, molds and yeasts. Molecules 2018, 23, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedy, A.K.; Singh, V.K.; Prakash, B.; Dubey, N.K. Nanoencapsulated Illicium verum Hook.f. essential oil as an effective novel plant-based preservative against aflatoxin B1 production and free radical generation. Food Chem. Toxicol. 2018, 111, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Grul’ová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 2019, 24, 1206. [Google Scholar] [CrossRef] [PubMed]
- Lawson, S.K.; Sharp, L.G.; Powers, C.N.; McFeeters, R.L.; Satyal, P.; Setzer, W.N. Volatile compositions and antifungal activities of native american medicinal plants: Focus on the asteraceae. Plants 2020, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kumar Singh, V.; Kumar Dwivedy, A.; Kumar Chaudhari, A.; Upadhyay, N.; Singh, A.; Krishna Saha, A.; Ray Chaudhury, S.; Prakash, B.; Dubey, N.K. Assessment of chemically characterised Myristica fragrans essential oil against fungi contaminating stored scented rice and its mode of action as novel aflatoxin inhibitor. Nat. Prod. Res. 2020, 34, 1611–1615. [Google Scholar] [CrossRef]
- Mohamed, E.A.A.; Muddathir, A.M.; Osman, M.A. Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Ghasemi, G.; Alirezalu, A.; Ghosta, Y.; Jarrahi, A.; Safavi, S.A.; Abbas-Mohammadi, M.; Barba, F.J.; Munekata, P.E.S.; Domínguez, R.; Lorenzo, J.M. Composition, antifungal, phytotoxic, and insecticidal activities of Thymus kotschyanus essential oil. Molecules 2020, 25, 1152. [Google Scholar] [CrossRef] [Green Version]
- Reda, E.H.; Abdel Shakour, Z.T.; El-Halawany, A.M.; El-Kashoury, E.S.A.; Shams, K.A.; Mohamed, T.A.; Saleh, I.; Elshamy, A.I.; Atia, M.A.M.; El-Beih, A.A.; et al. Comparative study on the essential oils from five wild egyptian centaurea species: Effective extraction techniques, antimicrobial activity and in-silico analyses. Antibiotics 2021, 10, 252. [Google Scholar] [CrossRef]
- Gunny, A.A.N.; Fang, L.P.; Misnan, N.M.; Gopinath, S.C.B.; Salleh, N.H.M.; Hashim, R.H.R.; Mat, M.H.C. Microwave-assisted solvent-free extraction of essential oil from Coleus aromaticus: Anti-phytopathogenic potential for fruit post-harvesting. 3 Biotech 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Ghavam, M.; Manconi, M.; Manca, M.L.; Bacchetta, G. Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. J. Ethnopharmacol. 2021, 267, 113513. [Google Scholar] [CrossRef]
- García-Díaz, M.; Patiño, B.; Vázquez, C.; Gil-Serna, J. A novel niosome-encapsulated essential oil formulation to prevent Aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins 2019, 11, 646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhaveh, S.; Mohsenifar, A.; Beiki, M.; Khalili, S.T.; Abdollahi, A.; Rahmani-Cherati, T.; Tabatabaei, M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2015, 69, 251–256. [Google Scholar] [CrossRef]
- Sharma, S.; Mulrey, L.; Byrne, M.; Jaiswal, A.K.; Jaiswal, S. Encapsulation of essential oils in nanocarriers for active food packaging. Foods 2022, 11, 2337. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Samad, N.A.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 2020, 15, 2439–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, I.A.; Sanna, V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol. Nutr. Food Res. 2016, 60, 1330–1341. [Google Scholar] [CrossRef]
- Mizielińska, M.; Salachna, P.; Ordon, M.; Łopusiewicz, Ł. Antimicrobial activity of water and acetone extracts of some Eucomis taxa. Asian Pac. J. Trop. Med. 2017, 10, 892–895. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Hashemi, S.J.; Hashemi, E.; Askari, K. In vitro antifungal activity of some traditional Persian medicinal plants on pathogenic fungi. Chin. J. Integr. Med. 2017, 23, 433–437. [Google Scholar] [CrossRef]
- Cankılıç, M.Y.; Sarıözlü, N.Y.; Candan, M.; Tay, F. Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomed. Res. 2017, 28, 3108–3113. [Google Scholar]
- Saxena, K.; Yadav, U. In vitro assessment of antimicrobial activity of aqueous and alcoholic extracts of moss Atrichum undulatum (Hedw.) P. Beauv. Physiol. Mol. Biol. Plants 2018, 24, 1203–1208. [Google Scholar] [CrossRef]
- Khan, A.; Jan, G.; Khan, A.; Jan, F.G.; Danish, M. Evaluation of antioxidant and antimicrobial activities of Bergenia ciliata Sternb (Rhizome) crude extract and fractions. Pak. J. Pharm. Sci. 2018, 31, 31–35. [Google Scholar]
- Li, X.M.; Liu, J.; Pan, F.F.; Yang, P.L. Effect of quality control on the antiproliferative activity of the extract from Portulaca oleracea L. in Aspergillus flavus. Biomed. Chromatogr. 2018, 32, e4354. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Mustafa, G.; Hanif, M.; Mohibullah, M.; Bakhsh, S.; Rashid, S.A.; Zaman, A.; Rehman, F.; Khan, B.A.; Amin, A. Antibacterial and antibiofilm properties of traditional medicinal plant from Sheikh Buddin range. Pak. J. Pharm. Sci. 2019, 32, 1313–1319. [Google Scholar] [PubMed]
- Fathallah, N.; Raafat, M.M.; Issa, M.Y.; Abdel-Aziz, M.M.; Bishr, M.; Abdelkawy, M.A.; Salama, O. Bio-guided fractionation of prenylated benzaldehyde derivatives as potent antimicrobial and antibiofilm from ammi majus l. fruits-associated aspergillus amstelodami. Molecules 2019, 24, 4118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, T.; Abbasi, M.A.; Shazadi, T.; Shahid, M. Assessment of Fumaria indica, Dicliptera bupleuroides and Curcuma zedoaria for their antimicrobial and hemolytic effects. Pak. J. Pharm. Sci. 2019, 32, 697–702. [Google Scholar]
- Oon, Y.N.; Chen, R.J.; Kuan, J.M.; Sit, N.W. Bioactivity of medicinal plant extracts against human fungal pathogens and evaluation of toxicity using vero cells. Trop. Biomed. 2021, 38, 469–475. [Google Scholar] [CrossRef]
- Omai, B.M.; Belewa, V.; Frost, C. Tulbaghia violacea (Harv) exerts its antifungal activity by reducing ergosterol production in Aspergillus flavus. Curr. Microbiol. 2021, 78, 2989–2997. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.F.; Yap, V.L.; Rajagopal, M.; Wiart, C.; Selvaraja, M.; Leong, M.Y.; Tan, P.L. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. Plants 2022, 11, 3009. https://doi.org/10.3390/plants11223009
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. Plants. 2022; 11(22):3009. https://doi.org/10.3390/plants11223009
Chicago/Turabian StyleTan, Lee Fang, Vi Lien Yap, Mogana Rajagopal, Christophe Wiart, Malarvili Selvaraja, Mun Yee Leong, and Puay Luan Tan. 2022. "Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review" Plants 11, no. 22: 3009. https://doi.org/10.3390/plants11223009
APA StyleTan, L. F., Yap, V. L., Rajagopal, M., Wiart, C., Selvaraja, M., Leong, M. Y., & Tan, P. L. (2022). Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. Plants, 11(22), 3009. https://doi.org/10.3390/plants11223009