Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies
Abstract
:1. Introduction
2. Microsymbionts Inhabitants of Pulse Nodules
2.1. Rhizobium Leguminosarum Symbiovar Viciae (Rlv) Strains: The Main Microsymbiont for Peas, Lentils, and Broad Beans
2.2. Rhizobium spp. Strains: The Main Microsymbionts for Common Beans
2.3. Mesorhizobium spp.: The Main Microsymbiont for Chickpeas
2.4. Bradyrhizobium spp.: The Main Microsymbiont for Cowpeas, Mung Beans, and Pigeon Peas
2.4.1. Cowpeas
2.4.2. Mung Beans
2.4.3. Pigeon Peas
3. PGPR Benefits: Nutrition Enhancement and Tolerance to Abiotic Stresses
3.1. Temperate Pulses
3.1.1. Chickpeas
3.1.2. Peas
3.1.3. Lentils
3.1.4. Broad Beans
3.2. Tropical Pulses
3.2.1. Common Beans
3.2.2. Cowpeas
3.2.3. Mung Beans
3.2.4. Pigeon Peas
4. Microbiomes Associated with Pulses
4.1. Nodule Microbiome
4.2. Root and Rhizosphere Microbiome
4.3. Seed Microbiome
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nations, U. World Population to Reach 8 Billion on 15 November 2022. Available online: https://www.un.org/en/desa/world-population-reach-8-billion-15-november-2022 (accessed on 20 January 2023).
- Rawal, V.; Navarro, D.K. The Global Economy of Pulses; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Volume 174. [Google Scholar]
- Yeap, S.K.; Beh, B.K.; Ali, N.M.; Mohd Yusof, H.; Ho, W.Y.; Koh, S.P.; Alitheen, N.B.; Long, K. In VivoAntistress and Antioxidant Effects of Fermented and Germinated Mung Bean. BioMed Res. Int. 2014, 2014, 694842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N.M.; Mohd Yusof, H.; Yeap, S.-K.; Ho, W.-Y.; Beh, B.-K.; Long, K.; Koh, S.-P.; Abdullah, M.P.; Alitheen, N.B. Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract. Evid. Based Complement. Altern. Med. 2014, 2014, 350507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, N.M.; Mohd Yusof, H.; Long, K.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Koh, S.P.; Abdullah, M.P.; Alitheen, N.B. Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage. BioMed Res. Int. 2013, 2013, 693613. [Google Scholar] [CrossRef]
- Gödecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- Mistry, K.; Sardar, S.D.; Alim, H.; Patel, N.; Thakur, M.; Jabbarova, D.; Ali, A. Plant Based Proteins: Sustainable Alternatives. Plant Sci. Today 2022, 9, 820–828. [Google Scholar] [CrossRef]
- Alcorta, A.; Porta, A.; Tárrega, A.; Alvarez, M.D.; Vaquero, M.P. Foods for Plant-Based Diets: Challenges and Innovations. Foods 2021, 10, 293. [Google Scholar] [CrossRef]
- Calles, T.; Del Castello, R.; Baratelli, M.; Xipsiti, M.; Navarro, D.K. International Year of Pulses: Final Report; FAO: Rome, Italy, 2019. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 17 December 2022).
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do tillage systems influence nitrogen fixation in legumes? A review. Soil Tillage Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- Bellenger, J.P.; Darnajoux, R.; Zhang, X.; Kraepiel, A.M.L. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: A review. Biogeochemistry 2020, 149, 53–73. [Google Scholar] [CrossRef]
- Palmero, F.; Fernandez, J.A.; Garcia, F.O.; Haro, R.J.; Prasad, P.V.; Salvagiotti, F.; Ciampitti, I.A. A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. Eur. J. Agron. 2022, 136, 126514. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total. Environ. 2020, 743, 140682. [Google Scholar] [CrossRef]
- Choudhury, D.; Tarafdar, S.; Dutta, S. Plant growth promoting rhizobacteria (PGPR) and their eco-friendly strategies for plant growth regulation: A review. Plant Sci. Today 2022, 9, 524–537. [Google Scholar] [CrossRef]
- Khan, A.; Ding, Z.; Ishaq, M.; Khan, I.; Ahmed, A.A.; Khan, A.Q.; Guo, X. Applications of beneficial plant growth promoting rhizobacteria and mycorrhizae in rhizosphere and plant growth: A review. Int. J. Agric. Biol. Eng. 2020, 13, 199–208. [Google Scholar] [CrossRef]
- Goswami, M.; Deka, S. Plant growth-promoting rhizobacteria—Alleviators of abiotic stresses in soil: A review. Pedosphere 2020, 30, 40–61. [Google Scholar] [CrossRef]
- Hyder, S.; Rizvi, Z.F.; los Santos-Villalobos, S.D.; Santoyo, G.; Gondal, A.; Khalid, N.; Fatima, S.N.; Nadeem, M.; Rafique, K.; Rani, A. Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. J. Plant Nutr. 2023, 1–30. [Google Scholar] [CrossRef]
- Kumar, A.; Behera, I.; Langthasa, M.; PrakashNaroju, S. Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: A review. J. Plant Nutr. 2022, 1–26. [Google Scholar] [CrossRef]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef]
- Bhowmik, S.N.; Das, A. Biofertilizers: A Sustainable Approach for Pulse Production. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer: Singapore, 2018; pp. 445–485. [Google Scholar]
- Htwe, A.Z.; Moh, S.M.; Moe, K.; Yamakawa, T. Biofertiliser Production for Agronomic Application and Evaluation of Its Symbiotic Effectiveness in Soybeans. Agronomy 2019, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Boivin, S.; Ait Lahmidi, N.; Sherlock, D.; Bonhomme, M.; Dijon, D.; Heulin-Gotty, K.; Le-Queré, A.; Pervent, M.; Tauzin, M.; Carlsson, G.; et al. Host-specific competitiveness to form nodules in Rhizobium leguminosarumsymbiovarviciae. N. Phytol. 2020, 226, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Mazoyon, C.; Hirel, B.; Pecourt, A.; Catterou, M.; Gutierrez, L.; Sarazin, V.; Dubois, F.; Duclercq, J. Sphingomonas sediminicola Is an Endosymbiotic Bacterium Able to Induce the Formation of Root Nodules in Pea (Pisum sativum L.) and to Enhance Plant Biomass Production. Microiorganisms 2023, 11, 199. [Google Scholar] [CrossRef]
- Tong, W.; Li, X.; Huo, Y.; Zhang, L.; Cao, Y.; Wang, E.T.; Chen, W.; Tao, S.; Wei, G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst. Appl. Microbiol. 2018, 41, 300–310. [Google Scholar] [CrossRef]
- Young, J.P.W.; Moeskjær, S.; Afonin, A.; Rahi, P.; Maluk, M.; James, E.K.; Cavassim, M.I.A.; Rashid, M.H.; Aserse, A.A.; Perry, B.J.; et al. Defining the Rhizobium leguminosarum Species Complex. Genes 2021, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Hachana, A.; Hemissi, I.; Souissi, A.; L’Taief, B.; Abdi, N.; Bouraoui, M.; Al-Qthanin, R.N.; Arfaoui, H.; Sifi, B. Patterns for Pea-Rhizobium symbiosis efficiency response to pedological and varietal variations in Tunisia. Rhizosphere 2021, 17, 100304. [Google Scholar] [CrossRef]
- Stepanovic, S.V.; Burr, C.; Peterson, J.A.; Rudnick, D.; Creech, C.F.; Werle, R. Field Pea Response to Seeding Rate, Depth, and Inoculant in West-Central Nebraska. Agron. J. 2018, 110, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Yates, R.J.; Steel, E.J.; Poole, C.M.; Harrison, R.J.; Edwards, T.J.; Hackney, B.F.; Stagg, G.R.; Howieson, J.G. Optimizing the growth of forage and grain legumes on low pH soils through the application of superior Rhizobium leguminosarum biovar viciae strains. Grass Forage Sci. 2021, 76, 44–56. [Google Scholar] [CrossRef]
- Yates, R.J.; Harrison, R.J.; Loi, A.; Steel, E.J.; Edwards, T.J.; Nutt, B.J.; Porqueddu, C.; Gresta, F.; Howieson, J.G. Sourcing Rhizobium leguminosarum biovar viciae strains from Mediterranean centres of origin to optimize nitrogen fixation in forage legumes grown on acid soils. Grass Forage Sci. 2021, 76, 33–43. [Google Scholar] [CrossRef]
- Mendoza-Suárez, M.A.; Geddes, B.A.; Sánchez-Cañizares, C.; Ramírez-González, R.H.; Kirchhelle, C.; Jorrin, B.; Poole, P.S. Optimizing Rhizobium- legume symbioses by simultaneous measurement of rhizobial competitiveness and N 2 fixation in nodules. Proc. Natl. Acad. Sci. USA 2020, 117, 9822–9831. [Google Scholar] [CrossRef]
- Asfaw, B.; Aserse, A.A.; Asefa, F.; Yli-Halla, M.; Lindstrom, K. Genetically diverse lentil- and faba bean-nodulating rhizobia are present in soils across Central and Southern Ethiopia. FEMS Microbiol. Ecol. 2020, 96, fiaa015. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zou, L.; Penttinen, P.; Chen, Q.; Li, Q.Q.; Wang, C.Q.; Xu, K.W. Faba Bean (Vicia faba L.) Nodulating Rhizobia in Panxi, China, Are Diverse at Species, Plant Growth Promoting Ability, and Symbiosis Related Gene Levels. Front. Microbiol. 2018, 9, 1338. [Google Scholar] [CrossRef] [Green Version]
- L’Taief, B.; Smari, S.; Abdi, N.; Sifi, B. Biochemical and Physiological Characterization of Rhizobia Nodulating Vicia faba L. Genotypes. Comptes Rendus L’Acad. Bulg. Sci. 2019, 72, 740–750. [Google Scholar] [CrossRef]
- Rabab, I.R.; Omar, M.N.A.; Clara, A.R.; Enas, A.S.; Abdel-Fattah, M.; Zahran, H.H. Characterization and Evaluation of Rhizobium Isolates from Vicia Faba for Some Plant Growth Promoting Traits. Biosci. Res. 2018, 15, 2971–2982. [Google Scholar]
- Alemayehu, D.; Dechassa, N. Inoculating Faba Bean Seed with Rhizobium Bacteria Increases the Yield of the Crop and Saves Farmers from the Cost of Applying Phosphorus Fertilizer. Int. J. Plant Prod. 2022, 16, 261–273. [Google Scholar] [CrossRef]
- Allito, B.B.; Ewusi-Mensah, N.; Logah, V.; Hunegnaw, D.K. Legume-rhizobium specificity effect on nodulation, biomass production and partitioning of faba bean (Vicia faba L.). Sci. Rep. 2021, 11, 3678. [Google Scholar] [CrossRef] [PubMed]
- Lishan, T.; Alemu, W.; Wondimu, W.; Mekonnen, G. Effects of Bio-Fertiliser and Inter-Row Spacing on Yield and Yield Components of Faba Bean (Vicia Faba L.) in South Western Ethiopia. Trop. Agric. 2022, 99, 196–208. [Google Scholar]
- Sijilmassi, B.; Filali-Maltouf, A.; Boulahyaoui, H.; Kricha, A.; Boubekri, K.; Udupa, S.; Kumar, S.; Amri, A. Assessment of Genetic Diversity and Symbiotic Efficiency of Selected Rhizobia Strains Nodulating Lentil (Lens culinaris Medik.). Plants 2021, 10, 15. [Google Scholar] [CrossRef]
- Riah, N.; de Lajudie, P.; Béna, G.; Heulin, K.; Djekoun, A. Variability in symbiotic efficiency with respect to the growth of pea and lentil inoculated with various rhizobial genotypes originating from sub-humid and semi-arid regions of eastern Algeria. Symbiosis 2021, 85, 371–384. [Google Scholar] [CrossRef]
- Bueckert, R.; Zakeri, H.; Pritchard, J.; Lafond, G. First versus last born: Flowers, pods, and yield formation in no-tillage lentil. Crop. Sci. 2020, 60, 1634–1647. [Google Scholar] [CrossRef]
- Shamseldin, A.; Velázquez, E. The promiscuity of Phaseolus vulgaris L. (Common bean) for nodulation with rhizobia: A review. World J. Microbiol. Biotechnol. 2020, 36, 63. [Google Scholar] [CrossRef]
- Bender, F.R.; Alves, L.C.; da Silva, J.F.M.; Ribeiro, R.A.; Pauli, G.; Nogueira, M.A.; Hungria, M. Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation. Int. J. Mol. Sci. 2022, 23, 12035. [Google Scholar] [CrossRef]
- Aguilar, O.M.; Collavino, M.M.; Mancini, U. Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication. Sci. Rep. 2022, 12, 4591. [Google Scholar] [CrossRef]
- Costa, B.H.G.; de Resende, M.L.V.; Monteiro, A.C.A.; Júnior, P.M.R.; Botelho, D.M.D.S.; da Silva, B.M. Potassium phosphites in the protection of common bean plants against anthracnose and biochemical defence responses. J. Phytopathol. 2018, 166, 95–102. [Google Scholar] [CrossRef]
- Moura, F.T.; Ribeiro, R.A.; Helene, L.C.F.; Nogueira, M.A.; Hungria, M. So many rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis 2022, 86, 169–185. [Google Scholar] [CrossRef]
- Jesus, E.D.C.; Leite, R.D.A.; Bastos, R.D.A.; Aragão, O.O.D.S.; Araújo, A.P. Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean. Plant Soil 2018, 425, 201–215. [Google Scholar] [CrossRef]
- Tong, W.; Li, X.; Wang, E.; Cao, Y.; Chen, W.; Tao, S.; Wei, G. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom. 2020, 21, 186. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.; Florentino, L.A.; da Silva, K.B.; de Brandt, E.; Vandamme, P.; de Souza Moreira, F.M. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst. Appl. Microbiol. 2012, 35, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Dall’Agnol, R.F.; Bournaud, C.; De Faria, S.M.; Béna, G.; Moulin, L.; Hungria, M. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol. Ecol. 2017, 93, fix027. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.P.; Pereira, T.D.A.; Rufini, M.; Martins, F.A.D.; Junior, C.L.D.S.; Baptista, M.V.B.D.G.; da Silva, J.S.; de Oliveira, P.C.; Aragão, O.O.D.S.; de Andrade, M.J.B.; et al. Liquid Inoculation with Rhizobia in the Planting Furrow of Common Bean under No-Till Is Feasible under Different Soil and Climatic Conditions. Crop. Sci. 2019, 59, 2178–2184. [Google Scholar] [CrossRef]
- Massa, N.; Cesaro, P.; Todeschini, V.; Capraro, J.; Scarafoni, A.; Cantamessa, S.; Copetta, A.; Anastasia, F.; Gamalero, E.; Lingua, G.; et al. Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Appl. Soil Ecol. 2020, 148, 103507. [Google Scholar] [CrossRef]
- Oliveira, D.P.; Soares, B.L.; Ferreira, P.A.A.; Passos, T.R.; de Andrade, M.J.B.; Ferreira, D.F.; Moreira, F.M.D.S. Selection of elite Rhizobium strains by biometric techniques for inoculation in common bean. Agron. J. 2021, 113, 3244–3257. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; Chapagain, T.; Ghimire, B.; Pudasaini, R.; Tamang, B.B.; Gurung, K.; Choi, K.; Rai, L.; Magar, S.; Bk, B.; et al. Evaluating the Effectiveness of Rhizobium Inoculants and Micronutrients as Technologies for Nepalese Common Bean Smallholder Farmers in the Real-World Context of Highly Variable Hillside Environments and Indigenous Farming Practices. Agriculture 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Leite, R.; Martins, L.C.; Ferreira, L.V.d.S.F.; Barbosa, E.S.; Alves, B.J.R.; Zilli, J.E.; Araújo, A.P.; Jesus, E.D.C. Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans. Appl. Soil Ecol. 2022, 172, 104356. [Google Scholar] [CrossRef]
- Oliveira, D.P.; Soares, B.L.; Martins, F.A.D.; Franceschini, L.A.; Cardillo, B.E.D.S.; Rufini, M.; De Morais, A.R.; Moreira, F.M.D.S.; De Andrade, M.J.B. Viability of liquid medium-inoculation of Rhizobium etli in planting furrows with common bean. Pesqui. Agropecu. Bras. 2018, 53, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Raji, S.G.; Tzanakakis, V.; Dörsch, P. Bradyrhizobial inoculation and P application effects on haricot and mung beans in the Ethiopian Rift Valley. Plant Soil 2019, 442, 271–284. [Google Scholar] [CrossRef]
- Vishnyakova, M.A.; Burlyaeva, M.O.; Bulyntsev, S.V.; Seferova, I.V.; Plekhanova, E.S.; Nuzhdin, S.V. Chickpea landraces from centers of the crop origin: Diversity and differences. Selskokhozyaistvennaya Biol. 2017, 52, 976–985. [Google Scholar] [CrossRef]
- Gaur, Y.D.; Sen, A.N. Cross inoculation group specificity in Cicer-Rhizobium symbiosis. N. Phytol. 1979, 83, 745–754. [Google Scholar] [CrossRef]
- Kyei-Boahen, S.; Slinkard, A.E.; Walley, F.L. Isotopic fractionation during N2 fixation by chickpea. Soil Biol. Biochem. 2002, 34, 417–420. [Google Scholar] [CrossRef]
- Hill, Y.; Colombi, E.; Bonello, E.; Haskett, T.; Ramsay, J.; O’hara, G.; Terpolilli, J. Evolution of Diverse Effective N 2 -Fixing Microsymbionts of Cicer arietinum following Horizontal Transfer of the Mesorhizobium ciceri CC1192 Symbiosis Integrative and Conjugative Element. Appl. Environ. Microbiol. 2021, 87, e02558-20. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Srinivas, V.; Vemula, A.; Samineni, S.; Rathore, A. Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatal. Agric. Biotechnol. 2018, 15, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Manchanda, G.; Yang, Y.; Singh, D.; Srivastava, A.K.; Dubey, R.C.; Zhang, C. Deciphering the Factors for Nodulation and Symbiosis of Mesorhizobium Associated with Cicer arietinum in Northwest India. Sustainability 2019, 11, 7216. [Google Scholar] [CrossRef] [Green Version]
- Zaw, M.; Rathjen, J.R.; Zhou, Y.; Ryder, M.H.; Denton, M.D. Rhizobial diversity is associated with inoculation history at a two-continent scale. FEMS Microbiol. Ecol. 2022, 98, fiac0440. [Google Scholar] [CrossRef]
- Muleta, A.; Tesfaye, K.; Assefa, F.; Greenlon, A.; Riely, B.K.; Carrasquilla-Garcia, N.; Gai, Y.; Haileslassie, T.; Cook, D.R. Genomic diversity and distribution of Mesorhizobium nodulating chickpea (Cicer arietinum L.) from low pH soils of Ethiopia. Syst. Appl. Microbiol. 2022, 45, 126279. [Google Scholar] [CrossRef]
- Mir, M.I.; Kumar, B.K.; Gopalakrishnan, S.; Vadlamudi, S.; Hameeda, B. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon 2021, 7, e08321. [Google Scholar] [CrossRef]
- Bala, A.; Giller, K.E. Symbiotic specificity of tropical tree rhizobia for host legumes. N. Phytol. 2001, 149, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Grönemeyer, J.L.; Reinhold-Hurek, B. Diversity of Bradyrhizobia in Subsahara Africa: A Rich Resource. Front. Microbiol. 2018, 9, 2194. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.M.V.; Xavier, G.R.; Rangel, F.W.; Ribeiro, J.R.A.; Neves, M.C.P.; Morgado, L.B.; Rumjanek, N.G. Contribution of biological nitrogen fixation to cowpea: A strategy for improving grain yield in the semi-arid region of Brazil. Biol. Fertil. Soils 2003, 38, 333–339. [Google Scholar] [CrossRef]
- Leite, J.; Passos, S.R.; Simões-Araújo, J.L.; Rumjanek, N.G.; Xavier, G.R.; Zilli, J. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz. J. Microbiol. 2018, 49, 703–713. [Google Scholar] [CrossRef]
- Martins da Costa, E.; Soares de Carvalho, T.; Azarias Guimarães, A.; Ribas Leão, A.C.; Magalhães Cruz, L.; de Baura, V.A.; Lebbe, L.; Willems, A.; de Souza Moreira, F.M. Classification of the inoculant strain of cowpea UFLA03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Braz. J. Microbiol. 2019, 50, 335–345. [Google Scholar] [CrossRef]
- Guimarães, A.A.; Florentino, L.A.; Almeida, K.A.; Lebbe, L.; Silva, K.B.; Willems, A.; Moreira, F.M.D.S. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Syst. Appl. Microbiol. 2015, 38, 433–441. [Google Scholar] [CrossRef]
- Da Silva Júnior, E.B.; Favero, V.O.; Xavier, G.R.; Boddey, R.M.; Zilli, J.E. Rhizobium Inoculation of Cowpea in Brazilian Cerrado Increases Yields and Nitrogen Fixation. Agron. J. 2018, 110, 722–727. [Google Scholar] [CrossRef]
- Souza, A.C.D.M.; Lira, T.P.; DA Costa, A.F.; Fracetto, F.J.C.; Fracetto, G.G.M.; Junior, M.A.L. Biological Nitrogen Fixation Stability of Cowpea Cultivars with Tropical Semi-Arid Rhizobial Strains. Rev. Caatinga 2021, 34, 359–369. [Google Scholar] [CrossRef]
- Ramírez, M.D.A.; España, M.; Lewandowska, S.; Yuan, K.; Okazaki, S.; Ohkama-Ohtsu, N.; Yokoyama, T. Phylogenetic Analysis of Symbiotic Bacteria Associated with Two Vigna Species under Different Agro-Ecological Conditions in Venezuela. Microbes Environ. 2020, 35, ME19120. [Google Scholar] [CrossRef] [Green Version]
- Gyogluu, C.; Mohammed, M.; Jaiswal, S.K.; Kyei-Boahen, S.; Dakora, F.D. Assessing host range, symbiotic effectiveness, and photosynthetic rates induced by native soybean rhizobia isolated from Mozambican and South African soils. Symbiosis 2017, 75, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumenthal, M.J.; Staples, I.B. Origin, Evaluation and Use of Macrotyloma as Forage—A Review. Trop. Grassl. Aust. 1993, 27, 16–29. [Google Scholar]
- Makaure, B.T.; Aremu, A.O.; Magadlela, A. Soil Nutritional Status Drives the Co-occurrence of Nodular Bacterial Species and Arbuscular Mycorrhizal Fungi Modulating Plant Nutrition and Growth of Vigna unguiculata L. (Walp) in Grassland and Savanna Ecosystems in KwaZulu-Natal, South Africa. J. Soil Sci. Plant Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Mbah, G.C.; Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Phylogenetic Relationship, Symbiotic Effectiveness, and Biochemical Traits of Native Rhizobial Symbionts of Cowpea (Vigna unguiculata L. Walp) in South African Soil. J. Soil Sci. Plant Nutr. 2022, 22, 2235–2254. [Google Scholar] [CrossRef]
- Ayalew, T.; Yoseph, T. Symbiotic effectiveness of inoculation with Bradyrhizobium isolates on Cowpea (Vigna unguiculata (L.) Walp) varieties. Cogent Food Agric. 2020, 6, 1845495. [Google Scholar] [CrossRef]
- Ayalew, T.; Yoseph, T.; Petra, H.; Cadisch, G. Yield response of field-grown cowpea varieties to Bradyrhizobium inoculation. Agron. J. 2021, 113, 3258–3268. [Google Scholar] [CrossRef]
- Pule-Meulenberg, F. Root-Nodule Bacteria of Legumes Growing in Semi-Arid African Soils and Other Areas of the World. In Bacterial Diversity in Sustainable Agriculture; Sustainable Development and Biodiversity; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 101–130. [Google Scholar]
- Degefu, T.; Wolde-Meskel, E.; Rasche, F. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia. Int. J. Syst. Evol. Microbiol. 2018, 68, 449–460. [Google Scholar] [CrossRef]
- Nyaga, J.W.; Njeru, E.M. Potential of Native Rhizobia to Improve Cowpea Growth and Production in Semiarid Regions of Kenya. Front. Agron. 2020, 2, 606293. [Google Scholar] [CrossRef]
- Muindi, M.M.; Muthini, M.; Njeru, E.M.; Maingi, J. Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon 2021, 7, e06867. [Google Scholar] [CrossRef]
- Le Quéré, A.; Diop, S.; Dehaene, N.; Niang, D.; Rego, F.D.; Fall, S.; Neyra, M.; Karsova-Wade, T. Development of an Illumina-based analysis method to study bradyrhizobial population structure—Case study on nitrogen-fixing rhizobia associating with cowpea or peanut. Appl. Microbiol. Biotechnol. 2021, 105, 6943–6957. [Google Scholar] [CrossRef]
- Favero, V.O.; de Carvalho, R.H.; Leite, A.B.C.; de Freitas, K.M.; Zilli, J.; Xavier, G.R.; Rumjanek, N.G.; Urquiaga, S. Characterization and nodulation capacity of native bacteria isolated from mung bean nodules used as a trap plant in Brazilian tropical soils. Appl. Soil Ecol. 2021, 167, 104041. [Google Scholar] [CrossRef]
- Hakim, S.; Imran, A.; Mirza, M.S. Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Braz. J. Microbiol. 2021, 52, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Favero, V.O.; de Carvalho, R.H.; Leite, A.B.C.; dos Santos, D.M.T.; de Freitas, K.M.; Boddey, R.M.; Xavier, G.R.; Rumjanek, N.G.; Urquiaga, S. Bradyrhizobium strains from Brazilian tropical soils promote increases in nodulation, growth and nitrogen fixation in mung bean. Appl. Soil Ecol. 2022, 175, 104461. [Google Scholar] [CrossRef]
- Hakim, S.; Mirza, B.S.; Zaheer, A.; Mclean, J.E.; Imran, A.; Yasmin, S.; Sajjad Mirza, M. Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Appl. Microbiol. Biotechnol. 2018, 102, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Bullard, G.K.; Roughley, R.J.; Pulsford, D.J. The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Aust. J. Exp. Agric. 2005, 45, 127–140. [Google Scholar] [CrossRef]
- Christopher, M.; Macdonald, B.; Yeates, S.; Ziegler, D.; Seymour, N. Wild bradyrhizobia that occur in the Burdekin region of Queensland are as effective as commercial inoculum for mungbean (Vigna radiata (L.)) and black gram (Vigna mungo (L.)) in fixing nitrogen and dry matter production. Appl. Soil Ecol. 2018, 124, 88–94. [Google Scholar] [CrossRef]
- Favero, V.O.; de Carvalho, R.H.; Leite, A.B.C.; dos Santos, D.M.T.; de Freitas, K.M.; Zilli, J.; Xavier, G.R.; Rumjanek, N.G.; Urquiaga, S. Cross-Inoculation of Elite Commercial Bradyrhizobium Strains from Cowpea and Soybean in Mung Bean and Comparison with Mung Bean Isolates. J. Soil Sci. Plant Nutr. 2022, 22, 4356–4364. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Ratu, S.T.N.; Yasuda, M.; Göttfert, M.; Okazaki, S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis with Vigna Species. Front. Microbiol. 2018, 9, 3155. [Google Scholar] [CrossRef] [Green Version]
- Piromyou, P.; Songwattana, P.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; Tantasawat, P.A.; Giraud, E.; Göttfert, M.; Teaumroong, N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. Microbiologyopen 2019, 8, e00781. [Google Scholar] [CrossRef] [Green Version]
- Dechjiraratthanasiri, C.; Santasup, C.; Boonmee, P.; Inthasan, J. Identification and characterization of native rhizobia from three mungbean varieties. Malays. J. Microbiol. 2021, 17, 121–129. [Google Scholar] [CrossRef]
- Chaudhary, T.; Gera, R.; Shukla, P. Deciphering the Potential of Rhizobium pusense MB-17a, a Plant Growth-Promoting Root Endophyte, and Functional Annotation of the Genes Involved in the Metabolic Pathway. Front. Bioeng. Biotechnol. 2021, 8, 617034. [Google Scholar] [CrossRef] [PubMed]
- Maan, P.; Garcha, S.; Sharma, S.; Walia, G. Nodule Occupancy Behaviour of Bacteriocinogenic Rhizobium spp. in Mungbean (Vigna radiata). Legume Res. Int. J. 2021, 44, 1097–1103. [Google Scholar] [CrossRef]
- Chalasani, D.; Basu, A.; Pullabhotla, S.V.; Jorrin, B.; Neal, A.L.; Poole, P.S.; Podile, A.R.; Tkacz, A. Poor Competitiveness of Bradyrhizobium in Pigeon Pea Root Colonization in Indian Soils. Mbio 2021, 12, e0042321. [Google Scholar] [CrossRef] [PubMed]
- Bopape, F.L.; Gwata, E.T.; Hassen, A.I.; Zhou, M.M. Symbiotic efficiency of pigeonpea (Cajanus cajan (L.) Huth) with different sources of nitrogen. Plant Genet. Resour. Charact. Util. 2021, 19, 312–315. [Google Scholar] [CrossRef]
- Jorrin, B.; Maluk, M.; Atoliya, N.; Kumar, S.C.; Chalasani, D.; Tkacz, A.; Singh, P.; Basu, A.; Pullabhotla, S.V.; Kumar, M.; et al. Genomic Diversity of Pigeon Pea (Cajanus cajan L. Millsp.) Endosymbionts in India and Selection of Potential Strains for Use as Agricultural Inoculants. Front. Plant Sci. 2021, 12, 680981. [Google Scholar] [CrossRef]
- Alaswad, A.A.; Oehrle, N.W.; Krishnan, H.B. Classical Soybean (Glycine max (L.) Merr) Symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, Reveal Contrasting Symbiotic Phenotype on Pigeon Pea (Cajanus cajan (L.) Millsp). Int. J. Mol. Sci. 2019, 20, 1091. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, P.; Singh, P.K.; Chakraborty, D.; Mishra, S.; Pattnaik, R. Insight Into the Role of PGPR in Sustainable Agriculture and Environment. Front. Sustain. Food Syst. 2021, 5, 667150. [Google Scholar] [CrossRef]
- Santoyo, G.; Urtis-Flores, C.A.; Loeza-Lara, P.D.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology 2021, 10, 475. [Google Scholar] [CrossRef]
- Vocciante, M.; Grifoni, M.; Fusini, D.; Petruzzelli, G.; Franchi, E. The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. Appl. Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Basílio, F.; Dias, T.; Santana, M.M.; Melo, J.; Carvalho, L.; Correia, P.; Cruz, C. Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: The example of bacteria- and fungi-based biofertilizers. Appl. Soil Ecol. 2022, 178, 104550. [Google Scholar] [CrossRef]
- Timofeeva, A.; Galyamova, M.; Sedykh, S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Singh, S.P.; Cueto, L.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Singh, S.P.; Blázquez, M.A.; Sansinenea, E. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 8549–8565. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Sen, S. Role of Biological Nitrogen Fixation (BNF) in Sustainable Agriculture: A Review. Int. J. Adv. Life Sci. Res. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Mekonnen, H.; Kibret, M. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem. Biol. Technol. Agric. 2021, 8, 15. [Google Scholar] [CrossRef]
- Zaheer, A.; Malik, A.; Sher, A.; Qaisrani, M.M.; Mehmood, A.; Khan, S.U.; Ashraf, M.; Mirza, Z.; Karim, S.; Rasool, M. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 2019, 26, 1061–1067. [Google Scholar] [CrossRef]
- Laranjeira, S.; Fernandes-Silva, A.; Reis, S.; Torcato, C.; Raimundo, F.; Ferreira, L.; Carnide, V.; Marques, G. Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Appl. Soil Ecol. 2021, 164, 103927. [Google Scholar] [CrossRef]
- Jha, V.; Purohit, H.; Dafale, N.A. Designing an Efficient Consortium for Improved Crop Productivity using Phosphate Stress Adapted Bacteria with Multiple Growth-Promoting Attributes. Geomicrobiol. J. 2022, 39, 925–938. [Google Scholar] [CrossRef]
- Amy, C.; Avice, J.-C.; Laval, K.; Bressan, M. Are native phosphate-solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part II: PSB inoculation enables a halving of P input and improves the microbial community in the rapeseed rhizosphere. Rhizosphere 2022, 21, 100480. [Google Scholar] [CrossRef]
- Saikia, J.; Sarma, R.K.; Dhandia, R.; Yadav, A.; Bharali, R.; Gupta, V.K.; Saikia, R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep. 2018, 8, 3560. [Google Scholar] [CrossRef]
- Sepúlveda-Caamaño, M.; Gerding, M.; Vargas, M.; Moya-Elizondo, E.; Oyarzúa, P.; Campos, J. Lentil (Lens culinaris L.) growth promoting rhizobacteria and their effect on nodulation in coinoculation with rhizobia. Arch. Agron. Soil Sci. 2018, 64, 244–256. [Google Scholar] [CrossRef]
- Lastochkina, O.; Aliniaeifard, S.; Garshina, D.; Garipova, S.; Pusenkova, L.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Koryakov, I.; Sobhani, M. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. J. Plant Physiol. 2021, 263, 153462. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Hirsch, A.M.; Khan, N.; Malik, K.A.; Humm, E.A.; Pellegrini, M.; Shi, B.; Briscoe, L.; Huntemann, M.; Clum, A.; et al. Impact of Soil Salinity on the Cowpea Nodule-Microbiome and the Isolation of Halotolerant PGPR Strains to Promote Plant Growth under Salinity Stress. Phytobiomes J. 2020, 4, 364–374. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Naveed, M.; Zahir, Z.A.; Liu, F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 2015, 42, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Perinchery, A.; Jaffer, F.M.; Radhakrishnan, E.K. Differential modulation of phytoelemental composition by selected Pseudomonas spp. 3 Biotech 2018, 8, 377. [Google Scholar] [CrossRef]
- Bilal, S.; Hazafa, A.; Ashraf, I.; Alamri, S.; Siddiqui, M.H.; Ramzan, A.; Qamar, N.; Sher, F.; Naeem, M. Comparative Effect of Inoculation of Phosphorus-Solubilizing Bacteria and Phosphorus as Sustainable Fertilizer on Yield and Quality of Mung Bean (Vigna radiata L.). Plants 2021, 10, 2079. [Google Scholar] [CrossRef]
- Kumari, P.; Meena, M.; Upadhyay, R. Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal. Agric. Biotechnol. 2018, 16, 155–162. [Google Scholar] [CrossRef]
- Srivastava, S.; Sharma, S. Metabolomic insight into the synergistic mechanism of action of a bacterial consortium in plant growth promotion. J. Biosci. Bioeng. 2022, 134, 399–406. [Google Scholar] [CrossRef]
- Gupta, A.; Bano, A.; Rai, S.; Kumar, M.; Ali, J.; Sharma, S.; Pathak, N. ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum. 3 Biotech 2021, 11, 514. [Google Scholar] [CrossRef]
- Taha, K.; El Attar, I.; Hnini, M.; Raif, A.; Béna, G.; Aurag, J.; Berraho, E.B. Beneficial effect of Rhizobium laguerreae co-inoculated with native Bacillus sp. and Enterobacter aerogenes on lentil growth under drought stress. Rhizosphere 2022, 22, 100523. [Google Scholar] [CrossRef]
- Kawaka, F.; Makonde, H.; Dida, M.; Opala, P.; Ombori, O.; Maingi, J.; Muoma, J. Genetic diversity of symbiotic bacteria nodulating common bean (Phaseolus vulgaris) in western Kenya. PLoS ONE 2018, 13, e0207403. [Google Scholar] [CrossRef]
- Bakhtiyarifar, M.; Enayatizamir, N.; Khanlou, K.M. Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Arch. Microbiol. 2021, 203, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, S.; Sharma, P.; Sirari, A.; Kumawat, K.; Wati, L.; Gupta, S.; Mandahal, K.S. Chickpea (Cicer arietinum L.) as model legume for decoding the co-existence of Pseudomonas fluorescens and Mesorhizobium sp. as bio-fertilizer under diverse agro-climatic zones. Microbiol. Res. 2021, 247, 126720. [Google Scholar] [CrossRef] [PubMed]
- Abdela, A.A.; Barka, G.D.; Degefu, T. Co-inoculation effect of Mesorhizobium ciceri and Pseudomonas fluorescens on physiological and biochemical responses of Kabuli chickpea (Cicer arietinum L.) during drought stress. Plant Physiol. Rep. 2020, 25, 359–369. [Google Scholar] [CrossRef]
- Vahdatpour, F.; Aroiee, H.; Hemmati, K.; Kamkar, B.; Sheikh, F. Leaf Area Index, Dry Matter Accumulation and Allocation Trends in Vicia Faba L. Affected by Inoculation with Rhizobium and Pseudomonas. J. Agric. Sci. Technol. 2021, 23, 903–914. [Google Scholar]
- Singh, A.; Permar, V.; Tomar, B.S.; Praveen, S. Effect of Temperature on Symptoms Expression and Viral RNA Accumulation in Groundnut Bud Necrosis Virus Infected Vigna unguiculata. Iran. J. Biotechnol. 2018, 16, e1846. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Khan, A. Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. Biocatal. Agric. Biotechnol. 2020, 23, 101463. [Google Scholar] [CrossRef]
- Nascimento, F.X.; Tavares, M.J.; Franck, J.; Ali, S.; Glick, B.R.; Rossi, M.J. ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Arch. Microbiol. 2019, 201, 817–822. [Google Scholar] [CrossRef]
- Salehi, M.; Faramarzi, A.; Mohebalipour, N.; Farboodi, M.; Ajalli, J. Effects of glomus mosseae and pseudomonas fluorescens on eco-physiological traits and antioxidant production of mung bean under drought condition. Turk. J. Field Crops 2020, 25, 181–189. [Google Scholar] [CrossRef]
- Ahmad, M.; Naseer, I.; Hussain, A.; Mumtaz, M.Z.; Mustafa, A.; Hilger, T.H.; Zahir, Z.A.; Minggang, X. Appraising Endophyte–Plant Symbiosis for Improved Growth, Nodulation, Nitrogen Fixation and Abiotic Stress Tolerance: An Experimental Investigation with Chickpea (Cicer arietinum L.). Agronomy 2019, 9, 621. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.P.; Grover, M.; Chourasiya, D.; Bharti, A.; Agnihotri, R.; Maheshwari, H.S.; Pareek, A.; Buyer, J.S.; Sharma, S.K.; Schütz, L.; et al. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front. Microbiol. 2020, 11, 509919. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Gupta, S.; Ramawat, N. Unravelling the potential of microbes isolated from rhizospheric soil of chickpea (Cicer arietinum) as plant growth promoter. 3 Biotech 2019, 9, 277. [Google Scholar] [CrossRef]
- Gupta, A.; Rai, S.; Bano, A.; Khanam, A.; Sharma, S.; Pathak, N. Comparative Evaluation of Different Salt-Tolerant Plant Growth-Promoting Bacterial Isolates in Mitigating the Induced Adverse Effect of Salinity in Pisum sativum. Biointerface Res. Appl. Chem. 2021, 11, 13141–13154. [Google Scholar] [CrossRef]
- Mahgoub, H.A.M.; Fouda, A.; Eid, A.M.; Ewais, E.E.-D.; Hassan, S.E.-D. Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L. Plant Biotechnol. Rep. 2021, 15, 819–843. [Google Scholar] [CrossRef]
- De Lima, B.C.; Bonifacio, A.; Neto, F.D.A.; de Araujo, F.F.; Araujo, A.S.F. Bacillus subtilis rhizobacteria ameliorate heat stress in the common bean. Rhizosphere 2022, 21, 100472. [Google Scholar] [CrossRef]
- Kumari, P.; Meena, M.; Gupta, P.; Dubey, M.K.; Nath, G.; Upadhyay, R. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal. Agric. Biotechnol. 2018, 16, 163–171. [Google Scholar] [CrossRef]
- Alsalim, H.A. Assessment of Azotobacter Chroococcum’s Ability to Produce Hydrolytic Enzymes and Enhance Growth of Vicia Faba. Baghdad Sci. J. 2019, 16, 34–39. [Google Scholar] [CrossRef]
- Pastor-Bueis, R.; Jiménez-Gómez, A.; Barquero, M.; Mateos, P.F.; González-Andrés, F. Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule. Eur. J. Agron. 2021, 122, 126187. [Google Scholar] [CrossRef]
- Rocha, I.; Duarte, I.; Ma, Y.; Souza-Alonso, P.; Látr, A.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating with Arbuscular Mycorrhizal Fungi for Improved Field Production of Chickpea. Agronomy 2019, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Mamontova, T.; Afonin, A.M.; Ihling, C.; Soboleva, A.; Lukasheva, E.; Sulima, A.S.; Shtark, O.Y.; Akhtemova, G.A.; Povydysh, M.N.; Sinz, A.; et al. Profiling of Seed Proteome in Pea (Pisum sativum L.) Lines Characterized with High and Low Responsivity to Combined Inoculation with Nodule Bacteria and Arbuscular Mycorrhizal Fungi. Molecules 2019, 24, 1603. [Google Scholar] [CrossRef] [Green Version]
- Parihar, M.; Rakshit, A.; Rana, K.; Meena, R.P.; Joshi, D.C. A consortium of arbuscular mycorrizal fungi improves nutrient uptake, biochemical response, nodulation and growth of the pea (Pisum sativum L.) under salt stress. Rhizosphere 2020, 15, 100235. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; El-Sawah, A.M. The Mode of Integration Between Azotobacter and Rhizobium Affect Plant Growth, Yield, and Physiological Responses of Pea (Pisum sativum L.). J. Soil Sci. Plant Nutr. 2022, 22, 1238–1251. [Google Scholar] [CrossRef]
- El-Mansy, A.B.; Mahmoud, M.; Mansour, M. Synergistic effects of inoculating AMF and foliar iron fertilizer on growth and yield of broad bean under North Sinai conditions. Catrina Int. J. Environ. Sci. 2021, 23, 11–26. [Google Scholar] [CrossRef]
- Akpinar, C.; Ortas, I.; Demirbas, A. The Effects of Different ZN Doses and Mycorrhizae Application on Horse Bean Growth and Nutrient Uptake under Sterile and Non Sterile Soil Conditions. Sci. Pap. Ser. A Agron. 2018, 61, 21–26. [Google Scholar]
- Pereira, S.; Singh, S.; Oliveira, R.; Ferreira, L.; RoSa, E.; Marques, G. Co-inoculation with rhizobia and mycorrhizal fungi increases yield and crude protein content of cowpea (Vigna unguiculata (L.) Walp.) under drought stress. Landbauforsch. J. Sustain. Org. Agric. Syst. 2020, 70, 56–65. [Google Scholar] [CrossRef]
- Gough, E.C.; Owen, K.J.; Zwart, R.S.; Thompson, J.P. The role of nutrients underlying interactions among root-nodule bacteria (Bradyrhizobium sp.), arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus thornei) in nitrogen fixation and growth of mung bean (Vigna radiata). Plant Soil 2022, 472, 421–449. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, A.; Chaturvedi, O.P.; Nagori, T.; Kumar, N.; Gupta, A. Efficacy of rhizobial and phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi to ameliorate shade response on six pulse crops. Agrofor. Syst. 2018, 92, 499–509. [Google Scholar] [CrossRef]
- Pereira, S.; Mucha, Â.; Gonçalves, B.; Bacelar, E.; Látr, A.; Ferreira, H.; Oliveira, I.; Rosa, E.; Marques, G. Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop. Pasture Sci. 2019, 70, 595–605. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Egea-Gilabert, C.; Ros, M.; Pascual, J.A.; Fernández, J.A. Inoculation with Different Nitrogen-Fixing Bacteria and Arbuscular Mycorrhiza Affects Grain Protein Content and Nodule Bacterial Communities of a Fava Bean Crop. Agronomy 2020, 10, 768. [Google Scholar] [CrossRef]
- Vo, Q.A.T.; Ballard, R.A.; Barnett, S.J.; Franco, C.M.M. Isolation and characterisation of endophytic actinobacteria and their effect on the growth and nodulation of chickpea (Cicer arietinum). Plant Soil 2021, 466, 357–371. [Google Scholar] [CrossRef]
- Xu, T.; Vo, Q.A.T.; Barnett, S.J.; Ballard, R.A.; Zhu, Y.; Franco, C.M.M. Revealing the underlying mechanisms mediated by endophytic actinobacteria to enhance the rhizobia—chickpea (Cicer arietinum L.) symbiosis. Plant Soil 2022, 474, 299–318. [Google Scholar] [CrossRef]
- Yasmin, R.; Hussain, S.; Rasool, M.H.; Siddique, M.H.; Muzammil, S. Isolation, Characterization of Zn Solubilizing Bacterium (Pseudomonas protegens RY2) and its Contribution in Growth of Chickpea (Cicer arietinum L.) as Deciphered by Improved Growth Parameters and Zn Content. Dose-Response 2021, 19, 15593258211036792. [Google Scholar] [CrossRef] [PubMed]
- Bazghaleh, N.; Hamel, C.; Gan, Y.; Tar’An, B.; Knight, J.D. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes. Can. J. Microbiol. 2018, 64, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Jatan, R.; Chauhan, P.S.; Lata, C. Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 2019, 111, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, Z.; Faizan, S.; Gulzar, B.; Hakeem, K.R. Inoculation of Rhizobium Alleviates Salinity Stress through Modulation of Growth Characteristics, Physiological and Biochemical Attributes, Stomatal Activities and Antioxidant Defence in Cicer arietinum L. J. Plant Growth Regul. 2021, 40, 2148–2163. [Google Scholar] [CrossRef]
- Nagaraju, Y.; Mahadevaswamy; Naik, N.M.; Gowdar, S.B.; Narayanarao, K.; Satyanarayanarao, K. ACC Deaminase-Positive Halophilic Bacterial Isolates with Multiple Plant Growth-Promoting Traits Improve the Growth and Yield of Chickpea (Cicer arietinum L.) Under Salinity Stress. Front. Agron. 2021, 3, 681007. [Google Scholar] [CrossRef]
- Didovich, S.; Ptashnik, O.; Pashtetskiy, V. IOP Effectiveness of Polyfunctional Microbial Preparations in Growing Pisum Sativum L. in the South of Russia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 624, p. 012064. [Google Scholar]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Plant Growth-Promoting Rhizobacteria Ameliorates Salinity Stress in Pea (Pisum sativum). J. Plant Growth Regul. 2022, 41, 647–656. [Google Scholar] [CrossRef]
- Khan, A.A.; Wang, T.; Hussain, T.; Ali, F.; Shi, F.; Latef, A.A.H.A.; Ali, O.M.; Hayat, K.; Mehmood, S.; Zainab, N.; et al. Halotolerant-Koccuria rhizophila (14asp)-Induced Amendment of Salt Stress in Pea Plants by Limiting Na+ Uptake and Elevating Production of Antioxidants. Agronomy 2021, 11, 1907. [Google Scholar] [CrossRef]
- Parihar, M.; Rakshit, A.; Rana, K.; Tiwari, G.; Jatav, S.S. The Effect of Arbuscular Mycorrhizal Fungi Inoculation in Mitigating Salt Stress of Pea (Pisum Sativum L.). Commun. Soil Sci. Plant Anal. 2020, 51, 1545–1559. [Google Scholar] [CrossRef]
- Belimov, A.A.; Zinovkina, N.Y.; Safronova, V.I.; Litvinsky, V.A.; Nosikov, V.V.; Zavalin, A.A.; Tikhonovich, I.A. Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environ. Exp. Bot. 2019, 167, 103859. [Google Scholar] [CrossRef]
- Amirnia, R.; Ghiyasi, M.; Moghaddam, S.S.; Rahimi, A.; Damalas, C.A.; Heydarzadeh, S. Nitrogen-Fixing Soil Bacteria Plus Mycorrhizal Fungi Improve Seed Yield and Quality Traits of Lentil (Lens culinaris Medik). J. Soil Sci. Plant Nutr. 2019, 19, 592–602. [Google Scholar] [CrossRef]
- Singh, N.; Singh, G.; Gupta, R. Nutrient uptake and nutrient use efficiency as influenced by application of plant growth promoting rhizobacteria, Rhizobium, and phosphorus in lentil (Lens culinaris Medikus). Agrochimica 2019, 63, 275–290. [Google Scholar] [CrossRef]
- Singh, N.; Singh, G.; Aggarwal, N.; Khanna, V. Yield enhancement and phosphorus economy in lentil (Lens culinaris Medikus) with integrated use of phosphorus, Rhizobium and plant growth promoting rhizobacteria. J. Plant Nutr. 2018, 41, 737–748. [Google Scholar] [CrossRef]
- Prysiazhniuk, O.I.; Slobodianiuk, S.V.; Topchii, O.V.; Sukhova, H.I.; Karpuk, L.M.; Kryvenko, A.I.; Svystunova, I.V.; Pavlichenko, A.A. Peculiarities of the lentil productivity formation under the use of nitrogen-fixing and phosphate-mobilizing microorganisms. Bull. Natl. Acad. Sci. Repub. Kazakhstan 2020, 4, 81–89. [Google Scholar] [CrossRef]
- Zafar-Ul-Hye, M.; Akbar, M.N.; Iftikhar, Y.; Abbas, M.; Zahid, A.; Fahad, S.; Datta, R.; Ali, M.; Elgorban, A.M.; Ansari, M.J.; et al. Rhizobacteria Inoculation and Caffeic Acid Alleviated Drought Stress in Lentil Plants. Sustainability 2021, 13, 9603. [Google Scholar] [CrossRef]
- Riaz, U.; Kharal, M.A.; Murtaza, G.; Zaman, Q.U.; Javaid, S.; Malik, H.A.; Aziz, H.; Abbas, Z. Prospective Roles and Mechanisms of Caffeic Acid in Counter Plant Stress: A Mini Review. Pak. J. Agric. Res. 2018, 32, 8–19. [Google Scholar] [CrossRef]
- Toussaint, J.-P.; Smith, F.A.; Smith, S.E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 2007, 17, 291–297. [Google Scholar] [CrossRef]
- Jorge, G.L.; Kisiala, A.; Morrison, E.; Aoki, M.; Nogueira, A.P.O.; Emery, R.N. Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ. Exp. Bot. 2019, 162, 525–540. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Raklami, A.; Benidire, L.; Tahiri, A.-I.; Göttfert, M.; Oufdou, K. Effects of PGPR Co-inoculation on Growth, Phosphorus Nutrition and Phosphatase/Phytase Activities of Faba Bean under Different Phosphorus Availability Conditions. Pol. J. Environ. Stud. 2020, 29, 1557–1565. [Google Scholar] [CrossRef]
- Bechtaoui, N.; Raklami, A.; Tahiri, A.-I.; Benidire, L.; El Alaoui, A.; Meddich, A.; Göttfert, M.; Oufdou, K. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol. Open 2019, 8, bio043968. [Google Scholar] [CrossRef] [Green Version]
- Raklami, A.; Bechtaoui, N.; Tahiri, A.-I.; Anli, M.; Meddich, A.; Oufdou, K. Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Front. Microbiol. 2019, 10, 1106. [Google Scholar] [CrossRef] [Green Version]
- Radwan, U.; Hezayen, F.; Nabil, S. A Gram-negative bacterium, Sinorhizobium saheli S-1T promotes Vicia faba growth under irradiance stress. Catrina Int. J. Environ. Sci. 2022, 24, 57–63. [Google Scholar] [CrossRef]
- Mansour, E.; Mahgoub, H.A.; Mahgoub, S.A.; El-Sobky, E.-S.E.; Abdul-Hamid, M.I.; Kamara, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Desoky, E.-S.M. Enhancement of drought tolerance in diverse Vicia faba cultivars by inoculation with plant growth-promoting rhizobacteria under newly reclaimed soil conditions. Sci. Rep. 2021, 11, 24142. [Google Scholar] [CrossRef] [PubMed]
- Idder, B.; Djibaoui, R.; Yssaad, H.A.R.; Djoudi, A. Role of some rhizospheric Pseudomonas on the growth and physiology of broad bean (Vicia faba) under salt stress conditions. Acta Agrobot. 2019, 72, 1794. [Google Scholar] [CrossRef]
- De Brito Ferreira, E.P.; da Silva, O.F.; Wander, A.E. Economics of rhizobia and azospirilla co-inoculation in irrigated common bean in commercial and family farming. Pesqui. Agropecu. Bras. 2020, 55, 01532. [Google Scholar] [CrossRef]
- Gabre, V.V.; Venancio, W.S.; Moraes, B.A.; Furmam, F.D.G.; Galvão, C.W.; Gonçalves, D.R.P.; Etto, R.M. Multiple Effect of Different Plant Growth Promoting Microorganisms on Beans (Phaseolus vulgaris L.) Crop. Braz. Arch. Biol. Technol. 2020, 63, e20190493. [Google Scholar] [CrossRef]
- Mortinho, E.S.; Jalal, A.; Oliveira, C.E.D.S.; Fernandes, G.C.; Pereira, N.C.M.; Rosa, P.A.L.; Nascimento, V.D.; de Sá, M.E.; Teixeira Filho, M.C.M. Co-Inoculations with Plant Growth-Promoting Bacteria in the Common Bean to Increase Efficiency of NPK Fertilization. Agronomy 2022, 12, 1325. [Google Scholar] [CrossRef]
- Horácio, E.H.; Zucareli, C.; Gavilanes, F.Z.; Yunes, J.S.; dos Santos Sanzovo, A.W.; Andrade, D.S. Co-inoculation of rhizobia, azospirilla and cyanobacteria for increasing common bean production. Londrina 2020, 41, 2015–2028. [Google Scholar] [CrossRef]
- De Carvalho, R.H.; Jesus, E.D.C.; Favero, V.O.; Straliotto, R.; Araújo, A.P. The Co-inoculation of Rhizobium and Bradyrhizobium Increases the Early Nodulation and Development of Common Beans. J. Soil Sci. Plant Nutr. 2020, 20, 860–864. [Google Scholar] [CrossRef]
- Filipini, L.D.; Pilatti, F.K.; Meyer, E.; Ventura, B.S.; Lourenzi, C.R.; Lovato, P.E. Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Arch. Microbiol. 2021, 203, 1033–1038. [Google Scholar] [CrossRef]
- Steiner, F.; Ferreira, H.C.P.; Zuffo, A.M. Can co-inoculation of Rhizobium tropici and Azospirillum brasilense increase common bean nodulation and grain yield? Semin. Ciênc. Agrár. 2019, 40, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Razakatiana, A.; Trap, J.; Baohanta, R.; Raherimandimby, M.; Le Roux, C.; Duponnois, R.; Ramanankierana, H.; Becquer, T. Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiologia 2020, 83, 150685. [Google Scholar] [CrossRef]
- Garcia, C.L.; Dattamudi, S.; Chanda, S.; Jayachandran, K. Effect of Salinity Stress and Microbial Inoculations on Glomalin Production and Plant Growth Parameters of Snap Bean (Phaseolus vulgaris). Agronomy 2019, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Tiryaki, D.; Aydın, İ.; Atıcı, Ö. Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 2019, 86, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Talaat, N.B. Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci. Hortic. 2019, 250, 254–265. [Google Scholar] [CrossRef]
- Valdez-Nuñez, R.A.; Castro-Tuanama, R.; Castellano-Hinojosa, A.; Bedmar, E.J.; Ríos-Ruiz, W.F. PGPR Characterization of Non-Nodulating Bacterial Endophytes from Root Nodules of Vigna unguiculata (L.) Walp. Microb. Probiotics Agric. Syst. Adv. Agron. Use 2019, 111–126. [Google Scholar] [CrossRef]
- Nascimento, E.; Souza, A.R.D.; Nascimento, R.D.; da Silva, A.A.; Bezerra, C.V.D.C.; Lima, R.F.D.; Guimarães, R.F.B.; Batista, M.C. Co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense in cowpea under salt stress. Rev. Bras. Eng. Agric. Ambient. 2023, 27, 3–8. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.; Silva, E.C.D.; Buzetti, S.; Fernandes, G.C.; Rodrigues, W.L. Technical and economic viability of cowpea co-inoculated with Azospirillum brasilense and Bradyrhizobium spp. and nitrogen doses. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 304–311. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; da Silva, E.C.; Silva, V.M.; Fernandes, G.C.; Rodrigues, W.L.; Céu, E.G.O.; de Lima, B.H.; Jalal, A.; Muraoka, T.; et al. Co-Inoculation with Azospirillum brasilense and Bradyrhizobium sp. Enhances Nitrogen Uptake and Yield in Field-Grown Cowpea and Did Not Change N-Fertilizer Recovery. Plants 2022, 11, 1847. [Google Scholar] [CrossRef]
- Da Silva, K.C.; Lima, I.M.D.O.; Cabral, R.D.C.; Zuffo, A.M.; Steiner, F. Cowpea and Mungbean Response to Co-Inoculation of Bradyrhizobium and Azospirillum and Molybdenum Application in Sandy Soil. Commun. Soil Sci. Plant Anal. 2022, 54, 677–689. [Google Scholar] [CrossRef]
- Dos Santos, G.R.; Reis, H.B.; Rotili, E.A.; Mourão, D.D.S.C.; De Farias, D.I.O.A.; Pereira, T.A.; Ferreira, T.P.D.S.; Junior, A.F.C. Inoculation of Rhizobium associated with Trichoderma asperellum on the development and yield of cowpea. Rev. Bras. Cienc. Agrar. Agrar 2020, 15, e8082. [Google Scholar] [CrossRef]
- Mendes, J.B.S.; Neto, V.P.D.C.; de Sousa, C.D.A.; Filho, M.R.D.C.; Rodrigues, A.C.; Bonifacio, A. Trichoderma and bradyrhizobia act synergistically and enhance the growth rate, biomass and photosynthetic pigments of cowpea (Vigna unguiculata) grown in controlled conditions. Symbiosis 2020, 80, 133–143. [Google Scholar] [CrossRef]
- Gudiño–Gomezjurado, M.E.; Leite, R.D.A.; de Carvalho, T.S.; Pfenning, L.H.; Moreira, F.M.D.S. Phosphate–solubilizing fungi co–inoculated with Bradyrhizobium promote cowpea growth under varying N and P fertilization conditions. Sci. Agric. 2022, 79, e20210061. [Google Scholar] [CrossRef]
- Puozaa, D.K.; Jaiswal, S.K.; Dakora, F.D. Phylogeny and distribution of Bradyrhizobium symbionts nodulating cowpea (Vigna unguiculata L. Walp) and their association with the physicochemical properties of acidic African soils. Syst. Appl. Microbiol. 2019, 42, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Abiala, M.A.; Sahoo, L. Bacillus aryabhattai enhanced proline content, stabilized membrane and improved growth of cowpea under NaCl-induced salinity stress. J. Appl. Microbiol. 2022, 133, 1520–1533. [Google Scholar] [CrossRef]
- Yousefi, A.; Mirzaeitalarposhti, R.; Nabati, J.; Soufizadeh, S. Evaluation radiation use efficiency and growth indicators on two mung bean (Vigna radiata L.) genotypes under the influence of biological fertilizers. J. Plant Nutr. 2020, 44, 1095–1106. [Google Scholar] [CrossRef]
- Singh, T.B.; Sahai, V.; Goyal, D.; Prasad, M.; Yadav, A.; Shrivastav, P.; Ali, A.; Dantu, P.K. Identification, Characterization and Evaluation of Multifaceted Traits of Plant Growth Promoting Rhizobacteria from Soil for Sustainable Approach to Agriculture. Curr. Microbiol. 2020, 77, 3633–3642. [Google Scholar] [CrossRef]
- Htwe, A.Z.; Moh, S.M.; Soe, K.M.; Moe, K.; Yamakawa, T. Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.V.; Naragund, R.; Jaiswal, P.; Bana, R.S.; Choudhary, A.K. Influence of Crop Establishment Practices and Microbial Inoculants on Nodulation of Summer Green Gram (Vigna radiata) and Soil Quality Parameters. Legum. Res. Int. J. 2020, 45, 646–651. [Google Scholar] [CrossRef]
- Wahid, F.; Sharif, M.; Fahad, S.; Adnan, M.; Khan, I.A.; Aksoy, E.; Ali, A.; Sultan, T.; Alam, M.; Saeed, M.; et al. Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. J. Plant Nutr. 2019, 42, 1760–1769. [Google Scholar] [CrossRef]
- Lasudee, K.; Tokuyama, S.; Lumyong, S.; Pathom-Aree, W. Actinobacteria Associated with Arbuscular Mycorrhizal Funneliformis mosseae Spores, Taxonomic Characterization and Their Beneficial Traits to Plants: Evidence Obtained from Mung Bean (Vigna radiata) and Thai Jasmine Rice (Oryza sativa). Front. Microbiol. 2018, 9, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, S.; Mistry, J.; Shah, F.; Chandwani, S.; Amaresan, N.; Supriya, N.R. Salt-tolerant bacteria enhance the growth of mung bean (Vigna radiata L.) and uptake of nutrients, and mobilize sodium ions under salt stress condition. Int. J. Phytoremediation 2023, 25, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.D. Impact of Different Rhizobial Strains on Physiological Responses and Seed Yield of Mungbean [Vigna radiata (L.) Wilczek] under Field Conditions. Legume Res. Int. J. 2021, 44, 679–683. [Google Scholar] [CrossRef]
- Ahmed, B.; Shahid, M.; Syed, A.; Rajput, V.D.; Elgorban, A.M.; Minkina, T.; Bahkali, A.H.; Lee, J. Drought Tolerant Enterobacter sp./Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attributes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. Biology 2021, 10, 1149. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef]
- Rasool, S.; Ahmad, A.; Siddiqi, T.O.; Ahmad, P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol. Plant. 2013, 35, 1039–1050. [Google Scholar] [CrossRef]
- Phonglosa, A.; Dalei, B.B.; Ray, K.; Pattanayak, S.K. Integrated nutrient management improves productivity, profitability and quality of rainfed pigeonpea (Cajanus cajan L. Mill sp.) in an alfisol of Eastern India. J. Plant Nutr. 2022, 46, 285–299. [Google Scholar] [CrossRef]
- Malviya, D.; Varma, A.; Singh, U.B.; Singh, S.; Singh, H.V.; Saxena, A.K. Sulfur-Oxidizing Bacteria from Coal Mine Enhance Sulfur Nutrition in Pigeonpea (Cajanus cajan L.). Front. Environ. Sci. 2022, 10, 932402. [Google Scholar] [CrossRef]
- Malviya, D.; Varma, A.; Singh, U.B.; Singh, S.; Saxena, A.K. Unraveling the mechanism of sulfur nutrition in pigeonpea inoculated with sulfur-oxidizing bacteria. Front. Microbiol. 2022, 13, 927702. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Kumar, S.; Kumar, P. Effect of integrated nutrient management on growth and yield of pigeon pea (Cajanus cajan) in changing climatic condition of Bihar. Legume Res. Int. J. 2020, 43, 436–439. [Google Scholar] [CrossRef]
- Devi, N.S.A.; Kumutha, K.; Anandham, R.; Krishnamoorthy, R. Induction of moisture stress tolerance by Bacillus and Paenibacillus in pigeon pea (Cajanus cajan. L). 3 Biotech 2021, 11, 355. [Google Scholar] [CrossRef]
- Anand, G.; Bhattacharjee, A.; Shrivas, V.L.; Dubey, S.; Sharma, S. ACC deaminase positive Enterobacter-mediated mitigation of salinity stress, and plant growth promotion of Cajanus cajan: A lab to field study. Physiol. Mol. Biol. Plants 2021, 27, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, D.B.; Mahmoudi, M.; Radl, V.; Brachmann, A.; Schloter, M.; Kemen, E.; Marín, M. Microbiome profiling reveals that Pseudomonas antagonises parasitic nodule colonisation of cheater rhizobia in Lotus. N. Phytol. 2022, 234, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Rocha, I.; Souza-Alonso, P.; Pereira, G.; Ma, Y.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Using microbial seed coating for improving cowpea productivity under a low-input agricultural system. J. Sci. Food Agric. 2020, 100, 1092–1098. [Google Scholar] [CrossRef]
- Hakim, S.; Mirza, B.S.; Imran, A.; Zaheer, A.; Yasmin, S.; Mubeen, F.; Mclean, J.E.; Mirza, M.S. Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan. Microbiol. Res. 2020, 231, 126356. [Google Scholar] [CrossRef] [PubMed]
- Soldan, R.; Fusi, M.; Cardinale, M.; Daffonchio, D.; Preston, G.M. The effect of plant domestication on host control of the microbiota. Commun. Biol. 2021, 4, 936. [Google Scholar] [CrossRef] [PubMed]
- Stopnisek, N.; Shade, A. Persistent microbiome members in the common bean rhizosphere: An integrated analysis of space, time, and plant genotype. ISME J. 2021, 15, 2708–2722. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; De Hollander, M.; Ramírez, C.A.; Mendes, R.; Raaijmakers, J.M.; Carrión, V.J. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 2019, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Wang, Q.; Zhang, X.; Hao, J.; Li, L.; Chen, W.; Li, H.; Wang, Y.; Ma, C.; Wang, J.; et al. Community structure and associated networks of endophytic bacteria in pea roots throughout plant life cycle. Plant Soil 2021, 468, 225–238. [Google Scholar] [CrossRef]
- Li, Y.; Laterrière, M.; Lay, C.-Y.; Klabi, R.; Masse, J.; St-Arnaud, M.; Yergeau, É.; Lupwayi, N.Z.; Gan, Y.; Hamel, C. Effects of arbuscular mycorrhizal fungi inoculation and crop sequence on root-associated microbiome, crop productivity and nutrient uptake in wheat-based and flax-based cropping systems. Appl. Soil Ecol. 2021, 168, 104136. [Google Scholar] [CrossRef]
- Wang, G.; Bei, S.; Li, J.; Bao, X.; Zhang, J.; Schultz, P.A.; Li, H.; Li, L.; Zhang, F.; Bever, J.D.; et al. Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. J. Appl. Ecol. 2021, 58, 496–506. [Google Scholar] [CrossRef]
- Chaudhari, D.; Rangappa, K.; Das, A.; Layek, J.; Basavaraj, S.; Kandpal, B.K.; Shouche, Y.; Rahi, P. Pea (Pisum sativum l.) Plant Shapes Its Rhizosphere Microbiome for Nutrient Uptake and Stress Amelioration in Acidic Soils of the North-East Region of India. Front. Microbiol. 2020, 11, 968. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowska, J.; Borowik, A.; Olszewski, J.; Kucharski, J. Soil Bacterial Community and Soil Enzyme Activity Depending on the Cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. Diversity 2019, 11, 246. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, A.S.F.; Miranda, A.R.L.; Sousa, R.S.; Mendes, L.W.; Antunes, J.E.L.; Oliveira, L.M.D.S.; de Araujo, F.F.; Melo, V.M.M.; Figueiredo, M.D.V.B. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl. Soil Ecol. 2019, 143, 26–34. [Google Scholar] [CrossRef]
- Martínez-Romero, E.; Aguirre-Noyola, J.L.; Taco-Taype, N.; Martínez-Romero, J.; Zuñiga-Dávila, D. Plant microbiota modified by plant domestication. Syst. Appl. Microbiol. 2020, 43, 126106. [Google Scholar] [CrossRef] [PubMed]
- Medina-Paz, F.; Herrera-Estrella, L.; Heil, M. All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean (Phaseolus vulgaris) in Its Centre of Domestication. Plants 2022, 11, 1631. [Google Scholar] [CrossRef] [PubMed]
- Morales Moreira, Z.P.; Helgason, B.L.; Germida, J.J. Assembly and potential transmission of the Lens culinaris seed microbiome. FEMS Microbiol. Ecol. 2021, 97, fiab166. [Google Scholar] [CrossRef]
- Chartrel, V.; Dugat-Bony, E.; Sarthou, A.-S.; Huchette, S.; Bonnarme, P.; Irlinger, F. The microbial community associated with pea seeds (Pisum sativum) of different geographical origins. Plant Soil 2021, 462, 405–427. [Google Scholar] [CrossRef]
- Morales Moreira, Z.P.; Helgason, B.L.; Germida, J.J. Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes. Can. J. Microbiol. 2021, 67, 161–173. [Google Scholar] [CrossRef]
- Lalzar, M.; Zeevi, A.; Frenkel, O.; Gamliel, A.; Abbo, S.; Kruh, L.I. Seed-Derived Microbial Community of Wild Cicer Seedlings: Composition and Augmentation to Domesticated Cicer. Microbiol. Spectr. 2022, 10, e0278521. [Google Scholar] [CrossRef]
- Bintarti, A.F.; Kearns, P.J.; Sulesky-Grieb, A.; Shade, A. Abiotic Treatment to Common Bean Plants Results in an Altered Endophytic Seed Microbiome. Microbiol. Spectr. 2022, 10, e0021021. [Google Scholar] [CrossRef] [PubMed]
FAO Code | Pulses | Grain Production (103 Tons) | Number of Producing Countries | Main Producing Countries |
---|---|---|---|---|
176 | Common beans (Phaseolus vulgaris); mung beans (Vigna radiata) * | 27,038 | 103 | India (20.9%), Brazil (10.9%), Myanmar (10.8%), China (4.9%), United Republic of Tanzania (4.4%), United States (4.4%), Mexico (3.9%), Kenya (2.9%), Uganda (2.7%), Argentina (2.1%), Ethiopia (2.0%), Burundi (1.8%), Rwanda (1.7%), Cameroon (1.5%), Mozambique (1.4%), Canada (1.4%), Angola (1.3%), Democratic People’s Republic of Korea (1.2%) |
191 | Chickpeas (Cicer arietinum) | 15,402 | 46 | India (70%), Turkey (4.1%), Myanmar (3.3%), Australia (3.2%), Russian Federation (3.1%) |
187 | Peas (Pisum sativum) | 14,015 | 95 | Canada (29.5%), Russia Federation (17.6%), China (10.5%), United States (6.5%), India (6.2%), France (4.6%), Ukraine (4.3%), Ethiopia (2.7%) |
195 | Cowpeas (Vigna unguiculata) | 8578 | 35 | Nigeria (41.5%), Niger (28.8%), Burkina Faso (7.8%), Kenya (2.6%) |
201 | Lentils (Lens culinaris) | 6297 | 42 | Canada (39.4%), India (21.3%), Australia (7.6%), Turkey (5.7%), United States (5.1%), Nepal (4.0%) |
181 | Broad beans (Vicia faba) | 5531 | 64 | China (31.8%), Ethiopia (18.8%), United Kingdom of Great Britain and Northern Ireland (9.1%), Australia (5.8%), Germany (3.3%), Lithuania (3.0%), Sudan (3%), France (2.8%), Italy (2.3%) |
197 | Pigeon peas (Cajanus cajan) | 4917 | 24 | India (77.9%, Malawi (8.6%), Myanmar (7.1%) |
Pulses (References) | ||
---|---|---|
Bacteria | Pseudomonas | chickpea [111,112,113]; pea [114,115]; lentil [116]; common bean [117]; cowpea [118,119,120]; mung bean [121,122]; pigeon pea [123] |
Bacillus | chickpea [111]; pea [114,124]; lentil [125]; cowpea [119]; common bean [43,117,126]; mung bean [122,127] | |
Pseudomonas fluorescens | chickpea [128,129]; broad bean [130]; lentil [63,131]; common bean [132,133]; mung bean [134,135]; pigeon pea [136] | |
Bacillus subtilis | chickpea [137]; pea [115,138]; broad bean [139]; common bean [132,140]; mung bean [135,141]. | |
Azotobacter chroococcum | chickpea [137]; broad bean [142]; common bean [143]; pigeon pea [123,136] | |
AMF | AMF | chickpea [144]; pea [145,146,147]; broad bean [148,149]; cowpea [78,150]; mung bean [151] |
Rhizophagus irregularis | Chickpea [112]; pea [152]; broad bean [153,154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, G.R.; Jesus, E.d.C.; Dias, A.; Coelho, M.R.R.; Molina, Y.C.; Rumjanek, N.G. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. Plants 2023, 12, 954. https://doi.org/10.3390/plants12040954
Xavier GR, Jesus EdC, Dias A, Coelho MRR, Molina YC, Rumjanek NG. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. Plants. 2023; 12(4):954. https://doi.org/10.3390/plants12040954
Chicago/Turabian StyleXavier, Gustavo Ribeiro, Ederson da Conceição Jesus, Anelise Dias, Marcia Reed Rodrigues Coelho, Yulimar Castro Molina, and Norma Gouvêa Rumjanek. 2023. "Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies" Plants 12, no. 4: 954. https://doi.org/10.3390/plants12040954
APA StyleXavier, G. R., Jesus, E. d. C., Dias, A., Coelho, M. R. R., Molina, Y. C., & Rumjanek, N. G. (2023). Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. Plants, 12(4), 954. https://doi.org/10.3390/plants12040954