Ionomic Parameters of Populations of Common Juniper (Juniperus communis L.) Depending on the Habitat Type
Abstract
:1. Introduction
2. Results
Concentration of Macro-, Micro-, and Non-Essential Elements in Current-Year Needles of J. communis
3. Discussion
3.1. Macroelements
3.2. Microelements
3.3. Non-Essential Elements
3.4. Macro-, Micro-, Non-Essential Element Concentration Relationship to Habitat Type
4. Materials and Methods
4.1. Study Sites and Sampling Material
4.2. Analysis of Nitrogen and Macro-, Micro- and Non-Essential Elements
4.3. Comparison of Ionomic Data with Environmental Parameters
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, R.P. Junipers of the World: The Genus Juniperus, 4th ed.; Trafford Publishing Company: Bloomington, IN, USA, 2014. [Google Scholar]
- Euforgen. Juniperus communis. Available online: https://www.euforgen.org/species/juniperus-communis/ (accessed on 8 January 2023).
- Thomas, P.A.; El-Barghathi, M.; Polwart, A. Biological flora of the British Isles: Juniperus communis L. J. Ecol. 2007, 95, 1404–1440. [Google Scholar] [CrossRef]
- Farjon, A. Juniperus communis. The IUCN Red List of Threatened Species 2013: e.T42229A2963096. Available online: https://www.iucnredlist.org/species/42229/2963096 (accessed on 5 January 2023).
- Provan, J.; Beatty, G.E.; Hunter, A.M.; McDonald, R.A.; McLaughlin, E.; Preston, S.J.; Wilson, S. Restricted gene flow in fragmented populations of a wind-pollinated tree. Conserv. Genet. 2008, 9, 1521–1532. [Google Scholar] [CrossRef]
- Ward, L.K. The conservation of juniper: Longevity and old age. J. Appl. Ecol. 1982, 19, 917–928. [Google Scholar] [CrossRef]
- Van der Merwe, M.V.D.; Winfield, M.O.; Arnold, G.M.; Parker, J.S. Spatial and temporal aspects of the genetic structure of Juniperus communis populations. Mol. Ecol. 2000, 9, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Verheyen, K.; Schreurs, K.; Vanholen, B.; Hermy, M. Intensive management fails to promote recruitment in the last large population of Juniper communis (L.) in Flanders (Belgium). Biol. Conserv. 2005, 124, 113–121. [Google Scholar] [CrossRef]
- Vanden-Broeck, A.; Gruwez, R.; Cox, K.; Adriaenssens, S.; Michalczyk, I.M.; Verheyen, K. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: A case study for Juniperus communis in northwestern Europe. BMC Genet. 2011, 12, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis). Ann. Bot. 2014, 113, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquemart, A.L.; Buyens, C.; Delescaille, L.M.; Van Rossum, F. Using genetic evaluation to guide conservation of remnant Juniperus communis (Cupressaceae) populations. Plant Biol. J. 2021, 23, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Oostermeijer, J.G.B.; De Knegt, B. Genetic population structure of the wind-pollinated, dioecious shrub Juniperus communis in fragmented Dutch heathlands. Plant Species Biol. 2004, 19, 175–184. [Google Scholar] [CrossRef]
- Michalczyk, I.M. Application of DNA Marker Systems to Test for Genetic Imprints of Habitat Fragmentation in Juniperus communis L. on Different Spatial and Temporal Scales: Integration of Scientific Knowledge into Conservation Measures. Ph.D. Thesis, Philipps-Universität Marburg, Marburg, Germany, 2008; p. 120. [Google Scholar]
- Reim, S.; Lochschmidt, F.; Proft, A.; Tröber, U.; Wolf, H. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany. Biodivers. Conserv. 2016, 42, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, M.; Banaš, M.; Ženata, M. Ecological conditions and the distribution of alpine juniper (Juniperus communis subsp. alpina) in the Hruby Jesenik Mts. Biologia 2009, 64, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Vaitkevičiutė, R.; Brazaitis, G.; Šepetienė, J. Dendrological and recreational values of Arlaviskės juniper formation. Acta Biol. Univ. Daugavp. 2011, 11, 126–133. [Google Scholar]
- Vaitkeviciute, R. Distribution and status of common juniper (Juniperus communis L.) in Lithuanian pine stands. In Research for Rural Development. International Scientific Conference Proceedings; Latvia University of Agriculture: Jelgava, Latvia, 2012; Volume 18, pp. 33–36. [Google Scholar]
- Marozas, V.; Racinskas, J.; Bartkevicius, E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For. Ecol. Manag. 2007, 250, 47–55. [Google Scholar] [CrossRef]
- Kuliešis, A.; Kulbokas, G.; Kasperavičius, A.; Kazanavičiūtė, V.; Kvalkauskienė, M. Lithuanian National Forest Inventory 1998–2017. From Measurements to Decision Making; Lututė: Kaunas, Lithuania, 2021. [Google Scholar]
- Bais, S.; Gill, N.S.; Rana, N.; Shandil, S. A phytopharmacological review on a medicinal plant: Juniperus communis. Int. Sch. Res. Not. 2014, 2014, 634723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, E.J.; Jegal, J.; Chung, K.W.; Noh, S.G.; Chung, H.Y.; Nam, Y.H.; Kang, T.H.; Kim, S.N.; Yang, M.H. Hypolaetin-7-O-β-D-xyloside from Juniperus communis fruits inhibits melanogenesis on zebrafish pigmentation. Nat. Prod. Commun. 2017, 12, 1687–1690. [Google Scholar] [CrossRef] [Green Version]
- Orhan, N. Juniperus species: Features, profile and applications to diabetes. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 447–459. [Google Scholar] [CrossRef]
- Vasilijević, B.; Knežević-Vukčević, J.; Mitić-Ćulafić, D.; Orčić, D.; Francišković, M.; Srdic-Rajic, T.; Jovanović, M.; Nikolić, B. Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem. Toxicol. 2018, 112, 118–125. [Google Scholar] [CrossRef]
- Banerjee, S.; Mukherjee, A.; Chatterjee, T.K. Evaluation of analgesic activities of methanolic extract of medicinal plant Juniperus communis Linn. Int. J. Pharm. Pharm. Sci. 2012, 4, 547–550. [Google Scholar]
- Raina, R.; Verma, P.K.; Peshin, R.; Kour, H. Potential of Juniperus communis L. as a nutraceutical in human and veterinary medicine. Heliyon 2019, 5, e02376. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Flores-Félix, J.D.; Coutinho, P.; Alves, G.; Silva, L.R. Zimbro (Juniperus communis L.) as a Promising Source of Bioactive Compounds and Biomedical Activities: A Review on Recent Trends. Int. J. Mol. Sci. 2022, 23, 3197. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Orcic, D.; Balog, K.; Francikovic, M.; Simin, N.; Mimica-Dukic, N. Anti-inflammatory and free radical scavenging activity of Juniperus communis L. 1753 var. communis leaves and cones extract. Planta Med. 2010, 76, P331. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Rolta, R.; Kumar, V.; Sourirajan, A.; Upadhyay, N.K.; Dev, K. Phytocompounds of three medicinal plants (Juniperus communis, Urtica dioica and Coleus forskohlii) of North West Himalayas increases the potency of antibacterial and antifungal antibiotics. Plant Arch. 2020, 20, 481–489. [Google Scholar]
- Labokas, J.; Ložienė, K. Variation of essential oil yield and relative amounts of enantiomers of α-pinene in leaves and unripe cones of Juniperus communis L. growing wild in Lithuania. J. Essent. Oil Res. 2013, 25, 244–250. [Google Scholar] [CrossRef]
- Judžentienė, A. Juniperus communis L.: A review of volatile organic compounds of wild and cultivated common juniper in Lithuania. Chemija 2019, 30, 184–193. [Google Scholar] [CrossRef]
- Meier, E.; Paal, J. Cryptogams in Estonian alvar forests: Species composition and their substrata in stands of different age and management intensity. Ann. Bot. Fenn. 2009, 46, 1–20. [Google Scholar] [CrossRef]
- Nowak-Dyjeta, K.; Giertych, M.J.; Thomas, P.; Iszkuło, G. Males and females of Juniperus communis L. and Taxus baccata L. show different seasonal patterns of nitrogen and carbon content in needles. Acta Physiol. Plant. 2017, 39, 191. [Google Scholar] [CrossRef] [Green Version]
- Sile, I.; Romane, E.; Reinsone, S.; Maurina, B.; Tirzite, D.; Dambrova, M. Medicinal plants and their uses recorded in the Archives of Latvian Folklore from the 19th century. J. Ethnopharmacol. 2020, 249, 112–378. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Indicator values of plants in Central Europe. Scr. Geobot. 1992, 18, 258. [Google Scholar]
- Davies, C.E.; Moss, D.; Hill, M.O. EUNIS Habitat Classification Revised 2004; European Topic Centre on Nature Protection and Biodiversity: Paris, France, 2004. [Google Scholar]
- Chytrý, M.; Tichý, L.; Hennekens, S.M.; Knollová, I.; Janssen, J.A.M.; Rodwell, J.S.; Peterka, T.; Marcenò, C.; Landucci, F.; Danihelka, J.; et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 2020, 23, 648–675. [Google Scholar] [CrossRef]
- Michalczyk, I.M.; Sebastiani, F.; Buonamici, A.; Cremer, E.; Mengel, C.; Ziegenhagen, B.; Vendrami, G.G. Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. Mol. Ecol. 2006, 6, 346–348. [Google Scholar] [CrossRef]
- Vilcinskas, R.; Jociene, L.; Rekasius, T.; Marozas, V.; Paulauskas, A.; Kupcinskiene, E. Genetic diversity of Lithuanian populations of Juniperus communis L. in relation to abiotic and biotic factors. Dendrobiology 2016, 76, 61–71. [Google Scholar] [CrossRef]
- Čeburnis, D.; Steinnes, E. Conifer needles as biomonitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Zackrisson, O. Enhanced soil fertility under Juniperus communis in arctic ecosystems. Plant Soil 2007, 294, 147–155. [Google Scholar] [CrossRef]
- Allegrezza, M.; Corti, G.; Cocco, S.; Pesaresi, S.; Chirico, G.B.; Saracino, A.; Bonanomi, G. Microclimate buffering and fertility island formation during Juniperus communis ontogenesis modulate competition–facilitation balance. J. Veg. Sci. 2016, 27, 616–627. [Google Scholar] [CrossRef]
- Nedjimi, B.; Beladel, B.; Guit, B. Multi-element determination in medicinal Juniper tree (Juniperus phoenicea) by instrumental neutron activation analysis. J. Radiat. Res. Appl. Sci. 2015, 8, 243–246. [Google Scholar] [CrossRef]
- Rabska, M.; Pers-Kamczyc, E.; Żytkowiak, R.; Adamczyk, D.; Iszkuło, G. Sexual Dimorphism in the Chemical Composition of Male and Female in the Dioecious Tree, Juniperus communis L., Growing under Different Nutritional Conditions. Int. J. Mol. Sci. 2020, 21, 8094. [Google Scholar] [CrossRef]
- Stankov, S.; Fidan, H.; Petkova, N.; Stoyanova, M.; Radoukova, T.; Stoyanova, A. Phytochemical Profile of Ripe Juniperus excelsa M. Bieb. Galbuli from Bulgaria. Int. J. Food Eng. 2020, 14, 109–112. [Google Scholar]
- Penuelas, J.; Filella, I.; Tognetti, R. Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob. Chang. Biol. 2001, 7, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Rabska, M.; Robakowski, P.; Ratajczak, E.; Żytkowiak, R.; Iszkuło, G.; Pers-Kamczyc, E. Photochemistry differs between male and female Juniperus communis L. independently of nutritional availability. Trees 2021, 35, 27–42. [Google Scholar] [CrossRef]
- Thelin, G.; Rosengren-Brinck, U.; Nihlgard, B.; Barkman, A. Trends in needle and soil chemistry of Norway spruce and Scots pine stands in South Sweden 1985–1994. Environ. Pollut. 1998, 99, 149–158. [Google Scholar] [CrossRef]
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Oren, R.; Werk, K.S.; Schulze, E.D.; Meyer, J.; Schneider, B.U.; Schrame, P. Performance of two Picea abies (L.) Karst. stands at different stages of decline. VI. Nutrient concentration. Oecologia 1988, 77, 151–162. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: New York, NY, USA, 2011; pp. 101–105. [Google Scholar]
- Cape, N.J.; Freer-Smith, P.H.; Paterson, I.S.; Parkinson, J.A.; Wolfenden, J. The nutritional status of Picea abies (L.) Karst. across Europe, and implications for “forest decline”. Trees 1990, 4, 211–224. [Google Scholar] [CrossRef]
- Landolt, W.; Guecheva, M.; Bucher, J.B. The spatial distribution of different elements in and on the foliage of Norway spruce growing in Switzerland. Environ. Pollut. 1989, 56, 155–167. [Google Scholar] [CrossRef]
- Kupčinskienė, E. Foliar elements of Scots pine across the transect from the ammonia emission source (1995–1998). Ekol. Bratisl. 2003, 22 (Suppl. S2), 171–175. [Google Scholar]
- Kupčinskienė, E. Latent Injuries of Scots Pine (Pinus sylvestris L.) under Influence of Local Pollution; Monograph; Lutute: Kaunas, Lithuania, 2006; pp. 1–256. [Google Scholar]
- Ende, H.P.; Evers, F.H. Visual magnesium deficiency symptoms (coniferous, deciduous trees) and threshold values (foliar, soil). In Magnesium Deficiency in Forest Ecosystems. Nutrients in Ecosystems; Hüttl, R.F., Schaaf, W., Eds.; Springer: Dordrecht, Germany, 1997; Volume 1, pp. 3–21. [Google Scholar] [CrossRef]
- Johnston, W.R.; Proctor, J. Metal concentrations in plants and soils from two British serpentine soils. Plant Soil 1977, 46, 275–278. [Google Scholar] [CrossRef]
- Fastovetska, K.; Šlepetienė, A.; Vigricas, E.; Urbaitis, G.; Belova, O. Lead content in plant materials in the buffer zones of surface water bodies of Northwestern and Central regions of Lithuania. Zemdirbyste-Agriculture 2022, 109, 335–340. [Google Scholar] [CrossRef]
- Montes, N.; Bertaudiere-Montes, V.; Badri, W.; Zaoui, E.H.; Gauquelin, T. Biomass and nutrient content of a semi-arid mountain ecosystem: The Juniperus thurifera L. woodland of Azzaden Valley (Morocco). For. Ecol. Manag. 2002, 166, 35–43. [Google Scholar] [CrossRef]
- Catling, P.M.; Freedman, B.; Lucas, Z. The vegetation and phytogeography of Sable Island Nova Scotia Canada. Proc. Nova Scotian Inst. Sci. 1984, 34, 182–249. [Google Scholar]
- Rodriguez-Navarro, A.; Rubio, F. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 2006, 57, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Smulkytė, M.; Oškinis, V. Common juniper (Juniperus communis L.) state in the Šauklių juniper scrub (Salantai regional park). In Human and Nature Safety: Proceedings of the 20th International Scientific-Practice Conference; Akademija: Kaunas Distr., Lithuania, 7–9 May 2014; Akademija: Kaunas, Lithuania. (In Lithuanian)
- Kolari, K.K. Micro-nutrient deficiency in forest trees and dieback of Scots pine in Finland. A review. Folia For. 1979, 389, 1–37. [Google Scholar]
- Cakmak, I. Tansley Review No. 111. Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.R.; McDonald, G.K.; Rengel, Z. Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arientinum L.). Plant Soil 2004, 267, 271–284. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Mankovska, B. Deposition of heavy metals in Slovakia-assessment on the basis of moss and humus analyses. Ekol. Bratisl. 1997, 16, 422–433. [Google Scholar]
- Millaleo, R.; Reyes-Diaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Plant. Nutr. Soil Sci. 2010, 10, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Larbi, A.; Abadia, A.; Abadia, J.; Morales, F. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth. Res. 2006, 89, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treeby, M.; Marschner, H.; Römheld, V. Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 1989, 114, 217–226. [Google Scholar] [CrossRef]
- Vilčinskas, R.; Marozas, V.; Jocienė, L.; Kupčinskienė, E. Variety of habitats associated with common juniper (Juniperus communis L.) growing in Lithuania. Biologija 2016, 62, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, M.; Fišerová, E.; Římalová, V.; Bednář, M.; Banaš, M. Sex-based differences in vigor and site preferences of Juniperus communis subsp. nana. Nord. J. Bot. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Palaj, A.; Kollár, J. Expansion of phanerophytes above the timberline in the Western Carpathians. Biologia 2021, 76, 1991–2003. [Google Scholar] [CrossRef]
- Jocienė, L.; Krokaitė, E.; Shakeneva, D.; Rekašius, T.; Stanys, V.; Šikšnianienė, J.; Žvingila, D.; Paulauskas, A.; Kupčinskienė, E. Relationship between genetic and environmental characteristics of Lithuanian populations of purple loosestrife (Lythrum salicaria). J. Environ. Eng. Landsc. 2022, 30, 81–93. [Google Scholar] [CrossRef]
- Jocienė, L.; Stravinskaitė, K.; Krokaitė, E.; Janulionienė, R.; Rekašius, T.; Paulauskas, A.; Marozas, V.; Kupčinskienė, E. AFLP-based genetic structure of Lithuanian populations of small balsam (Impatiens parviflora DC.) in relation to habitat characteristics. Forests 2022, 13, 1228. [Google Scholar] [CrossRef]
- Świerkosz, K.; Reczyńska, K. Differentiation of natural scrub communities of the Cotoneastro-Amelanchieretum group in Central Europe. PLoS ONE 2022, 17, e0266868. [Google Scholar] [CrossRef] [PubMed]
- Vaičiulytė, V.; Ložienė, K. Variation of chemical and morphological characters of leaves and unripe cones in Juniperus communis. Bot. Lith. 2013, 19, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Butkienė, R.; Būdienė, J.; Judžentienė, A. Variation of secondary metabolities (essential oils) in various plant organs of Juniperus communis L. wild growing in Lithuania. Balt. For. 2015, 21, 59–64. [Google Scholar]
- Sõukand, R.; Kalle, R. Change in medical plant use in Estonian ethnomedicine: A historical comparison between 1888 and 1994. J. Ethnopharmacol. 2011, 135, 251–260. [Google Scholar] [CrossRef]
- Pranskuniene, Z.; Dauliute, R.; Pranskunas, A.; Bernatoniene, J. Ethnopharmaceutical knowledge in Samogitia region of Lithuania: Where old traditions overlap with modern medicine. J. Ethnobiol. Ethnomed. 2018, 14, 70. [Google Scholar] [CrossRef]
- Kondratas, R.; Gudienė, V.; Šimaitienė, Z.; Maurina, B.; Raal, A.; Paju, K. Estonian, Latvian and Lithuanian national pharmacopoeias. In International Society for the History of Pharmacy = Internationale Gesellschaft für Geschichte der Pharmazie=Société Internationale d’Histoire de la Pharmacie: New: Results from the ISHP Working Group; International Society for the History of Pharmacy: Wien, Austria, 2015; Available online: http://www.histpharm.org/ISHPWG.htm (accessed on 9 January 2023).
- Kupcinskiene, E.; Stikliene, A.; Judzentiene, A. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ. Pollut. 2008, 155, 481–491. [Google Scholar] [CrossRef]
- Orav, A.; Kailas, T.; Müürisepp, M. Chemical investigation of the essential oil from berries and needles of common juniper (Juniperus communis L.) growing wild in Estonia. Nat. Prod. Res. 2010, 24, 1789–1799. [Google Scholar] [CrossRef]
- Martz, F.; Reltola, R.; Fontanay, S.; Duval, R.E.; Julkunen-Tiitto, R.; Stark, S. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J. Agric. Food Chem. 2009, 57, 9575–9584. [Google Scholar] [CrossRef] [PubMed]
- Shahmir, F.; Ahmadi, L.; Mirza, M.; Korori, S.A.A. Secretory elements of needles and berries of Juniperus communis L. ssp. communis and its volatile constituents. Flavour Frag. J. 2003, 18, 425–428. [Google Scholar] [CrossRef]
- Allen, S.E. Analysis of vegetation and other organic materials. In Chemical Analysis of Ecological Materials, 2nd ed.; Allen, S.E., Ed.; Blackwell Scientific Publications: Oxford, UK; London, UK, 1989; pp. 46–61. [Google Scholar]
- Krokaitė, E.; Shakeneva, D.; Juškaitytė, E.; Rekašius, T.; Nemaniūtė-Gužienė, J.; Butkuvienė, J.; Patamsytė, J.; Rančelienė, V.; Vyšniauskienė, R.; Duchovskienė, L.; et al. Nitrogen concentration of the aquatic plant species in relation to land cover type and other variables of the environment. Zemdirbyste-Agriculture 2019, 106, 203–212. [Google Scholar] [CrossRef]
- Schwedt, G. Basic Principles. In The Essential Guide to Analytical Chemistry; John Wiley and Sons: New York, NY, USA, 1997; pp. 16–17. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie. Gründzuge der Vegetationskunde; Springer: Wien, Austria; New York, NY, USA, 1964. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org (accessed on 5 January 2023).
- Signorell, A.; Aho, K.; Alfons, A.; Anderegg, N.; Aragon, T.; Arppe, A.; Baddeley, A.; Barton, K.; Bolker, B.; Borchers, H.W. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.47. 2022. Available online: https://cran.r-project.org/package=DescTools (accessed on 28 December 2022).
- Subirana, I.; Sanz, H.; Vila, J. Building Bivariate Tables: The compare Groups Package for R. J. Stat. Softw. 2014, 57, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Simko, V. R Package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.90). Available online: https://github.com/taiyun/corrplot (accessed on 29 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jocienė, L.; Krokaitė, E.; Rekašius, T.; Vilčinskas, R.; Judžentienė, A.; Marozas, V.; Kupčinskienė, E. Ionomic Parameters of Populations of Common Juniper (Juniperus communis L.) Depending on the Habitat Type. Plants 2023, 12, 961. https://doi.org/10.3390/plants12040961
Jocienė L, Krokaitė E, Rekašius T, Vilčinskas R, Judžentienė A, Marozas V, Kupčinskienė E. Ionomic Parameters of Populations of Common Juniper (Juniperus communis L.) Depending on the Habitat Type. Plants. 2023; 12(4):961. https://doi.org/10.3390/plants12040961
Chicago/Turabian StyleJocienė, Lina, Edvina Krokaitė, Tomas Rekašius, Ramūnas Vilčinskas, Asta Judžentienė, Vitas Marozas, and Eugenija Kupčinskienė. 2023. "Ionomic Parameters of Populations of Common Juniper (Juniperus communis L.) Depending on the Habitat Type" Plants 12, no. 4: 961. https://doi.org/10.3390/plants12040961
APA StyleJocienė, L., Krokaitė, E., Rekašius, T., Vilčinskas, R., Judžentienė, A., Marozas, V., & Kupčinskienė, E. (2023). Ionomic Parameters of Populations of Common Juniper (Juniperus communis L.) Depending on the Habitat Type. Plants, 12(4), 961. https://doi.org/10.3390/plants12040961