GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic and Flavonoids Contents
2.2. Extraction with Ethanol Solvent and Identification of Compounds Using GC/MS
2.3. Extraction with Methanol Solvent and Identification of Compounds Using GC/MS
2.4. Extraction with Diethyl Ether Solvent and Identification of Compounds Using GC/MS
2.5. Extraction with Chloroform–Methanol Solvent and Identification of Compounds Using GC/MS
2.6. Extraction with Ethyl Acetate Solvent and Identification of Compounds Using GC/MS
2.7. Comparison between Extraction Percentage of the Phytochemical Compounds Using Different Solvents
3. Materials and Methods
3.1. Collection of Plant Samples and Preparation
3.2. Sample Extraction
3.3. Total Phenolic Content
3.4. Total Flavonoid Content
3.5. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hassannia, B.; Logie, E.; Vandenabeele, P.; Vanden Berghe, T.; Vanden Berghe, W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem. Pharmacol. 2020, 173, 113602. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Monteiro, W.M.; Bernarde, P.S. “Kambo” frog (Phyllomedusa bicolor): Use in folk medicine and potential health risks. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahim, A.M.; Alnajjar, A.O.; Mohammed, M.E.; Idris, A.M.; Mohammed, M.E.A.; Michalke, B. Investigation of total zinc contents and zinc-protein profile in medicinal plants traditionally used for diabetes treatment. Biometals. Int. J. Role Met. Ions Biol. Biochem. Med. 2020, 33, 65–74. [Google Scholar]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad Devkota, H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Alqethami, A.; Aldhebiani, A.Y. Medicinal plants used in Jeddah, Saudi Arabia: Phytochemical screening. Saudi J. Biol. Sci. 2021, 28, 805–812. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Kotb, S.M.; Musharraf, S.G.; Shehata, A.A.; Guo, Z.; Alsharif, S.M.; Khalifa, S.A. Saudi Arabian Plants: A Powerful Weapon against a Plethora of Diseases. Plants 2022, 11, 3436. [Google Scholar] [CrossRef]
- Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Althubiti, M.A.; Eldein, M.M.N. Trends in the incidence and mortality of cancer in Saudi Arabia. Saudi Med. J. 2018, 39, 1259. [Google Scholar] [CrossRef]
- Ullah, R.; Alqahtani, A.S.; Noman, O.M.A.; Alqahtani, A.M.; Ibenmoussa, S.; Bourhia, M. A review on ethno-medicinal plants. Used in traditional medicine in the Kingdom of Saudi Arabia. Saudi. J. Biol. Sci. 2020, 27, 2706–2718. [Google Scholar] [CrossRef]
- Orfali, R.; Perveen, S.; Siddiqui, N.A.; Alam, P.; Alhowiriny, T.A.; Al-Taweel, A.M.; Al-Yahya, S.; Ameen, F.; Majrashi, N.; Alluhayb, K. Pharmacological evaluation of secondary metabolites and their simultaneous determination in the Arabian medicinal plant Plicosepalus curviflorus using HPTLC validated method. J. Anal. Methods Chem. 2019, 2019, 7435909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Khan, M.; Abdullah, M.M.S.; Al-Wahaibi, L.H.; Alkhathlan, H.Z. Characterization of secondary metabolites of leaf and stem essential oils of Achillea fragrantissima from central region of Saudi Arabia. Arab. J. Chem. 2020, 13, 5254–5261. [Google Scholar] [CrossRef]
- Redwan, E.M.; El-Baky, N.A.; Al-Hejin, A.M.; Baeshen, M.N.; Almehdar, H.A.; Elsaway, A.; Gomaa, A.B.; Al-Masaudi, S.B.; Al-Fassi, F.A.; AbuZeid, I.E.; et al. Significant antibacterial activity and synergistic effects of camel lactoferrin with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Res. Microbiol. 2016, 167, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.T.; Alshehri, M.A.; Alanazi, N.A.; Panneerselvam, C.; Trivedi, S.; Maggi, F.; Sut, S.; Dall’Acqua, S. Phytochemical analysis of Rhazya stricta extract and its use in fabrication of silver nanoparticles effective against mosquito vectors and microbial pathogens. Sci. Total Environ. 2020, 700, 134443. [Google Scholar] [CrossRef]
- Ahmed, A.; Li, W.; Chen, F.F.; Zhang, J.S.; Tang, Y.Q.; Chen, L.; Tang, G.H.; Yin, S. Monoterpene indole alkaloids from Rhazya stricta. Fitoterapia 2018, 128, 1–6. [Google Scholar] [CrossRef]
- Akhgari, A.; Laakso, I.; Maaheimo, H.; Choi, Y.H.; Seppanen-Laakso, T.; Oksman-Caldentey, K.M.; Rischer, H. Methyljasmonate elicitation increases terpenoid indole alkaloid accumulation in Rhazya stricta hairy root cultures. Plants 2019, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Rosales, P.F.; Bordin, G.S.; Gower, A.E.; Moura, S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020, 143, 104558. [Google Scholar] [CrossRef]
- Yaghmoor, S.; Baeshen, N.; Kumosani, T. Evaluation of the cytotoxicity and genotoxicity of alkaloid-rich and alkaloid-free aqueous extracts of Rhazya stricta leaves. FASEB J. 2015, 29, LB83. [Google Scholar] [CrossRef]
- Almulaiky, Y.Q.; Aldhahri, M.; Al-abbasi, F.A.; Al-Harbi, S.A.; Shiboob, M.H. In vitro assessment of antioxidant enzymes, phenolic contents and antioxidant capacity of the verdolaga (Portulacaceae). Int. J. Nutr. 2020, 4, 36–47. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, Y.; Datta, N.; Singanusong, R.; Liu, X.; Duan, J.; Xu, Y. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 2004, 84, 253–263. [Google Scholar] [CrossRef]
- Pawar, C.R.; Surana, S.J. Antioxidant properties of the methanol extract of the wood and pericarp of Caesalpinia decapetala. J. Young Pharm. 2010, 2, 5–49. [Google Scholar] [CrossRef] [Green Version]
- Thakur, N.; Bashir, S.F.; Kumar, G. Assessment of Phytochemical Composition, Antioxidant and Anti-Inflammatory Activities of Methanolic Extracts of Morus nigra and Artocarpus heterophyllus Leaves. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 83–91–91. [Google Scholar]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785e8. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, V.; Shahverdi, A.H.; Moghadasian, M.H.; Alizadeh, A.R. Dietary fatty acids affect semen quality: A review. Andrology 2015, 3, 450–461. [Google Scholar] [CrossRef]
- Xu, H.; Huang, H.; Zhao, C.; Song, C.; Chang, J. Total Synthesis of (+)-Aspidospermidine. Org. Lett. 2019, 21, 6457–6460. [Google Scholar] [CrossRef]
- Skariyachan, S.; Manjunath, M.; Bachappanavar, N. Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii—Insights from molecular docking, molecular dynamic simulations and in vitro assays. J. Biomol. Struct. Dyn. 2019, 37, 1146–1169. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.A.; Klee, H.J. Plant volatile compounds: Sensory cues for health and nutritional value? Science 2006, 311, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, N.A.; Al-Otaibi, R.A.; Ibhrahim, M.M. Phytochemical and taxonomic evaluation of Rhazya stricta in Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1513–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-Elgawad, M.E.; Alotaibi, M.O. Genetic Diversity Among Saudi Peganum harmala and Rhazya stricta Populations Using Chemical and ISSR Markers. Curr. Pharm. Biotechnol. 2019, 20, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef]
- Wada, K.; Yamashita, H. Cytotoxic Effects of Diterpenoid Alkaloids Against Human Cancer Cells. Molecules 2019, 24, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takshak, S.; Agrawal, S.B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B Biol. 2019, 193, 51–88. [Google Scholar] [CrossRef]
- Obaid, A.Y.; Voleti, S.; Bora, R.S.; Hajrah, N.H.; Omer, A.M.S.; Sabir, J.S.M.; Saini, K.S. Cheminformatics studies to analyze the therapeutic potential of phytochemicals from Rhazya stricta. Chem. Cent. J. 2017, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Ding, Z.Y.; Zhao, Y.; Liu, G.Q.; Zhou, G.Y. Efficient Accumulation and In Vitro Antitumor Activities of Triterpene Acids from Submerged Batch—Cultured Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes). Int. J. Med. Mushrooms 2017, 19, 419–431. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, M.; Ma, Y.; Chen, J.; Yuan, H.M. Novel triterpene saponins isolated from Clematis mandshurica and their inhibitory activities on NO production. Chin. J. Nat. Med. 2018, 16, 131–138. [Google Scholar] [CrossRef]
- Shi, Y.S.; Zhang, Y.; Hu, W.Z.; Chen, X.; Fu, X.; Lv, X.; Zhang, L.H.; Zhang, N.; Li, G. Anti-Inflammatory Triterpene Glycosides from the Roots of Ilex dunniana Levl. Molecules 2017, 22, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettit, G.R.; Melody, N.; Chapuis, J.C. Antineoplastic Agents. 606. The Betulastatins. J. Nat. Prod. 2018, 81, 458–464. [Google Scholar] [CrossRef]
- Chuang, S.C.; Chen, H.C.; Sun, C.W.; Chen, Y.A.; Wang, Y.H.; Chiang, C.J.; Chen, C.C.; Wang, S.L.; Chen, C.J.; Hsiung, C.A. Phthalate exposure and prostate cancer in a population-based nested case-control study. Environ. Res. 2020, 181, 108902. [Google Scholar] [CrossRef]
- Qiu, F.; Zhou, Y.; Deng, Y.; Yi, J.; Gong, M.; Liu, N.; Wei, C.; Xiang, S. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. Chemosphere 2020, 241, 125114. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Karadeniz, F. Biological importance and applications of squalene and squalane. Adv. Food Nutr. Res. 2012, 65, 223–233. [Google Scholar] [PubMed]
- Beyer, W.E.P.; Palache, A.M.; Reperant, L.A.; Boulfich, M.; Osterhaus, A. Association between vaccine adjuvant effect and pre-seasonal immunity. Systematic review and meta-analysis of randomised immunogenicity trials comparing squalene-adjuvanted and aqueous inactivated influenza vaccines. Vaccine 2020, 38, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Fairus, S.; Zulfarina, M.S.; Naina Mohamed, I. The efficacy of squalene in cardiovascular disease risk-a systematic review. Nutrients 2020, 12, 414. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, H.F.; Evenson, M.A.; Drescher, P.; Sparwasser, C.; Madsen, P.O. Isolation and biological activity of aspidospermine and quebrachamine from an Aspidosperma tree source. J. Pharm. Biomed. Anal. 1994, 12, 1283–1287. [Google Scholar] [CrossRef]
- Sultana, N.; Khalid, A. Phytochemical and enzyme inhibitory studies on indigenous medicinal plant Rhazya stricta. Nat. Prod. Res. 2010, 24, 305–314. [Google Scholar] [CrossRef]
- Baeshen, M.N.; Khan, R.; Bora, R.S.; Baeshen, N.A. Therapeutic potential of the folkloric medicinal plant Rhazya stricta. Biol. Syst: Open Access. 2015, 5, 151. [Google Scholar] [CrossRef]
- De Jesus-Perez, J.J.; Cruz-Rangel, S.; Espino-Saldana, A.E.; Martinez-Torres, A.; Qu, Z.; Hartzell, H.C.; Corral-Fernandez, N.E.; Perez-Cornejo, P.; Arreola, J. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim et Biophys Acta. Mol. Cell Biol. Lipids 2018, 1863, 299–312. [Google Scholar] [CrossRef]
- Dey, P.; Roy Chowdhuri, S.; Sarkar, M.P.; Chaudhuri, T.K. Evaluation of anti-inflammatory activity and standardisation of hydro-methanol extract of underground tuber of Dioscorea alata. Pharm. Biol. 2016, 54, 1474–1482. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Saha, M.R.; Chowdhuri, S.R.; Sen, A.; Sarkar, M.P.; Haldar, B.; Chaudhuri, T.K. Assessment of anti-diabetic activity of an ethnopharmacological plant Nerium oleander through alloxan induced diabetes in mice. J. Ethnopharmacol. 2015, 161, 128–137. [Google Scholar] [CrossRef]
- Simbala, H.E.; Queljoe, E.; Runtuwene, M.R.; Tallei, T.E. Bioactive compounds in Pinang Yaki (Areca vestiaria) fruit as potential source of antifertility agent. Pak. J. Pharm. Sci. 2017, 30, 1929–1937. [Google Scholar] [PubMed]
- Hanif, M.A.; Al-Maskri, A.Y.; Al-Mahruqi, Z.M.; Al-sabahi, J.N.; Al-Azkawi, A.; Al-Maskari, M.Y. Analytical evaluation of three wild growing Omani medicinal plants. Nat. Prod. Commun. 2011, 6, 1451–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayezi, S.; Leroy, J.; Ghaffari Novin, M.; Darabi, M. Oleic acid in the modulation of oocyte and preimplantation embryo development. Zygote 2018, 26, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabba, C.; Ntambi, J.M.; Moschetta, A. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros-de-Moraes, I.M.; Goncalves-de-Albuquerque, C.F.; Kurz, A.R.M.; Oliveira, F.M.J.; de Abreu, V.H.P.; Torres, R.C.; Carvalho, V.F.; Estato, V.; Bozza, P.T.; Sperandio, M. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxidative Med. Cell. Longev. 2018, 2018, 6053492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Qiao, K.; Feng, M.; Fu, Y.; Cai, J.; Deng, Y.; Tachibana, H.; Cheng, X. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J. Eukaryot. Microbiol. 2018, 65, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhu, M.; Liu, X.; Chen, X.; Yuan, Y.; Li, L.; Liu, J.; Lu, Y.; Cheng, J.; Chen, Y. Oleic acid ameliorates palmitic acid induced hepatocellular lipotoxicity by inhibition of ER stress and pyroptosis. Nutr. Metab. 2020, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Eh Suk, V.R.; Chung, I.; Misran, M. Mixed oleic acid-erucic acid liposomes as a carrier for anticancer drug. Curr. Drug Deliv. 2020, 17, 292–302. [Google Scholar] [CrossRef]
- Watanabe, N.; Komiya, Y.; Sato, Y.; Watanabe, Y.; Suzuki, T.; Arihara, K. Oleic acid up-regulates myosin heavy chain (MyHC) 1 expression and increases mitochondrial mass and maximum respiration in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 2020, 525, 406–411. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I.; Akhtar, M.; Anwar, F.; Ahmed, K.R.; Anwer, T. Antioxidant properties of methanolic extracts from leaves of Rhazya stricta. J. Med. Food 2006, 9, 270–275. [Google Scholar] [CrossRef]
- Kemnic, T.R.; Coleman, M. Vitamin E Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519051/ (accessed on 4 July 2022).
- Eftekharsadat, B.; Aghamohammadi, D.; Dolatkhah, N.; Hashemian, M.; Salami, H. Lower serum levels of alpha tocopherol and lycopene is associated with higher pain and physical disability in subjects with primary knee osteoarthritis: A case-control study. Int. J. Vitam. Nutr. Res. 2020, 91, 304–314. [Google Scholar] [CrossRef]
- Savvidis, M.; Papavasiliou, K.; Taitzoglou, I.; Giannakopoulou, A.; Kitridis, D.; Galanis, N.; Vrabas, I.; Tsiridis, E. Postoperative administration of alpha-tocopherol enhances osseointegration of stainless steel implants: An in vivo rat model. Clin. Orthop. Relat. Res. 2020, 478, 406–419. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Altern. Med. 2017, 2017, 1517683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velioglu, Y.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
Solvent | Phenolic Content (mg/g) | Flavonoid Content (mg/g) |
---|---|---|
Chloroform–methanol | 13.3 ± 0.86 | 5.43 ± 0.89 |
Methanol | 6.4 ± 0.24 | 2.75 ± 0.43 |
Diethyl ether | 2.5 ± 0.16 | 1.12 ± 0.52 |
Ethyl acetate | 1.61 ± 0.09 | 0.63 ± 0.39 |
Ethanol | 8.32 ± 0.45 | 3.87 ± 0.21 |
Identified Name | Rt* (min) | Peak Area (%) | |
---|---|---|---|
1 | Methyl tetradecanoate | 15.12 | 2.16 |
2 | Methyl pentadecanoate | 16.43 | 0.60 |
3 | Methyl palmitate | 17.69 | 24.22 |
4 | Methyl 15-methylhexadecanoate | 18.90 | 0.68 |
5 | (Z)-1,1-dimethoxyoctadec-9-ene | 20.16 | 0.68 |
6 | Methyl octadeca-17-enoate | 20.39 | 46.32 |
7 | Methyl linoleate | 20.59 | 0.52 |
8 | Methyl 9,12,15-octadecatrienoate | 20.95 | 2.22 |
9 | Ethyl octadec-9-enoate | 21.09 | 0.65 |
10 | Methyl 10-trans,12-cis-octadecadienoate | 21.90 | 0.79 |
11 | Methyl 18-methylnonadecanoate | 22.60 | 0.79 |
12 | (-)-1,2-Didehydroaspidospermidine | 24.64 | 11.39 |
13 | 2,4,4-Trimethylcyclopenten-3-one | 26.35 | 0.61 |
14 | Squalene | 26.54 | 1.47 |
15 | 8,9,10,11-Tetrahdro-7-methylbenz[c]acridine | 27.01 | 0.40 |
16 | Quebrachamine | 27.1 | 1.69 |
17 | 2á,3à-Dihydrovincadifformine | 27.57 | 0.68 |
18 | Strictamine | 28.44 | 3.44 |
Identified Name | Rt* (min) | Peak Area (%) | |
---|---|---|---|
1 | N,N-Dimethyl-1-cyclohexen-1-amine | 7.76 | 1.54 |
2 | 3-Ethylpiperidine | 8.92 | 5.63 |
3 | 2,6-Dimethyl-3-(methoxymethyl)-p-benzoquinone | 28.48 | 0.99 |
4 | 1,3,4,5-Terahydroxy-cyclohexanecarboxylic acid | 33.22 | 1.03 |
5 | Mome Inositol | 36.46 | 5.26 |
6 | Halofantrine | 42.93 | 0.51 |
7 | (-)-1,2-Didehydroaspidospermidine | 45.79 | 28.37 |
8 | 2-Ethyl-3-[2′-3″-Ethylpiperiduethyl]Indole | 48.80 | 1.41 |
9 | 3-cyano-5,5-dimethyltetrafura N-2-one | 50.41 | 3.47 |
10 | Eburnamenine | 51.77 | 1.02 |
11 | 8,9,10,11-Tetrahydro-7-methylbenz[c]acridine | 51.87 | 1.44 |
12 | Quebrachamine | 52.14 | 11.96 |
13 | Clindamycin | 52.39 | 4.43 |
14 | 2-ethyl-3-[2′-3″-ethyl piperidu ethyl] indole | 53.64 | 1.70 |
15 | Methyl aspidospermidine-3-carboxylate | 53.81 | 14.27 |
16 | 2-Amino-4-(4-ethoxy-phenyl)-6-methoxy-pyridine-3,5-dicarbonitrile | 54.76 | 5.04 |
17 | Strictamine | 55.79 | 1.72 |
18 | 1-Oxa-2-azaspiro[5.5]undecane-3-carbonitrile,2-cyclohexyl-4-(trimethylsilyloxymethyl)- | 62.36 | 1.75 |
Identified Name | Rt* (min) | Peak Area (%) | |
---|---|---|---|
1 | Hexadecanal | 16.45 | 2.62 |
2 | Methyl palmitate | 17.69 | 1.37 |
3 | Olealdehyde | 19.01 | 1.20 |
4 | Methyl octadeca-17-enoate | 20.35 | 2.07 |
5 | 1-O-butyl 2-O-heptan-3-yl benzene-1,2-dicarboxylate | 20.75 | 1.21 |
6 | (-)-1,2-Didehydroaspidospermidine | 24.63 | 26.76 |
7 | Di-n-2-propylpentylphthalate | 25.61 | 9.19 |
8 | Aspidospermidine | 26.35 | 0.92 |
9 | Squalene | 26.55 | 22.49 |
10 | Quebrachamine | 27.10 | 5.49 |
11 | Dotriacontane | 27.30 | 1.91 |
12 | Methyl 2,3-didehydroaspidospermidine-3-carboxylate | 27.58 | 2.15 |
13 | Yohimban-17-one | 28.97 | 0.77 |
14 | Vitamin E | 29.52 | 2.16 |
15 | Hexaphenylcyclotrisiloxane | 31.68 | 0.57 |
Identified Name | Rt* (min) | Peak Area (%) | |
---|---|---|---|
1 | Decanoic acid, methyl ester | 9.29 | 0.71 |
2 | Methyl laurate | 12.33 | 1.46 |
3 | Methyl tetradecanoate | 15.15 | 6.03 |
4 | Methyl 12-methyltetradecanoate | 16.42 | 1.43 |
5 | Methyl palmitate | 17.82 | 35.23 |
6 | Methyl stearate | 20.54 | 47.55 |
7 | Methyl arachisate | 22.61 | 0.76 |
8 | (-)-1,2-Didehydroaspidospermidine | 24.64 | 1.53 |
9 | Methyl lignocerate | 25.76 | 0.26 |
10 | Strictamine | 28.44 | 0.66 |
Identified Name | Rt* (min) | Peak Area (%) | |
---|---|---|---|
1 | 3-Ethylpyridine | 9.03 | 4.01 |
2 | 2(4H)-Benzofuranone,5,6,7,7a-tetrahydro-4,4,7a-trimethyl-, (R)- | 27.36 | 1.88 |
3 | Neophytadiene | 28.25 | 1.55 |
4 | aR-Turmerone | 29.39 | 2.10 |
5 | Hexahydrofarnesyl acetone | 30.14 | 1.79 |
6 | Oleic Acid | 39.22 | 2.16 |
7 | (-)-1,2-Didehydroaspidospermidine | 45.75 | 6.05 |
8 | N-Ethyl-desoxy-veratramine | 53.78 | 3.11 |
9 | Aspidofractinin-3-one | 54.74 | 2.04 |
10 | Vitamin E | 58.69 | 1.94 |
Kind | Bioactive Compounds | Ethanol | Methanol | Diethyl Ether | Chloroform–Methanol | Ethyl Acetate Extract | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
R T | Area (%) | R T | Area (%) | R T | Area (%) | R T | Area (%) | R T | Area (%) | ||
N,N-Dimethyl-1-cyclohexen-1-amine | - | - | 7.76 | 1.54 | - | - | - | - | - | - | |
3-Ethylpiperidine | - | - | 8.92 | 5.63 | - | - | - | - | - | - | |
Quebrachamine | 27.1 | 1.69 | 52.14 | 11.96 | 27.1 | 5.49 | - | - | - | - | |
Clindamycin | - | - | 52.39 | 4.43 | - | - | - | - | - | - | |
Alkaloids | (-)-1,2-Didehydroaspidospermidine | 24.64 | 11.39 | 45.79 | 28.37 | 24.63 | 26.76 | 24.64 | 1.53 | 45.75 | 6.05 |
Aspidospermidine | - | - | - | - | 26.3 | 0.92 | - | - | - | - | |
Yohimban-17-one | - | - | - | - | 28.97 | 0.77 | - | - | - | - | |
Strictamine | 28.44 | 3.44 | 55.79 | 1.72 | - | - | 28.88 | 0.66 | - | - | |
Methyl tetradecanoate | 15.12 | 2.16 | - | - | - | - | 15.15 | 6.03 | - | - | |
Methyl pentadecanoate | 16.43 | 0.60 | - | - | - | - | - | - | - | - | |
Methyl palmitate | 17.69 | 24.22 | - | - | 17.69 | 1.37 | 17.82 | 35.23 | - | - | |
Methyl octadeca-17-enoate | 20.39 | 46.32 | - | - | 20.35 | 2.07 | - | - | - | - | |
Fatty acid | Methyl linoleate | 20.59 | 0.52 | - | - | - | - | - | - | - | - |
Methyl 9,12,15-octadecatrienoate | 20.95 | 2.22 | - | - | - | - | - | - | - | - | |
Triterpene | Squalene | 26.54 | 1.47 | - | - | 26.55 | 22.49 | - | - | - | - |
Antimicrobial | 1-O-butyl 2-O-heptan-3-yl benzene-1,2-dicarboxylate | - | - | - | - | 20.75 | 1.21 | - | - | - | - |
Di-n-2-propylpentylphthalate | - | - | - | - | 25.6 | 9.19 | - | - | - | - | |
Vitamin E | Vitamin E | - | - | - | - | 29.52 | 2.16 | - | - | 58.69 | 1.94 |
Antibiotic | Clindamycin | - | - | 52.39 | 4.43 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baeshen, N.A.; Almulaiky, Y.Q.; Afifi, M.; Al-Farga, A.; Ali, H.A.; Baeshen, N.N.; Abomughaid, M.M.; Abdelazim, A.M.; Baeshen, M.N. GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents. Plants 2023, 12, 960. https://doi.org/10.3390/plants12040960
Baeshen NA, Almulaiky YQ, Afifi M, Al-Farga A, Ali HA, Baeshen NN, Abomughaid MM, Abdelazim AM, Baeshen MN. GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents. Plants. 2023; 12(4):960. https://doi.org/10.3390/plants12040960
Chicago/Turabian StyleBaeshen, Nabih A., Yaaser Q. Almulaiky, Mohamed Afifi, Ammar Al-Farga, Haytham A. Ali, Naseebh N. Baeshen, Mosleh M. Abomughaid, Aaser M. Abdelazim, and Mohammed N. Baeshen. 2023. "GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents" Plants 12, no. 4: 960. https://doi.org/10.3390/plants12040960
APA StyleBaeshen, N. A., Almulaiky, Y. Q., Afifi, M., Al-Farga, A., Ali, H. A., Baeshen, N. N., Abomughaid, M. M., Abdelazim, A. M., & Baeshen, M. N. (2023). GC-MS Analysis of Bioactive Compounds Extracted from Plant Rhazya stricta Using Various Solvents. Plants, 12(4), 960. https://doi.org/10.3390/plants12040960