Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extracting Phenolic Compounds from OLWE
2.3. Green Synthesis of AgNPs
2.4. Characterization of Green OLAgNPs
2.5. Phenolic Content
2.5.1. Evaluation of Total Phenolic Compounds and Total Flavonoids
2.5.2. HPLC Profile for Phenolic Compounds in OLWE or OLAgNPs
2.6. The Biological Activity of OLWE and OLAgNPs
2.6.1. Antioxidant
2.6.2. Antimicrobial
2.6.3. Cytotoxicity Effects
2.7. Statistical Analyses
3. Results
3.1. Green Synthesis of AgNPs from Phenolic Extracts
3.2. OLAgNP Characterization
3.3. Phenolic Compounds in OLAgNPs and OLWE
3.4. Biological Activities of AgNPs and OLWE
3.4.1. Antioxidant Activity of AgNPs and OLWE
3.4.2. Cytotoxicity Effect of AgNPs and OLWE
3.4.3. Antimicrobial Activity of AgNPs and OLWE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nath, D.; Banerjee, P. Green nanotechnology–a new hope for medical biology. Environ. Toxicol. Pharmacol. 2013, 36, 997–1014. [Google Scholar] [CrossRef] [PubMed]
- Saranya, S.; Aswani, R.; Remakanthan, A.; Radhakrishnan, E. Nanotechnology in agriculture. In Nanotechnology for Agriculture; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–17. [Google Scholar]
- Quadros, M.E.; Marr, L.C. Environmental and human health risks of aerosolized silver nanoparticles. J. Air Waste Manag. Assoc. 2010, 60, 770–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Taha, T.F.; Najjar, A.A.; Zabermawi, N.M.; Nader, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.; Salama, A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci. 2021, 28, 6782–6794. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. -Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, D.B.; Sridhar, A.; Sekar, R.K.; Perumalsamy, B.; Veeran, S.; Arumugam, M.; Karuppaiah, P.; Ramasamy, T. Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. J. Environ. Chem. Eng. 2021, 9, 104845. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Okur, Ö.D. An evaluation of the quality characteristics of kefir fortified with olive (Olea europaea) leaf extract. Br. Food J. 2022, 124, 1727–1736. [Google Scholar] [CrossRef]
- Šimat, V.; Skroza, D.; Tabanelli, G.; Čagalj, M.; Pasini, F.; Gómez-Caravaca, A.M.; Fernández-Fernández, C.; Sterniša, M.; Smole Možina, S.; Ozogul, Y. Antioxidant and antimicrobial activity of hydroethanolic leaf extracts from six mediterranean olive cultivars. Antioxidants 2022, 11, 1656. [Google Scholar] [CrossRef] [PubMed]
- Chawla, M.; Verma, J.; Gupta, R.; Das, B. Antibiotic potentiators against multidrug-resistant bacteria: Discovery, development, and clinical relevance. Front. Microbiol. 2022, 13, 887251. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Divya, S.; Natarajan, D.; Senthil-Nathan, S.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Pugazhendhi, A. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem. 2021, 107, 91–99. [Google Scholar] [CrossRef]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 173–179. [Google Scholar] [CrossRef]
- Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Duan, S.-S.; Ouyang, Y.-S.; Chen, Y.-B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals 2011, 24, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.M.; Ali, S.H.; Omar, M.M. Cationic Cellulose Nanocrystals as Sustainable green material for Multi Biological applications via ξ Potential. J. Biomater. Sci. Polym. Ed. 2023, 20, 1–25. [Google Scholar] [CrossRef]
- Wright, J.; Lam, K.; Hansen, D.; Burrell, R. Efficacy of topical silver against fungal burn wound pathogens. Am. J. Infect. Control 1999, 27, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.W.-Y.; Chen, R.; Chung, N.P.-Y.; Ho, C.-M.; Lin, C.-L.S.; Che, C.-M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. 2005, 28, 5059–5061. [Google Scholar] [CrossRef]
- Lu, L.; Sun, R.W.-Y.; Chen, R.; Hui, C.-K.; Ho, C.-M.; Luk, J.M.; Lau, G.K.; Che, C.-M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008, 13, 253–262. [Google Scholar] [CrossRef]
- Summer, M.; Tahir, H.M.; Ali, S.; Abaidullah, R.; Mumtaz, S.; Nawaz, S. Bactericidal potential of different size sericin-capped silver nanoparticles synthesized by heat, light, and sonication. J. Basic Microbiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, F.; Mu, B.; Kang, Y.; Hui, A.; Wang, A. Phyto-mediated synthesis of Ag nanoparticles/attapulgite nanocomposites using olive leaf extract: Characterization, antibacterial activities and cytotoxicity. Inorg. Chem. Commun. 2023, 151, 110543. [Google Scholar] [CrossRef]
- Sun, W.; Hong, Y.; Li, T.; Chu, H.; Liu, J.; Feng, L.; Baghayeri, M. Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. Chemosphere 2023, 310, 136759. [Google Scholar] [CrossRef]
- Saad, A.M.; El-Saadony, M.T.; El-Tahan, A.M.; Sayed, S.; Moustafa, M.A.; Taha, A.E.; Taha, T.F.; Ramadan, M.M. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J. Biol. Sci. 2021, 28, 5674–5683. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.A.; Saad, A.M.; Bardisi, E.A.; Salama, A.; Sitohy, M.Z. Transfer of anthocyanin accumulating delila and rosea1 genes from the transgenic tomato micro-tom cultivar to moneymaker cultivar by conventional breeding. J. Agric. Food Chem. 2020, 68, 10741–10749. [Google Scholar] [CrossRef]
- Saad, A.M.; Mohamed, A.S.; El-Saadony, M.T.; Sitohy, M.Z. Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts. LWT 2021, 148, 111668. [Google Scholar] [CrossRef]
- Ashour, E.A.; El-Hack, M.E.A.; Shafi, M.E.; Alghamdi, W.Y.; Taha, A.E.; Swelum, A.A.; Tufarelli, V.; Mulla, Z.S.; El-Ghareeb, W.R.; El-Saadony, M.T. Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers. Agriculture 2020, 10, 457. [Google Scholar] [CrossRef]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and procedures of statistics. In Principles and Procedures of Statistics; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1960. [Google Scholar]
- Khalil, M.M.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 2014, 7, 1131–1139. [Google Scholar] [CrossRef] [Green Version]
- Sellami, H.; Khan, S.A.; Ahmad, I.; Alarfaj, A.A.; Hirad, A.H.; Al-Sabri, A.E. Green synthesis of silver nanoparticles using Olea europaea leaf extract for their enhanced antibacterial, antioxidant, cytotoxic and biocompatibility applications. Int. J. Mol. Sci. 2021, 22, 12562. [Google Scholar] [CrossRef]
- Omar, A.A.; Alkelbash, H.M.; Alhasomi, Y.F.; Al-muntaser, O.M.; Elraies, S.S.E.; Khalifa, A.A. Green synthesis of silver nanoparticles using olive pomace extract. J. Sci. 2018, 662–669. [Google Scholar]
- Hussain, A.; Alajmi, M.F.; Khan, M.A.; Pervez, S.A.; Ahmed, F.; Amir, S.; Husain, F.M.; Khan, M.S.; Shaik, G.M.; Hassan, I. Biosynthesized silver nanoparticle (AgNP) from Pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front. Microbiol. 2019, 10, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqahtani, M.A.; Al Othman, M.R.; Mohammed, A.E. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Sci. Rep. 2020, 10, 16781. [Google Scholar] [CrossRef] [PubMed]
- Felimban, A.I.; Alharbi, N.S.; Alsubhi, N.S. Optimization, Characterization, and Anticancer Potential of Silver Nanoparticles Biosynthesized Using Olea europaea. Int. J. Biomater. 2022, 2022, 6859637. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh Kenari, R.; Razavi, R. Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Sci. Nutr. 2022, 10, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Alahdal, F.A.; Qashqoosh, M.T.; Manea, Y.K.; Salem, M.A.; Khan, R.H.; Naqvi, S. Ultrafast fluorescent detection of hexavalent chromium ions, catalytic efficacy and antioxidant activity of green synthesized silver nanoparticles using leaf extract of P. austroarabica. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100665. [Google Scholar] [CrossRef]
- Sreelekha, E.; George, B.; Shyam, A.; Sajina, N.; Mathew, B. A comparative study on the synthesis, characterization, and antioxidant activity of green and chemically synthesized silver nanoparticles. BioNanoScience 2021, 11, 489–496. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Rashid, M.; Rahman, A.; Husen, A.; Rehman, S. Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomater. Res. 2018, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Negm, S.; Moustafa, M.; Sayed, M.; Alamri, S.; Alghamdii, H.; Shati, A.; Al-Khatani, M.; Alrumman, S.; Maghraby, T.; Temerk, H. Antimicrobial activities of silver nanoparticles of extra virgin olive oil and sunflower oil against human pathogenic microbes. Pak. J. Pharm. Sci. 2020, 33, 2285–2291. [Google Scholar]
- Xiu, Z.-M.; Ma, J.; Alvarez, P.J. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 2011, 45, 9003–9008. [Google Scholar] [CrossRef]
- Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 4, e2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.M.; Fouad, S.A.; Elshoky, H.A.; Mohammed, G.M.; Salaheldin, T.A. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med. 2017, 5, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percival, S.L.; Bowler, P.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect. 2005, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
Conc. (ppm) | ||||
---|---|---|---|---|
Phenolic Compounds | OLWE | AgNPs | Increase (%) | Groups |
Vanillin | 254.67 ± 0.9 | 380.33 ± 0.2 | 66.96 | Ι (>50%) |
Coumaric acid | 279.33 ± 0.8 | 446.66 ± 0.6 | 62.53 | |
P-OH-benzoic | 430.54 ± 0.8 | 690.79 ± 0.9 | 62.32 | |
Cinnamic acid | 240.55 ± 0.6 | 387.68 ± 0.8 | 62.04 | |
4′.7-Dihydroxyisoflavone | 329.65 ± 0.1 | 570.64 ± 0.9 | 57.76 | |
Caffeic acid | 223.33 ± 0.2 | 420.22 ± 0.8 | 53.14 | |
Ellagic acid | 325.33 ± 0.6 | 615.33 ± 1.0 | 52.87 | |
Gallic acid | 1074.9 ± 0.9 | 2067.65 ± 1.1 | 51.98 | |
Caffeine | 225.25 ± 1.0 | 490.78 ± 0.2 | 45.89 | ΙΙ (30–50%) |
Syringic acid | 223.55 ± 0.2 | 575.45 ± 0.7 | 38.84 | |
Rutin | 539.58 ± 0.0 | 1455.29 ± 0.9 | 37.07 | |
Catechol | 339.85 ± 0.3 | 930.33 ± 0.5 | 36.53 | |
Catechin | 720.39 ± 0.9 | 2045.65 ± 0.6 | 35.21 | |
Quercetin | 268.21 ± 0.6 | 825.57 ± 0.4 | 32.48 | |
Propyl gallate | 449.47 ± 0.7 | 1485.27 ± 0.4 | 30.26 | |
Ferulic acid | 294.67 ± 0.4 | 995.24 ± 0.1 | 29.60 | ΙΙΙ (<30%) |
Chlorogenic acid | 224.33 ± 0.6 | 1621.22 ± 0.3 | 13.83 | |
Naringenin | 389.25 ± 1.5 | 6815.57 ± 0.9 | 5.71 |
Pathogenic Bacteria | Concentration (µg/mL)/Inhibition Zone Diameters (mm) | ||||||
---|---|---|---|---|---|---|---|
AgNPs (µg/mL) | OLWE (µg/mL) | Antibiotic | |||||
5 | 25 | 50 | 100 | 5 | 100 | ||
S. aureus. (SA) | 14 ± 0.2 | 19 ± 0.1 | 29 ± 0.2 | 37 ± 0.1 | 11 ± 0.8 | 26 ±0.2 | 35 ± 0.5 |
B. cereus. (BC) | 12 ± 0.3 | 17 ± 0.3 | 26 ± 0.3 | 31 ± 0.3 | ND | 23 ± 0.3 | 30 ± 0.2 |
L. monocytogenes. (LM) | 11 ± 0.1 | 15 ± 0.1 | 23 ± 0.1 | 29 ± 0.6 | ND | 22 ± 0.1 | 26 ± 0.1 |
Y. enterocolitica. (YE) | ND | 13 ± 0.2 | 19 ± 0.3 | 27 ± 0.4 | ND | 19 ± 0.3 | 25 ± 0.3 |
E. coli. (EC) | 10 ± 0.2 | 16 ± 0.3 | 22 ± 0.5 | 28 ± 0.9 | ND | 21 ± 0.1 | 26 ± 0.1 |
C. jejuni. (CJ) | ND | 12 ± 0.6 | 21 ± 0.1 | 25 ± 0.0 | ND | 16 ± 0.4 | 22 ± 0.2 |
0.5 Pathogenic Fungi | |||||||
C. glabrata (CG) | ND | 11 ± 0.0 | 20 ± 0.2 | 26 ± 0.2 | ND | 20 ± 0.6 | 25 ± 0.6 |
C. rugosa (CR) | 11 ± 0.2 | 19 ± 0.1 | 25 ± 0.1 | 31 ± 0.3 | ND | 24 ± 0.2 | 29 ± 0.2 |
C. albicans (CA) | 13 ± 0.1 | 20 ± 0.3 | 24 ± 0.6 | 31 ± 0.9 | 10 ± 0.2 | 25 ± 0.3 | 30 ± 0.3 |
P. crustosum (PC) | 16 ± 0.3 | 23 ± 0.6 | 26 ± 0.2 | 35 ± 0.1 | 12 ± 0.3 | 27 ± 0.9 | 32 ± 0.5 |
A. niger (AN) | ND | 13 ± 0.9 | 22 ± 0.1 | 30 ± 0.2 | ND | 23 ± 0.2 | 28 ± 0.2 |
A. flavus (AF) | 15 ± 0.0 | 25 ± 0.1 | 27 ± 0.3 | 34 ± 0.3 | 9 ± 0.2 | 27 ± 0.5 | 31 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alowaiesh, B.F.; Alhaithloul, H.A.S.; Saad, A.M.; Hassanin, A.A. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Plants 2023, 12, 1410. https://doi.org/10.3390/plants12061410
Alowaiesh BF, Alhaithloul HAS, Saad AM, Hassanin AA. Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Plants. 2023; 12(6):1410. https://doi.org/10.3390/plants12061410
Chicago/Turabian StyleAlowaiesh, Bassam F., Haifa Abdulaziz Sakit Alhaithloul, Ahmed M. Saad, and Abdallah A. Hassanin. 2023. "Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities" Plants 12, no. 6: 1410. https://doi.org/10.3390/plants12061410
APA StyleAlowaiesh, B. F., Alhaithloul, H. A. S., Saad, A. M., & Hassanin, A. A. (2023). Green Biogenic of Silver Nanoparticles Using Polyphenolic Extract of Olive Leaf Wastes with Focus on Their Anticancer and Antimicrobial Activities. Plants, 12(6), 1410. https://doi.org/10.3390/plants12061410