Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Idziak, R.; Woźnica, Z. Impact of tembotrione and flufenacet plus isoxaflutole application timings, rates, and adjuvants type on weeds and yield of maize. Chil. J. Agr. Res. 2014, 74, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Zystro, J.P.; De Leon, N.; Tracy, W.F. Analysis of traits related to weed competitiveness in sweet corn (Zea mays L.). Sustainability 2012, 4, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Ghanizadeh, H.; Lorzadeh, S.; Ariannia, N. Critical period for weed control in corn in the south-west of Iran. Asian J. Agric. Res. 2010, 4, 80–86. [Google Scholar] [CrossRef]
- Riaz, M.; Jamil, M.; Mahmood, T.Z. Yield and yield components of maize as affected by various weed control methods under rain-fed conditions of Pakistan. Int. J. Agric. Biol. 2007, 9, 152–155. [Google Scholar]
- Horvath, D.P.; Bruggeman, S.; Moriles-Miller, J.; Anderson, J.V.; Doramaci, M.; Scheffler, B.E.; Hernadez, A.G.; Foley, M.E.; Clay, S. Weed presence altered biotic Stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct. 2018, 2, e00057. [Google Scholar] [CrossRef]
- Woźnica, Z.; Idziak, R. Influence of herbicide application timings, rates and adjuvants type on weed control and yield of maize grown for forage. Acta Sci. Pol. Ser. Agric. 2010, 9, 77–84. [Google Scholar]
- Mhlanga, B.; Chauhan, B.S.; Thierfelder, C. Weed management in maize using crop competition: A review. Crop Prot. 2016, 88, 28–36. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. 9—Integrated crop management. In Lockhart and Wiseman’s Crop Husbandry Including Grassland, 8th ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier: Amsterdam, The Netherlands, 2002; pp. 485–490. [Google Scholar]
- Kniss, A.R.; Mosqueda, E.G.; Lawrence, N.C.; Adjesiwor, A.T. The cost of implementing effective herbicide mixtures for resistance management. Adv. Weed Sci. 2022, 40, e0202200119. [Google Scholar] [CrossRef]
- Kudsk, P. Optimising herbicide performance. In Weed Management Handbook; Naylor, R.E.L., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2002; pp. 323–344. [Google Scholar]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Johnson, B.C.; Young, B.G. Influence of temperature and relative humidity on the foliar activity of mesotrione. Weed Sci. 2002, 50, 157–161. [Google Scholar] [CrossRef]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, J.R.A.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Planta Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Hatterman-Valenti, H.M.; Pitty, A.; Owen, M.D.K. Effect of environment on giant foxtail (Setaria faberi) leaf wax and fluazifop-P absorption. Weed Sci. 2006, 54, 607–614. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pest. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G. Diurnal fluctuations and leaf angle reduce glufosinate efficacy. Weed Technol. 2003, 17, 302–306. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Bagley, W.E.; Derksen, R.C.; Krause, C.R. Adjuvant effects on evaporation time and wetted area of droplets on waxy leaves. Trans. ASABE 2010, 53, 13–20. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Papaevangelou, O. Role of crop-protection technologies in sustainable agricultural productivity and management. Land 2022, 11, 1680. [Google Scholar] [CrossRef]
- Shrestha, J.; Timsina, K.P.; Subedi, S.; Pokhrel, D.; Chaudhary, A. Sustainable weed management in maize (Zea mays L.) production: A review in perspective of southern Asia. Turk. J. Weed Sci. 2019, 22, 133–143. [Google Scholar]
- Zabkiewicz, J.A. Adjuvants and herbicidal efficacy—Present status and future prospects. Weed Res. 2000, 40, 139–149. [Google Scholar] [CrossRef]
- Akhter, M.J.; Abbas, R.N.; Waqas, M.A.; Noor, M.A.; Arshad, M.A.; Mahboob, W.; Nadeem, F.; Azam, M.; Gull, U. Adjuvants improves the efficacy of herbicide for weed management in maize sown under altered sowing methods. J. Exp. Biol. Agri. Sci. 2017, 5, 22–30. [Google Scholar] [CrossRef]
- Pacanoski, A. Herbicides and adjuvants. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; BoD—Books on Demand: Norderstedt, Germany, 2015; Volume 344, pp. 125–147. [Google Scholar]
- Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M.; Henderson, R. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals; Revised 2012 Edition; Australian Government. Grains Research & Development Corporation: Barton, Australia, 2012; p. 52. [Google Scholar]
- Chahal, P.S.; Aulakh, J.S.; Rosenbaum, K.; Jhala, A.J. Growth stage affects dose response of selected glyphosate-resistant weeds to premix of 2, 4-D choline and glyphosate (Enlist Duo™ herbicide*). J. Agr. Sci. 2015, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jagła, M.; Sobiech, Ł.; Szulc, P.; Nowosad, K.; Bocianowski, J.; Grzanka, M. Sensitivity assessment of varieties, effectiveness of weed control by selected herbicides, and infection of the Fusarium in maize (Zea mays L.) cultivation. Agronomy 2020, 10, 1115. [Google Scholar] [CrossRef]
- Frische, T.; Egerer, S.; Matezki, S.; Pickl, C.; Wogram, J. 5-point programme for sustainable plant protection. Envrion. Sci. Eur. 2018, 30, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Underwood, A.K. Adjuvant trends for the new millennium. Weed Technol. 2000, 14, 765–772. [Google Scholar] [CrossRef]
- NDWCG. North Dakota Weed Control Guide 2022; Weed Science; NSDU: New York, NY, USA, 2022; p. 136. [Google Scholar]
- Knezevic, S.Z.; Datta, A.; Scott, J.; Charvat, L.D. Adjuvants influenced saflufenacil efficacy on fallemerging weeds. Weed Technol. 2009, 23, 340–345. [Google Scholar] [CrossRef]
- Singh, M.; Tan, S.; Sharma, S.D. Adjuvants enhance weed control efficacy of foliar-applied diuron. Weed Technol. 2002, 16, 74–78. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Grzanka, M.; Skrzypczak, G.; Idziak, R.; Włodarczak, S.; Ochowiak, M. Effect of adjuvants and pH adjuster on the efficacy of sulcotrione herbicide. Agronomy 2020, 10, 530. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, R.C. Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic. Sci. 1999, 55, 69–77. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski [The Guide to Identifying Plant Communities in Poland]; PWN. Vademecum geobotanicum; Naukowa: Warszawa, Poland, 2001; pp. 158–187. [Google Scholar]
- Dubyna, D.; Iemelianowa, S.; Dziuba, T.; Davydova, A.; Davydov, D.; Tymoshenko, P. Ruderal vegetation of Ukraine: Stellariete mediae Tx. et al. in Tx. 1950. Biodiv. Res. Conserv. 2022, 66, 11–38. [Google Scholar]
- Nguyen, H.T.X.; Liebman, M. Weed community composition in simple and more diverse cropping systems. Front. Agron. 2022, 4, 848548. [Google Scholar] [CrossRef]
- Green, J.M.; Cahill, R. Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Sci. 2003, 17, 338–345. [Google Scholar]
- Ramsey, R.; Stephenson, G.; Hall, J. Effect of relative humidity on the uptake, translocation, and efficacy of glufosinate ammonium in wild oat (Avena fatua). Pestic. Biochem. Physiol. 2002, 73, 1–8. [Google Scholar] [CrossRef]
- Idziak, R.; Woznica, Z. Effect of nitrogen fertilizers and oil adjuvants on nicosulfuron efficacy. Turk. J. Field Crops 2013, 18, 174–178. [Google Scholar]
- Cunha, J.P.A.R.; Alves, G.S.; Reis, E.F. Efeito da temperatura nas características físico-químicas de soluçes aquosas com adjuvantes de uso agrícola [Temperature effect on the physical-chemical characteristics of aqueous solutions with spray adjuvants]. Planta Daninha 2010, 28, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, F.K.; Untuniassi, U.R.; Chechetto, R.G.; Mota, A.A.B.; De Carvalho, L.D. Viscosity, surface tension and droplet size of spray liquids containg formulations of insecticides and fungicides with oil-based adjuvants. Asp. Apl. Biol. 2018, 137, 183–190. [Google Scholar]
- Junior, S.T.D.; Ferreira, M.C.; Lasmar, O. Physical characteristics of oily spraying liquids and droplets formed on coffee leaves and glass surfaces. Eng. Agric. Jaboticabal 2015, 35, 588–600. [Google Scholar]
- Roskamp, J.M.; Turco, R.F.; Bischop, M.; Johnson, W.G. The infuence of carrier water pH and hardness on suflufenacil efficacy and solubility. Weed Technol. 2013, 27, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M.; Hale, T. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 2005, 19, 468–475. [Google Scholar] [CrossRef]
- MacBean, C. (Ed.) ePesticide Manual, 15th ed.; Nicosuluron, version 5.1; British Crop Protection Council: Alton, UK, 2010. [Google Scholar]
- Imoloame, E.O.; Omolaiye, J.O. Weed infestation, growth and yield of maize (Zea mays L.) as influenced by periods of weed interference. Adv. Crop Sci. Technol. 2017, 5, 2. [Google Scholar]
- Szewdziak, K.; Grzywacz, Z.; Polanczyk, E.; Tomaszewski, S.; Wojtkiewicz, W. Physicochemical properties of selected herbicidal products containing nicosulfuron as an active ingredient. Open Chem. 2020, 18, 438–442. [Google Scholar] [CrossRef]
- Da Silva Santos, R.T.; Vechia, J.F.D.; Dos Santos, C.A.M.; Almeida, D.P.; da Costa Ferreira, M. Relationship of contact angle of spray solution on leaf surfaces with weed control. Sci. Rep. 2021, 11, 9886. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; Somervaille, A.; Betts, G.; Gordon, B.; Green, V.; Burgis, M. Adjuvants—Oils, Surfactants and Other Additives for Farm Chemicals Used in Grain Production—Revised 2019 Edition; GRDC: Barton, Australia, 2019; p. 48. [Google Scholar]
- Auskalniene, O.; Auskalnis, A. Effect of sulfonylurea herbicides on weeds and maize. Agron. Res. 2006, 4, 129–132. [Google Scholar]
- Kumar, A.; Dhaka, A.K.; Kumar, S.; Singh, S.; Punia, S.S. Weed management indices as affected by different weed control treatments in pigeon pea [Cajanus cajan (L.) Millsp.]. J. Pharmacogn. Phytochem. 2019, 8, 3490–3494. [Google Scholar]
Species | Years of Studies | Life Cycle | ||
---|---|---|---|---|
2017 | 2018 | 2019 | ||
g m−2 | ||||
Characteristic species for Polygono-Chenopodion alliance | ||||
Fumaria officinalis | - | - | 36 | annual |
Characteristic species for Aperion spicae-venti alliance | ||||
Veronica hederifolia | - | 11 | 29 | annual |
Characteristic species for Polygono-Chenopodietalia order | ||||
Chenopodium album | 4370 | 1261 | 1013 | annual |
Capsella bursa-pastoris | 35 | 64 | - | annual |
Echinochloa crus-galli | 165 | 270 | 132 | annual |
Geranium pusillum | 515 | 22 | 539 | annual |
Characteristic species for Centauretalia cyani order | ||||
Centaurea cyanus | 32 | - | 59 | annual |
Anthemis arvensis | 17 | 22 | - | annual |
Characteristic species for Plantaginetalia majoris order | ||||
Plantago major | 10 | perennial | ||
Characteristic species for Stellarietea mediae class | ||||
Viola arvensis | 76 | 15 | 8 | annual |
Anchusa arvensis | - | 74 | 41 | annual |
Stellaria media | - | 31 | 62 | annual |
Polygonum aviculare | - | 30 | 51 | annual |
Tripleurospermum maritima ssp. inodora | 23 | 32 | - | biennial |
Thlaspi arvense | 71 | 29 | - | annual |
Characteristic species for Artemisietea vulgaris class | ||||
Cirsium arvense | 36 | - | 47 | perennial |
Gallium aparine | 18 | 16 | - | annual |
Characteristic species for Lamio-Veronicetum association | ||||
Lamium amplexicaule | - | 15 | 31 | annual |
Characteristic species for Galinsoga-Setarietum association | ||||
Galinsoga parviflora | 4 | - | 29 | annual |
Accompanying species | ||||
Fallopia convolvulus | 301 | 539 | 194 | annual |
Amaranthus retroflexus | - | 20 | 42 | annual |
Treatment | CHE | ECH | GER | FAL | VIO | Total | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | I | II | III | |
Untreated check g m−2 | 4370 | 1261 | 1013 | 165 | 270 | 132 | 515 | 22 | 539 | 301 | 539 | 194 | 76 | 15 | 8 | 5663 | 2461 | 2313 |
Weed Control Efficacy % | ||||||||||||||||||
N40 | 60 c4 | 62 b | 79 b | 99 a | 94 a | 95 ab | 72 ab | 100 a | 77 a | 79 a | 75 a | 76 b | 75 ab | 100 a | 67 cd | 60 b | 67 cd | 81 b |
N28 | 45 d | 45 c | 44 c | 97 a | 90 ab | 90 b | 56 c | 100 a | 70 a | 70 a | 52 b | 62 c | 56 c | 100 a | 56 d | 48 b | 56 d | 52 c |
N28 | ||||||||||||||||||
+ MSO 1 | 65 bc | 88 a | 95 a | 100 a | 98 a | 99 a | 71 ab | 100 a | 79 a | 76 a | 72 a | 91 a | 68 ab | 100 a | 88 ab | 68 ab | 88 ab | 94 a |
+ MSO 2 | - | 83 a | 95 a | - | 90 ab | 95 ab | - | 100 a | 79 a | - | 74 a | 89 a | - | 100 a | 82 ab | - | 82 ab | 94 a |
+ MSO 3 | 90 a | 91 a | 95 a | 100 a | 98 a | 95 ab | 80 a | 100 a | 74 a | 76 a | 73 a | 90 a | 84 a | 100 a | 90 a | 84 a | 90 a | 94 a |
+ MSO 4 | 77 b | 82 a | 9 a | 100 a | 92 ab | 96 ab | 67 abc | 100 a | 78 a | 80 a | 70 a | 85 a | 71 ab | 100 a | 84 ab | 71 ab | 84 ab | 93 a |
+ NIS | 69 bc | 71 ab | 78 b | 100 a | 83 b | 97 a | 61 bc | 100 a | 61 b | 74 a | 69 a | 76 b | 63 ab | 100 a | 74 bc | 63 ab | 74 bc | 81 b |
Adjuvant | Herbicide g ha−1 | Phytotoxicity % | Grain Yield T ha−1 | TKW 3 g | ||||
---|---|---|---|---|---|---|---|---|
2017–2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
Untreated check | 0 | 8.6 c | 2.8 c | 2.2 c | 277 ab | 244 b | 259 b | |
N40 | 40 | 0 | 16.5 a | 7.1 ab | 9.0 ab | 295 a | 271 a | 296 a |
N28 | 28 | 0 | 13.0 b | 6.7 b | 6.3 b | 267 b | 275 a | 291 a |
N28 | ||||||||
+ MSO 1 1 | 28 | 0 | 17.1 a | 9.4 a | 9.0 ab | 297 a | 292 a | 300 a |
+ MSO 2 2 | 28 | 0 | - | 8.3 ab | 9.0 ab | - | 288 a | 313 a |
+ MSO 3 | 28 | 0 | 18.7 a | 7.9 ab | 10.2 a | 305 a | 285 a | 316 a |
+ MSO 4 | 28 | 0 | 17.9 a | 8.1 ab | 9.3 ab | 300 a | 275 a | 316 a |
+ NIS | 28 | 0 | 17.3 a | 7.4 ab | 8.0 ab | 297 a | 285 a | 287 a |
Treatment | Parameter | Efficacy | Yield |
---|---|---|---|
r | |||
N40 | St | 0.2750 | −0.5049 |
Ca | 0.4389 | −0.6106 * | |
pH | 0.7043 * | −0.5724 | |
N28 | St | −0.5640 | 0.3566 |
Ca | −0.6748 * | 0.3897 | |
pH | 0.7109 * | −0.5735 | |
N28 + MSO 1 | St | 0.6999 * | −0.6912 * |
Ca | 0.7013 * | −0.3409 | |
pH | 0.7241 * | −0.5705 | |
N28 + MSO 2 | St | 0.8319 * | −0.3958 |
Ca | 0.7287 * | −0.5319 | |
pH | 0.7281 * | −0.5819 * | |
N28 + MSO 3 | St | 0.1259 | 0.1501 |
Ca | 0.6733 * | −0.5592 | |
pH | −0.1282 | 0.1605 | |
N28 + MSO 4 | St | 0.7323 * | −0.2508 |
Ca | 0.4536 | −0.6380 * | |
pH | 0.7262 * | −0.5654 | |
N28 + NIS | St | 0.7174 * | −0.5336 |
Ca | 0.6796 * | −0.5963 * | |
pH | 0.7007 * | −0.5709 |
Abbreviation | Composition | Rate per ha |
---|---|---|
MSO 1 | Methyl esters of rapeseed oil fatty acids, surfactants, and pH buffering spray liquid | 1.5 l |
MSO 2 | Fatty acid methyl esters of rapeseed oil, surfactants, pH buffering sprays, and antidrifting substance | 1.5 l |
MSO 3 | Surfactants, chelating substance, humectant, and pH buffer | 1.5 l |
MSO 4 | Fatty acid esters of rapeseed oil, surfactants, and pH buffer | 1.5 l |
NIS | Ethoxylate isodecyl alcohol | 0.01% |
Date of treatment | 1 June 2017 | 24 May 2018 | 29 May 2019 | ||||
Temperature (°C) | 15.2 | 17.2 | 12.8 | ||||
Relative humidity (%) | 70 | 60 | 65 | ||||
Precipitation (mm) | 0.0 | 0.0 | 0.0 | ||||
Wind speed (m/s) | 0.0 | 0.0 | 2.8 | ||||
Precipitation sum 1–7 days before treatment (mm) | 14.0 | 11.0 | 19.8 | ||||
Precipitation sum 1–7 days after treatment (mm) | 44.3 | 0.0 | 0.1 | ||||
Temperature during the first week after treatment in 2017 | |||||||
Date | 01/06 | 02/06 | 03/06 | 04/06 | 05/06 | 06/06 | 07/06 |
Average | 19.8 | 22.7 | 22.5 | 19.3 | 21.4 | 23.2 | 18.3 |
Minimum | 9.7 | 8.1 | 8.2 | 14.4 | 10.3 | 14.0 | 12.1 |
Temperature during the first week after treatment in 2018 | |||||||
Date | 24/05 | 25/05 | 26/05 | 27/05 | 28/05 | 29/05 | 30/05 |
Average | 23.9 | 25.5 | 26.7 | 27.4 | 29.3 | 28.7 | 28.6 |
Minimum | 10.6 | 11.4 | 11.6 | 14.3 | 14.7 | 15.1 | 14.7 |
Temperature during the first week after treatment in 2019 | |||||||
Date | 29/05 | 30/05 | 31/05 | 01/06 | 02/06 | 03/06 | 04/06 |
Average | 11.9 | 12.6 | 16.9 | 20.1 | 20.8 | 22.3 | 22.7 |
Minimum | 5.4 | 2.0 | 7.5 | 11.7 | 12.3 | 11.4 | 12.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idziak, R.; Sobczak, A.; Waligora, H.; Szulc, P. Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants 2023, 12, 1118. https://doi.org/10.3390/plants12051118
Idziak R, Sobczak A, Waligora H, Szulc P. Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants. 2023; 12(5):1118. https://doi.org/10.3390/plants12051118
Chicago/Turabian StyleIdziak, Robert, Angelika Sobczak, Hubert Waligora, and Piotr Szulc. 2023. "Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.)" Plants 12, no. 5: 1118. https://doi.org/10.3390/plants12051118
APA StyleIdziak, R., Sobczak, A., Waligora, H., & Szulc, P. (2023). Impact of Multifunctional Adjuvants on Efficacy of Sulfonylurea Herbicide Applied in Maize (Zea mays L.). Plants, 12(5), 1118. https://doi.org/10.3390/plants12051118