Association of High and Low Molecular Weight Glutenin Subunits with Gluten Strength in Tetraploid Durum Wheat (Triticum turgidum spp. Durum L.)
Abstract
:1. Introduction
2. Results
2.1. Variability of HMWGS and LMWGS
2.2. Phylogeny and Amino Acid Sequence Analysis
2.3. Determination of Repeat Motifs
2.4. Computational Chemical Analysis
2.4.1. Glu-A1 Subunit
2.4.2. Glu-B1 Subunit
2.4.3. Glu-B3 Subunit
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experiment Design
4.2. Protein Extraction and Gluten Strength Evaluation
4.3. SDS-PAGE
4.4. Bioinformatics Analysis
4.5. Computational Chemical Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saini, P.; Kaur, H.; Tyagi, V.; Saini, P.; Ahmed, N.; Dhaliwal, H.; Sheikh, I. Nutritional value and end-use quality of durum wheat. Cereal Res. Commun. 2022, 1–12. [Google Scholar] [CrossRef]
- Weegels, P.; Van de Pijpekamp, A.; Graveland, A.; Hamer, R.; Schofield, J. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. J. Cereal Sci. 1996, 23, 103–111. [Google Scholar] [CrossRef]
- Shewry, P.R.; Tatham, A.S.; Lazzeri, P. Biotechnology of wheat quality. J. Sci. Food Agric. 1997, 73, 397–406. [Google Scholar] [CrossRef]
- Yu, Z.; Peng, Y.; Islam, M.S.; She, M.; Lu, M.; Lafiandra, D.; Roy, N.; Juhasz, A.; Yan, G.; Ma, W. Molecular characterization and phylogenetic analysis of active y-type high molecular weight glutenin subunit genes at Glu-A1 locus in wheat. J. Cereal Sci. 2019, 86, 9–14. [Google Scholar] [CrossRef]
- Guzmán, C.; Crossa, J.; Mondal, S.; Govindan, V.; Huerta, J.; Crespo-Herrera, L.; Vargas, M.; Singh, R.P.; Ibba, M.I. Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines. Field Crops Res. 2022, 284, 108585. [Google Scholar] [CrossRef]
- Singh, N.; Shepherd, K.; Cornish, G. A simplified SDS-PAGE procedure for separating. J. Cereal Sci. 1991, 14, 203–208. [Google Scholar] [CrossRef]
- Carrillo, J.; Martinez, M.; Brites, C.; Nieto-Taladriz, M.; Vázquez, J. Relationship between endosperm proteins and quality in durum wheat (Triticum turgidum L. var. durum). Options Mediterr. 2000, 40, 463–467. [Google Scholar]
- Shewry, P.R.; Halford, N.G.; Tatham, A.S. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 1992, 15, 105–120. [Google Scholar] [CrossRef]
- Nazco, R.; PeÑA, R.J.; Ammar, K.; Villegas, D.; Crossa, J.; Moragues, M.; Royo, C. Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength. J. Agric. Sci. 2013, 152, 379–393. [Google Scholar] [CrossRef]
- Singh, N.; Shepherd, K. The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm. Theor. Appl. Genet. 1985, 71, 79–92. [Google Scholar] [CrossRef]
- Axford, D.W.E.; McDermott, E.E.; Redman, D.G. Note on the sodium dodecyl sulphate sedimentation test and bread-making quality: Comparison with Pelshenke and Zeleny tests. Cereal Chem. 1979, 56, 582–584. [Google Scholar]
- Pena, R.; Zarco-Hernandez, J.; Mujeeb-Kazi, A. Glutenin subunit compositions and breadmaking quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (coss.) Schmal Crosses. J. Cereal Sci. 1995, 21, 15–23. [Google Scholar] [CrossRef]
- Damidaux, R.; Autran, J.C.; Grignac, P.; Feillet, P. Mise enévidence de relations applicables en sélection entre l′électrophorégramme des gliadines et les proprieties viscoé-lastiques du gluten de Triticum durum Desf. associées a la qualitéculinarieintrinséque des variétés. CR Acad. Sci. Paris Ser. D. 1978, 278, 701–704. [Google Scholar]
- Payne, P.I.; Jackson, E.A.; Holt, L.M. The association between γ-gliadin 45 and gluten strength in durum wheat varieties: A direct causal effect or the result of genetic linkage? J. Cereal Sci. 1984, 2, 73–81. [Google Scholar] [CrossRef]
- Pogna, N.; Autran, J.-C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: Genetics and relationship to gluten strength. J. Cereal Sci. 1990, 11, 15–34. [Google Scholar] [CrossRef]
- Ciaffi, M.; Benedettelli, S.; Giorgi, B.; Porceddu, E.; Lafiandra, D. Seed storage proteins of Triticum turgidum ssp. dicoccoides and their effect on the technological quality in durum wheat. Plant Breed. 1991, 107, 309–319. [Google Scholar] [CrossRef]
- Sharma, A.; Garg, S.; Sheikh, I.; Vyas, P.; Dhaliwal, H. Effect of wheat grain protein composition on end-use quality. J. Food Sci. Technol. 2020, 57, 2771–2785. [Google Scholar] [CrossRef]
- Du Cros, D. Glutenin proteins and gluten strength in durum wheat. J. Cereal Sci. 1987, 5, 3–12. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Xiao, Y.; Sehgal, D.; Guzman, C.; He, Z.; Xia, X.; Pena, R.J. SNP markers for low molecular glutenin subunits (LMW-GSs) at the Glu-A3 and Glu-B3 loci in bread wheat. PLoS ONE 2020, 15, e0233056. [Google Scholar] [CrossRef]
- Hernández-Espinosa, N.; Payne, T.; Huerta-Espino, J.; Cervantes, F.; Gonzalez-Santoyo, H.; Ammar, K.; Guzmán, C. Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. J. Cereal Sci. 2019, 88, 47–56. [Google Scholar] [CrossRef]
- Branković, G.; Dodig, D.; Pajić, V.; Kandić, V.; Knežević, D.; Djurić, N.; Živanović, T. Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemdirb.-Agric. 2018, 105, 39–48. [Google Scholar] [CrossRef]
- Sissons, M.J.; Ames, N.P.; Hare, R.A.; Clarke, J.M. Relationship between glutenin subunit composition and gluten strength measurements in durum wheat. J. Sci. Food Agric. 2005, 85, 2445–2452. [Google Scholar] [CrossRef]
- Dexter, J.; Preston, K.; Martin, D.; Gander, E. The effects of protein content and starch damage on the physical dough properties and bread-making quality of Canadian durum wheat. J. Cereal Sci. 1994, 20, 139–151. [Google Scholar] [CrossRef]
- Field, J.; Tatham, A.; Shewry, P. The structure of a high-M r subunit of durum-wheat (Triticum durum) gluten. Biochem. J. 1987, 247, 215–221. [Google Scholar] [CrossRef]
- Anjum, F.M.; Lookhart, G.L.; Walker, C.E. High-molecular-weight glutenin subunit composition of Pakistani hard white spring wheats grown at three locations for 2 years and its relationship with end-use quality characteristics. J. Sci. Food Agric. 2000, 80, 219–225. [Google Scholar] [CrossRef]
- Payne, P.I.; Lawrence, G.J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 1983, 11, 29–35. [Google Scholar]
- Dong, H.; Cox, T.; Sears, R.; Lookhart, G. High molecular weight glutenin genes: Effects on quality in wheat. Crop Sci. 1991, 31, 974–979. [Google Scholar] [CrossRef]
- Czuchajowska, Z.; Lin, P.; Smolinski, S. Role in dough rheology of high molecular weight glutenin subunits of soft white winter and club wheats. Cereal Chem. 1996, 73, 338–345. [Google Scholar]
- Peña, R.; Zarco-Hernandez, J.; Amaya-Celis, A.; Mujeeb-Kazi, A. Relationships between chromosome 1B-encoded glutenin subunit compositions and bread-making quality characteristics of some durum wheat (Triticum turgidum) cultivars. J. Cereal Sci. 1994, 19, 243–249. [Google Scholar] [CrossRef]
- Ammar, K.; Kronstad, W.E.; Morris, C.F. Breadmaking Quality of Selected Durum Wheat Genotypes and Its Relationship with High Molecular Weight Glutenin Subunits Allelic Variation and Gluten Protein Polymeric Composition. Cereal Chem. 2000, 77, 230–236. [Google Scholar] [CrossRef]
- Henkrar, F.; El-Haddoury, J.; Iraqi, D.; Bendaou, N.; Udupa, S.M. Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars. 3 Biotech 2017, 7, 287. [Google Scholar] [CrossRef]
- Magallanes-López, A.M.; Ammar, K.; Morales-Dorantes, A.; González-Santoyo, H.; Crossa, J.; Guzmán, C. Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. J. Cereal Sci. 2017, 75, 1–9. [Google Scholar] [CrossRef]
- Izadi-Darbandi, A.; Yazdi-Samadi, B.; Shanejat-Boushehri, A.-A.; Mohammadi, M. Allelic variations in Glu-1 and Glu-3 loci of historical and modern Iranian bread wheat (Triticum aestivum L.) cultivars. J. Genet. 2010, 89, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Kapoor, S.; Patwa, N.; Gupta, O.P.; Gopalareddy, K.; Ram, S.; Singh, G.P. Molecular, Biotechnological and Omics-Based Interventions for Improving Wheat Grain Quality: Advances and Way Forward. In New Horizons in Wheat and Barley Research; Springer: Berlin/Heidelberg, Germany, 2022; pp. 759–787. [Google Scholar]
- Gupta, R.; Singh, N.; Shepherd, K. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor. Appl. Genet. 1989, 77, 57–64. [Google Scholar] [CrossRef]
- Khoshro, H.H.; Bihamta, M.R.; Hassani, M.E. Relationship between allelic variation at the Glu-3 loci and qualitative traits in bread wheat. Cereal Res. Commun. 2022, 50, 509–522. [Google Scholar] [CrossRef]
- Roncallo, P.F.; Guzmán, C.; Larsen, A.O.; Achilli, A.L.; Dreisigacker, S.; Molfese, E.; Astiz, V.; Echenique, V. Allelic variation at glutenin loci (Glu-1, Glu-2 and Glu-3) in a worldwide durum wheat collection and its effect on quality attributes. Foods 2021, 10, 2845. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Z.; Wan, Y.; Liu, K.; Zheng, Y.; Wang, D. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor. Appl. Genet. 2003, 106, 1368–1378. [Google Scholar] [CrossRef]
- Wang, J.-R.; Yan, Z.-H.; Wei, Y.-M.; Zheng, Y.-L. A novel high-molecular-weight glutenin subunit gene Ee1. 5 from Elytrigiaelongata (Host) Nevski. J. Cereal Sci. 2004, 40, 289–294. [Google Scholar] [CrossRef]
- Shewry, P.R.; Field, J.M.; Faulks, A.J.; Parmar, S.; Miflin, B.J.; Dietler, M.D.; Lew, E.J.; Kasarda, D.D. The purification and N-terminal amino acid sequence analysis of the high molecular weight gluten polypeptides of wheat. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1984, 788, 23–34. [Google Scholar] [CrossRef]
- Shewry, P.; Halford, N.; Tatham, A. The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat gluten structure and fuctionality. In Oxford Surveys of Plant Molecular and Cell Biology; Oxford University Press: Oxford, UK, 1989; Volume 6, pp. 163–219. [Google Scholar]
- Tatham, A.S.; Drake, A.F.; Shewry, P.R. Conformational studies of synthetic peptides corresponding to the repetitive regions of the high molecular weight (HMW) glutenin subunits of wheat. J. Cereal Sci. 1990, 11, 189–200. [Google Scholar] [CrossRef]
- Ram, S.; Bhatia, V.; Jain, V.; Mishra, B. Characterization of Low Molecular Weight Glutenin Subunit Gene Representing Glu-B3 Locus of Indian Wheat Variety NP4. J. Plant Biochem. Biotechnol. 2006, 15, 79–83. [Google Scholar] [CrossRef]
- Bhatnagar, T.; Sachdev, A.; Johari, R. Molecular characterization of glutenins in wheat varieties differing in chapati quality characteristics. J. Plant Biochem. Biotechnol. 2002, 11, 33–36. [Google Scholar] [CrossRef]
- Belton, P.S.; Colquhoun, I.J.; Grant, A.; Wellner, N.; Field, J.M.; Shewry, P.R.; Tatham, A.S. FTIR and NMR studies on the hydration of a high-Mr subunit of glutenin. Int. J. Biol. Macromol. 1995, 17, 74–80. [Google Scholar] [CrossRef]
- Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 1980, 88, 1895–1898. [Google Scholar] [PubMed]
- Indrani, D.; Rao, G.V. Influence of surfactants on rheological characteristics of dough and quality of parotta. Int. J. Food Sci. Technol. 2003, 38, 47–54. [Google Scholar] [CrossRef]
- Lorenzo, A.; Kronstad, W. Reliability of Two Laboratory Techniques to Predict Bread Wheat Protein Quality in Nontraditional Growing Areas 1. Crop Sci. 1987, 27, 247–252. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue methodezurbestimmung des stickstoffs in organischenkörpern. Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Z. Random local neighbor joining: A new method for reconstructing phylogenetic trees. Mol. Phylogenet. Evol. 2008, 47, 117–128. [Google Scholar] [CrossRef]
- Walker, J.M. The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
Glutenin Subunit | HMWGS and LMWGS | Na | Frequency (%) | Mean (±SE) Value for | |||
---|---|---|---|---|---|---|---|
Glu-A1 | Glu-B1 | Glu-B3 | Protein Content (%) | SDSS Volume (mL) | |||
Genotypic Class | |||||||
1 | 1 | 7+9 | LMW-2 | 1 | 1.96 | 14.32 | 45.25 |
2 | 1 | 13+16 | LMW-2 | 1 | 1.96 | 12.98 | 41.25 |
3 | Null | 7 | LMW-1 | 7 | 13.73 | 13.22 ± 0.26 | 33.32 ± 0.79 |
4 | Null | 7 | LMW-2 | 3 | 5.88 | 13.26 ± 0.25 | 38.92 ± 1.45 |
5 | Null | 7+8 | LMW-1 | 1 | 1.96 | 14.23 | 36.5 |
6 | Null | 7+8 | LMW-2 | 3 | 5.88 | 14.32 ± 0.42 | 46.25 ± 0.29 |
7 | Null | 7+9 | LMW-2 | 3 | 5.88 | 14.11 ± 0.28 | 45.08 ± 1.09 |
8 | Null | 6+8 | LMW-1 | 5 | 9.80 | 14.18 ± 0.18 | 33.30 ± 0.43 |
9 | Null | 6+8 | LMW-2 | 3 | 5.88 | 13.74 ± 0.50 | 37.75 ± 0.95 |
10 | Null | 20 | LMW-1 | 3 | 5.88 | 14.03 ± 0.33 | 35.42 ± 0.51 |
11 | Null | 20 | LMW-2 | 3 | 5.88 | 13.88 ± 0.26 | 39.42 ± 1.17 |
12 | Null | 13+16 | LMW-1 | 5 | 9.80 | 13.58 ± 0.34 | 39.80 ± 0.18 |
13 | Null | 13+16 | LMW-2 | 6 | 11.76 | 14.23 ± 0.24 | 45.08 ± 0.95 |
14 | Null | 13+19 | LMW-2 | 3 | 5.88 | 13.57 ± 0.38 | 36.50 ± 1.23 |
15 | Null | 14+15 | LMW-1 | 1 | 1.96 | 13.75 | 31.25 |
16 | Null | 17+18 | LMW-2 | 2 | 3.92 | 13.26 ± 0.31 | 40.75 ± 0.50 |
17 | Null | 21 | LMW-1 | 1 | 1.96 | 14.32 | 32.25 |
Allelic Group | Na | Mean (±SE) Value | |
---|---|---|---|
Protein Content (%) | SDSS Volume (mL) | ||
Glu-A1alleles | |||
1 | 2 | 13.65 ± 0.67 | 43.25 ± 2.00 |
null | 49 | 13.80 ± 0.09 | 38.55 ± 0.70 |
Glu-B1alleles | |||
7 | 10 | 13.23 ± 0.18 | 35.00 ± 1.08 |
7+8 | 4 | 14.30 ± 0.30 | 43.81 ± 2.44 |
7+9 | 4 | 14.16 ± 0.20 | 45.13 ± 0.77 |
6+8 | 8 | 14.01 ± 0.21 | 34.97 ± 0.90 |
20 | 6 | 13.96 ± 0.19 | 37.42 ± 1.06 |
13+16 | 12 | 13.85 ± 0.21 | 42.56 ± 0.89 |
13+19 | 3 | 13.57 ± 0.38 | 36.50 ± 1.28 |
14+15 | 1 | 13.75 | 31.25 |
17+18 | 2 | 13.26 ± 0.31 | 40.75 ± 0.50 |
21 | 1 | 14.32 | 32.25 |
Glu-B3 alleles | |||
LMW-1 | 24 | 13.69 ± 0.14 | 35.26 ± 0.66 |
LMW-2 | 27 | 13.88 ± 0.12 | 41.82 ± 0.77 |
Source of Variation | DF | Mean Square | |
---|---|---|---|
SDS-Sedimentation | Protein Content | ||
Glu-A1.(A) | 1 | 1.75 | 0.30 |
Glu-B1.(B) | 9 | 45.06 *** | 0.74 |
Glu-B3.(C) | 1 | 76.13 *** | 1.15 |
A × B | 1 a | 0.65 | 0.26 |
B × C | 4 b | 4.37 | 0.37 |
Error | 34 | 3.03 | 0.39 |
Standardized Canonical Discriminant Function Coefficients | |||||||
1 | 2 | ||||||
Protein content | −0.03602 | 1.00824 | |||||
SDSS test | 1.00413 | −0.09779 | |||||
Discriminant Function | Eigenvalue Percentage | Relative Correlation | Canonical | ||||
1 | 10.7024 | 94.98 | 0.9563 | ||||
2 | 0.5651 | 5.02 | 0.6009 | ||||
FunctionDerived | Wilks’Lambda | Chi-Square | DF | p-Value | |||
0 | 0.054598 | 117.764 | 32 | 0.0000 | |||
1 | 0.638926 | 18.143 | 15 | 0.2552 |
SOV | DF | Mean Square |
---|---|---|
LMW-1 allele | ||
Regression. | 1 | 8.644 |
Residual. | 22 | 10.683 |
LMW-2 allele | ||
Regression. | 1 | 135.606 ** |
Residual. | 25 | 11.244 |
Motif | T. turgidum | T. aestivum | ||||
---|---|---|---|---|---|---|
Glu-A1 | Glu-B1 | Glu-B3 | Glu-A1 | Glu-B1 | Glu-B3 | |
Tripeptide (GQQ) | 0 | 31 | 0 | 41 | 40 | 0 |
Hexapeptide (PGQGQQ) | 0 | 15 | 0 | 7 | 14 | 0 |
Nona peptide (GYYPTSPQQ) | 0 | 8 | 0 | 6 | 9 | 0 |
Triticum turgidum | Triticum aestivum | |||||
---|---|---|---|---|---|---|
Glu-A1 | Glu-B1 | Glu-B3 | Glu-A1 | Glu-B1 | Glu-B3 | |
Protein size (aa) | 846 | 795 | 350 | 824 | 747 | 350 |
Protein MW (KD) | 87.29 | 86.07 | 39.82 | 89.45 | 80.14 | 39.91 |
(Asp + Glu) | 107 | 20 | 7 | 29 | 17 | 6 |
(Arg + Lys) | 113 | 31 | 9 | 28 | 23 | 11 |
Aliphatic index | 63.11 | 24.70 | 68.49 | 32.68 | 25.89 | 72.40 |
Instability index | 55.87 | 91.64 | 113.15 | 94.49 | 90.97 | 111.91 |
Theoretical pI | 8.66 | 9.21 | 8.14 | 6.54 | 8.81 | 8.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khayri, J.M.; Alshegaihi, R.M.; Mahgoub, E.I.; Mansour, E.; Atallah, O.O.; Sattar, M.N.; Al-Mssallem, M.Q.; Alessa, F.M.; Aldaej, M.I.; Hassanin, A.A. Association of High and Low Molecular Weight Glutenin Subunits with Gluten Strength in Tetraploid Durum Wheat (Triticum turgidum spp. Durum L.). Plants 2023, 12, 1416. https://doi.org/10.3390/plants12061416
Al-Khayri JM, Alshegaihi RM, Mahgoub EI, Mansour E, Atallah OO, Sattar MN, Al-Mssallem MQ, Alessa FM, Aldaej MI, Hassanin AA. Association of High and Low Molecular Weight Glutenin Subunits with Gluten Strength in Tetraploid Durum Wheat (Triticum turgidum spp. Durum L.). Plants. 2023; 12(6):1416. https://doi.org/10.3390/plants12061416
Chicago/Turabian StyleAl-Khayri, Jameel M., Rana M. Alshegaihi, ELsayed I. Mahgoub, Elsayed Mansour, Osama O. Atallah, Muhammad N. Sattar, Muneera Q. Al-Mssallem, Fatima M. Alessa, Mohammed I. Aldaej, and Abdallah A. Hassanin. 2023. "Association of High and Low Molecular Weight Glutenin Subunits with Gluten Strength in Tetraploid Durum Wheat (Triticum turgidum spp. Durum L.)" Plants 12, no. 6: 1416. https://doi.org/10.3390/plants12061416
APA StyleAl-Khayri, J. M., Alshegaihi, R. M., Mahgoub, E. I., Mansour, E., Atallah, O. O., Sattar, M. N., Al-Mssallem, M. Q., Alessa, F. M., Aldaej, M. I., & Hassanin, A. A. (2023). Association of High and Low Molecular Weight Glutenin Subunits with Gluten Strength in Tetraploid Durum Wheat (Triticum turgidum spp. Durum L.). Plants, 12(6), 1416. https://doi.org/10.3390/plants12061416