Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers
Abstract
:1. Introduction
2. Results
2.1. Influence of Extraction Technique on Selected Phenolic Compounds Content in FF
2.2. Influence of Extraction Technique on Antioxidant Activity and Total Phenols in FF
3. Discussion
3.1. Influence of Extraction Technique on Selected Phenolic Compounds Content in FF
3.2. Influence of Extraction Technique on Antioxidant Activity and Total Phenols in FF
3.3. Comparison of Results with Available Literature
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Extraction Techniques
4.3.1. Ultrasound-Assisted Extraction (UAE)
4.3.2. Supercritical Fluid Extraction (SFE)
4.3.3. Subcritical Water Extraction (SWE)
4.3.4. Extraction with Deep Eutectic Solvents (DESs)
4.4. Determination of Phenolic Compounds by HPLC
4.5. Determination of Total Polyphenol Content (Folin–Ciocalteu’s Assay), Free Radical Scavenging Activity (ABTS•+ and DPPH• Assays), and Total Reducing Power (CUPRAC and FRAP Assays)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weston, R.J. Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem. 2010, 121, 923–926. [Google Scholar] [CrossRef]
- do Amarante, C.V.T.; de Souza, A.G.; Benincá, T.D.T.; Steffens, C.A. Phenolic content and antioxidant activity of fruit of Brazilian genotypes of feijoa. Pesqui. Agropecu. Bras. 2017, 52, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Chemical and biological properties of feijoa (Acca sellowiana). Trends Food Sci. Technol. 2018, 81, 121–131. [Google Scholar] [CrossRef]
- Amaral, F.M.; Southgate, A.N.N.; Komatsu, R.A.; Scheue, P.M.; Maresch, G.A.; da Silva, J.C. Acca sellowiana: Physical-chemical-sensorial characterization and gastronomic potentialities. Int. J. Gastron. Food Sci. 2019, 17, 100159. [Google Scholar] [CrossRef]
- Magri, A.; Adiletta, G.; Petriccione, M. Evaluation of antioxidant systems and ascorbate-glutathione cycle in feijoa edible flowers at different flowering stages. Foods 2020, 9, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosbah, H.; Chahdoura, H.; Adouni, K.; Kamoun, J.; Boujbiha, M.A.; Gonzalez-Paramas, A.M.; Santos-Buelga, C.; Ciudad-Mulero, M.; Morales, P.; Fernández-Ruiz, V.; et al. Nutritional properties, identification of phenolic compounds, and enzyme inhibitory activities of Feijoa sellowiana leaves. J. Food Biochem. 2019, 43, e13012. [Google Scholar] [CrossRef]
- Montoro, P.; Serreli, G.; Gil, K.A.; D’Urso, G.; Kowalczyk, A.; Tuberoso, C.I.G. Evaluation of bioactive compounds and antioxidant capacity of edible feijoa (Acca sellowiana (O.Berg) Burret) flower extracts. J. Food Sci. Technol. 2020, 57, 2051–2060. [Google Scholar] [CrossRef]
- do Amarante, C.V.T.; de Souza, A.G.; Benincá, T.D.T.; Steffens, C.A.; Ciotta, M.N. Physicochemical attributes and functional properties of flowers of Brazilian feijoa genotypes. Pesqui. Agropecu. Bras. 2019, 54, 00445. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, H.; Sakagami, H.; Hatano, T. Three new flavonoids, proanthocyanidin, and accompanying phenolic constituents from Feijoa sellowiana. Biosci. Biotechnol. Biochem. 2018, 82, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Routray, W.; Orsat, V. Plant by-products and food industry waste: A source of nutraceuticals and biopolymers. In Handbook of Food Bioengineering—Food Bioconversion; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: London, UK, 2017; pp. 279–315. [Google Scholar]
- Gil, K.A.; Wojdyło, A.; Nowicka, P.; Montoro, P.; Tuberoso, C.I.G. Effect of apple juice enrichment with selected plant materials: Focus on bioactive compounds and antioxidant activity. Foods 2023, 12, 105. [Google Scholar] [CrossRef]
- Šola, I.; Stipaničev, M.; Vujčić, V.; Mitić, B.; Huđek, A.; Rusak, G. Comparative analysis of native crocus taxa as a great source of flavonoids with high antioxidant activity. Plant Foods Hum. Nutr. 2018, 73, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Espinoza, J.M.; Gutiérrez-Tlahque, J.; Santiago-Saenz, Y.O.; Aguirre-Mancilla, C.L.; Reyes-Fuentes, M.; López-Palestina, C.U. Nutritional composition, bioactive compounds and antioxidant activity of wild edible flowers consumed in semiarid regions of Mexico. Plant Foods Hum. Nutr. 2020, 75, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; de la Guardia, M. The role of green extraction techniques in green analytical chemistry. Trends Anal. Chem. 2015, 71, 2–8. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef] [Green Version]
- Kothari, V.; Gupta, A.; Naraniwal, M. Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J. Nat. Remedies 2012, 12, 162–173. [Google Scholar]
- Gil, K.A.; Tuberoso, C.I.G. Crucial challenges in the development of green extraction technologies to obtain antioxidant bioactive compounds from agro-industrial by–products. Chem. Biochem. Eng. Q. 2021, 35, 105–138. [Google Scholar] [CrossRef]
- Specht, W.; Schultheis, W.E. Beer Brewing Process. U.S. Patent 2,816,031, 10 December 1957. [Google Scholar]
- Mehmood, A.; Ishaq, M.; Zhao, L.; Yaqoob, S.; Safdar, B.; Nadeem, M.; Munir, M.; Wang, C. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrason. Sonochem. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Babamorandi, N.; Yousefi, S.; Ziarati, P. Optimization of ultrasound-assisted extraction of functional polysaccharides from common mullein (Verbascum thapsus L.) flowers. J. Food Process Eng. 2018, 41, e12851. [Google Scholar] [CrossRef]
- Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chim. 2016, 19, 707–717. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Jiang, J.; Yuan, F.; Gao, Y. Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS·+ assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues. J. Food Sci. Technol. 2015, 52, 3803–3811. [Google Scholar] [CrossRef] [Green Version]
- Jerković, I.; Molnar, M.; Vidović, S.; Vladić, J.; Jokić, S. Supercritical CO2 extraction of Lavandula angustifolia Mill. flowers: Optimisation of oxygenated monoterpenes, coumarin and herniarin content. Phytochem. Anal. 2017, 28, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, M.; Vladić, J.; Vidović, S.; Pastor, K.; Jokić, S.; Molnar, M.; Jerković, I. Application of deep eutectic solvents for the extraction of rutin and rosmarinic acid from Satureja montana L. and evaluation of the extracts antiradical activity. Plants 2020, 9, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.; Wan, Y. Deep eutectic solvents used as extraction solvent for the determination of flavonoids from Camellia oleifera flowers by high-performance liquid chromatography. Phytochem. Anal. 2018, 29, 639–648. [Google Scholar] [CrossRef]
- Benarfa, A.; Gourine, N.; Hachani, S.; Harrat, M.; Yousfi, M. Optimization of ultrasound-assisted extraction of antioxidative phenolic compounds from Deverra scoparia Coss. & Durieu (flowers) using response surface methodology. J. Food Process. Preserv. 2020, 44, e14514. [Google Scholar]
- Huang, H.-S.; Liaw, E.-T. Extraction optimization of flavonoids from Hypericum formosanum and matrix metalloproteinase-1 inhibitory activity. Molecules 2017, 22, 2172. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon 2019, 5, e02374. [Google Scholar] [CrossRef] [Green Version]
- Martino, E.; Collina, S.; Rossi, D.; Bazzoni, D.; Gaggeri, R.; Bracco, F.; Azzolina, O. Influence of the extraction mode on the yield of hyperoside, vitexin and vitexin-2″-O-rhamnoside from Crataegus monogyna Jacq. (hawthorn). Phytochem. Anal. 2008, 19, 534–540. [Google Scholar] [CrossRef]
- Ko, M.-J.; Nam, H.-H.; Chung, M.-S. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 10890. [Google Scholar] [CrossRef]
- Vladić, J.; Janković, T.; Živković, J.; Tomić, M.; Zdunić, G.; Šavikin, K.; Vidović, S. Comparative study of subcritical water and microwave-assisted extraction techniques impact on the phenolic compounds and 5-hydroxymethylfurfural content in pomegranate peel. Plant Foods Hum. Nutr. 2020, 75, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.-J.; Cheigh, C.-I.; Chung, M.-S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef]
- Živković, J.; Vladić, J.; Naffati, A.; Nastić, N.; Katarina Šavikin, K.; Tomić, M.; Vidović, S. Comparative chemical profiling of underexploited Arctostaphylos uva-ursi L. herbal dust extracts obtained by conventional, ultrasound-assisted and subcritical water extractions. Waste Biomass Valorization 2022, 13, 4147–4155. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef] [Green Version]
- Kuś, P.; Jerković, I.; Jakovljević, M.; Jokić, S. Extraction of bioactive phenolics from black poplar (Populus nigra L.) buds by supercritical CO2 and its optimization by response surface methodology. J. Pharm. Biomed. Anal. 2018, 152, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Baumann, D.; Adler, S.; Grüner, S.; Otto, F.; Weinreich, B.; Hamburger, M. Supercritical carbon dioxide extraction of marigold at high pressures: Comparison of analytical and pilot-scale extraction. Phytochem. Anal. 2004, 15, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J. CO2 Util. 2020, 36, 196–209. [Google Scholar] [CrossRef]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep Eutectic solvents as extraction media for valuable flavonoids from natural sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.-H.; Li, X.-H.; Jiang, Y. Deep eutectic solvents as green media for flavonoids extraction from the rhizomes of Polygonatum odoratum. Alex. Eng. J. 2021, 60, 1991–2000. [Google Scholar] [CrossRef]
- Caruso, Í.P.; Filho, J.M.B.; de Araújo, A.S.; de Souza, F.P.; Fossey, M.A.; Cornélio, M.L. An integrated approach with experimental and computational tools outlining the cooperative binding between 2-phenylchromone and human serum albumin. Food Chem. 2016, 196, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Fang, X.; Yang, J.; Yao, Y.; Nandakumar, K.S.; Salem, M.L.; Cheng, K. Recent research on flavonoids and their biomedical applications. Curr. Med. Chem. 2021, 28, 1042–1066. [Google Scholar] [CrossRef] [PubMed]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical water extraction laboratory plant design and application. Annu. Croat. Acad. Eng. 2018, 21, 247–258. [Google Scholar]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Banožić, M.; Banjari, I.; Jakovljević, M.; Šubarić, D.; Tomas, S.; Babić, J.; Jokić, S. Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules 2019, 24, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokić, S.; Horvat, G.; Aladić, K. Design of SFE system using a holistic approach—Problems and challenges. In Supercritical Fluid Extraction: Technology, Applications and Limitations; Lindy, J., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015; pp. 95–122. [Google Scholar]
- Jokić, S.; Šafranko, S.; Jakovljević, M.; Cikoš, A.-M.; Kajić, N.; Kolarević, F.; Babić, J.; Molnar, M. Sustainable green procedure for extraction of hesperidin from selected Croatian mandarin peels. Processes 2019, 7, 469. [Google Scholar] [CrossRef] [Green Version]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef]
- Bouzabata, A.; Montoro, P.; Gil, K.A.; Piacente, S.; Youssef, F.S.; Al Musayeib, N.M.; Cordell, G.A.; Ashour, M.L.; Tuberoso, C.I.G. HR-LC-ESI-Orbitrap-MS-Based metabolic profiling coupled with chemometrics for the discrimination of different Echinops spinosus organs and evaluation of their antioxidant activity. Antioxidants 2022, 11, 453. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bektaşǒglu, B.; Celik, S.E.; Ozyürek, M.; Güçlü, K.; Apak, R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem. Biophys. Res. Commun. 2006, 345, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Extraction Techniques | Extraction Parameters | ||
---|---|---|---|---|
Temperature (°C) | Time (min) | Solvent | ||
1UAE | ultrasound-assisted extraction | 30 | 30 | H2O-EtOH 60–40% v/v |
2UAE | ultrasound-assisted extraction | 50 | ||
3UAE | ultrasound-assisted extraction | 70 | ||
4UAE | ultrasound-assisted extraction | 30 | H2O-EtOH 40–60% v/v | |
5UAE | ultrasound-assisted extraction | 50 | ||
6UAE | ultrasound-assisted extraction | 70 | ||
7UAE | ultrasound-assisted extraction | 30 | H2O-EtOH 80–20% v/v | |
8UAE | ultrasound-assisted extraction | 50 | ||
9UAE | ultrasound-assisted extraction | 70 | ||
temperature (°C) | time (min) | pressure (bar) | ||
1SFE | supercritical fluid extraction | 40 | 90 | 300 |
2SFE | supercritical fluid extraction | 40 | 90 | 100 |
1SWE | subcritical water extraction | 130 | 15 | 30 |
2SWE | subcritical water extraction | 180 | 15 | 30 |
Extraction solvent | ||||
1DES | deep eutectic solvents | Choline chloride:urea 1:2; H2O content 10% | ||
2DES | deep eutectic solvents | Choline chloride:urea 1:2; H2O content 50% | ||
3DES | deep eutectic solvents | Choline chloride:glycerol 1:2; H2O content 10% | ||
4DES | deep eutectic solvents | Choline chloride:glycerol 1:2; H2O content 50% | ||
5DES | deep eutectic solvents | Choline chloride:lactic acid 1:2; H2O content 10% | ||
6DES | deep eutectic solvents | Choline chloride:lactic acid 1:2; H2O content 50% |
Sample Code | Hyperoside (µg/g dm) | Isoquercitrin (µg/g dm) | Quercetin (µg/g dm) | Chrysanthemin (µg/g dm) | Flavone (µg/g dm) |
---|---|---|---|---|---|
1UAE | 8.47 ± 0.42 fg | 19.26 ± 1.54 c | 10.86 ± 0.54 c | 58.00 ± 3.48 e | 42.44 ± 1.70 i |
2UAE | 8.92 ± 0.45 ef | 18.90 ± 0.94 c | 11.32 ± 0.68 c | 58.19 ± 3.49 e | 55.53 ± 3.33 h |
3UAE | 9.24 ± 0.37 def | 18.36 ± 0.92 c | 11.48 ± 0.92 c | 65.13 ± 5.21 cd | 114.02 ± 6.84 e |
4UAE | 9.85 ±0.69 cde | 21.77 ± 1.09 b | 13.63 ± 0.68 b | 68.84 ± 5.51 bc | 57.73 ± 2.31 h |
5UAE | 10.02 ± 0.50 cd | 21.68 ± 1.30 b | 13.39 ± 1.07 b | 71.67 ± 3.58 bc | 68.28 ± 4.10 g |
6UAE | 10.58 ± 0.95 c | 21.53 ± 1.08 b | 13.02 ± 1.04 b | 73.38 ± 3.67 b | 135.29 ± 8.12 d |
7UAE | 10.23 ± 0.51 cd | 23.88 ± 1.19 a | 15.54 ± 1.24 a | 68.39 ± 5.47 bc | 66.39 ± 3.98 g |
8UAE | 10.77 ± 0.54 c | 23.74 ± 1.19 a | 15.16 ± 1.21 a | 70.78 ± 3.54 bc | 77.86 ± 4.67 f |
9UAE | 12.28 ± 0.98 b | 25.33 ± 1.01 a | 16.13 ± 0.81 a | 69.29 ± 5.54 bc | 183.69 ± 14.69 c |
1SFE | nd | nd | nd | nd | 12,686.25 ± 253.73 a |
2SFE | nd | nd | nd | nd | 4175.51 ± 41.76 b |
1SWE | 7.82 ± 0.39 gh | nd | nd | nd | 13.32 ± 0.80 o |
2SWE | 20.33 ± 1.02 a | nd | nd | nd | 11.82 ± 0.71 o |
1DES | 7.33 ± 0.59 hi | 16.55 ± 0.83 d | nd | 73.42 ± 2.20 b | 21.14 ± 1.27 n |
2DES | 8.37 ± 0.42 fg | 18.40 ± 1.66 c | nd | 60.08 ± 2.40 de | 32.51 ± 1.95 l |
3DES | 6.60 ± 0.46 i | 15.19 ± 1.22 d | nd | 72.02 ± 5.76 bc | 21.58 ± 0.86 n |
4DES | 7.26 ± 0.36 hi | 16.27 ± 0.81 d | nd | 73.06 ± 1.46 b | 25.0 6± 1.50 m |
5DES | 5.41 ± 0.27 j | 12.63 ± 0.63 e | nd | 54.11 ± 4.33 e | 23.01 ± 1.38 nm |
6DES | 8.88 ± 0.27 ef | 20.10 ± 1.41 bc | nd | 90.81 ± 2.72 a | 58.34 ± 1.75 h |
Sample Code | TPC A | DPPH• B | ABTS•+ B | FRAP C | CUPRAC C |
---|---|---|---|---|---|
(mg GAE/g dm) | (mmol TEAC/g dm) | (mmol Fe2+/g dm) | |||
1UAE | 55.57 ± 2.58 cd | 0.38 ± 0.03 c | 0.71 ± 0.01 d | 1.60 ± 0.19 bc | 1.87 ± 0.02 d |
2UAE | 59.83 ± 1.99 bc | 0.43 ± 0.02 b | 0.75 ± 0.03 c | 1.59 ± 0.07 bc | 2.09 ± 0.05 b |
3UAE | 65.56 ± 3.07 a | 0.42 ± 0.03 b | 0.84 ± 0.00 a | 2.01 ± 0.49 a | 2.25 ± 0.07 a |
4UAE | 60.42 ± 5.18 bc | 0.35 ± 0.04 c | 0.65 ± 0.02 e | 1.46 ± 0.13 c | 1.73 ± 0.02 e |
5UAE | 53.20 ± 2.50 de | 0.30 ± 0.04 d | 0.69 ± 0.02 d | 1.89 ± 0.01 ab | 1.93 ± 0.06 c |
6UAE | 63.07 ± 7.65 ab | 0.49 ± 0.03 a | 0.80 ± 0.03 b | 2.09 ± 0.34 a | 2.13 ± 0.06 b |
7UAE | 46.44 ± 2.64 fg | 0.25 ± 0.01 ef | 0.42 ± 0.02 hi | 1.09 ± 0.13 de | 1.03 ± 0.02 i |
8UAE | 34.90 ± 3.34 h | 0.27 ± 0.02 de | 0.44 ± 0.03 h | 1.16 ± 0.14 d | 1.12 ± 0.02 h |
9UAE | 48.58 ± 0.79 ef | 0.36 ± 0.02 c | 0.52 ± 0.03 g | 1.63 ± 0.30 bc | 1.35 ± 0.01 f |
1SFE | 2.87 ± 0.26 k | 0.02 ± 0.00 j | 0.03 ± 0.00 n | 0.13 ± 0.00 hi | 0.05 ± 0.00 m |
2SFE | 3.90 ± 0.18 k | 0.01 ± 0.00 j | 0.04 ± 0.00 n | 0.06 ± 0.00 i | 0.03 ± 0.00 m |
1SWE | 42.88 ± 1.93 g | 0.25 ± 0.02 ef | 0.40 ± 0.00 i | 0.98 ± 0.04 de | 1.24 ± 0.09 g |
2SWE | 58.39 ± 0.27 bc | 0.21 ± 0.01 g | 0.40 ± 0.00 i | 1.13 ± 0.03 d | 1.39 ± 0.03 f |
1DES | 31.42 ± 0.80 hi | 0.21 ± 0.01 g | 0.35 ± 0.01 j | 0.90 ± 0.07 de | 1.00 ± 0.01 ij |
2DES | 26.12 ± 2.13 j | 0.08 ± 0.01 i | 0.14 ± 0.03 m | 0.36 ± 0.01 gh | 0.47 ± 0.01 l |
3DES | 27.95 ± 0.94 ij | 0.23 ± 0.01 fg | 0.33 ± 0.00 j | 0.81 ± 0.12 ef | 0.96 ± 0.00 j |
4DES | 25.93 ± 3.67 j | 0.16 ± 0.02 h | 0.23 ± 0.01 l | 0.59 ± 0.07 fg | 0.66 ± 0.01 k |
5DES | 32.75 ± 1.15 hi | 0.23 ± 0.02 fg | 0.30 ± 0.01 k | 0.87 ± 0.02 def | 0.95 ± 0.02 j |
6DES | 51.51 ± 0.55 de | 0.37 ± 0.02 c | 0.55 ± 0.00 f | 1.51 ± 0.10 c | 1.68 ± 0.01 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, K.A.; Jokić, S.; Cikoš, A.-M.; Banožić, M.; Jakovljević Kovač, M.; Fais, A.; Tuberoso, C.I.G. Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers. Plants 2023, 12, 1461. https://doi.org/10.3390/plants12071461
Gil KA, Jokić S, Cikoš A-M, Banožić M, Jakovljević Kovač M, Fais A, Tuberoso CIG. Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers. Plants. 2023; 12(7):1461. https://doi.org/10.3390/plants12071461
Chicago/Turabian StyleGil, Katarzyna Angelika, Stela Jokić, Ana-Marija Cikoš, Marija Banožić, Martina Jakovljević Kovač, Antonella Fais, and Carlo Ignazio Giovanni Tuberoso. 2023. "Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers" Plants 12, no. 7: 1461. https://doi.org/10.3390/plants12071461
APA StyleGil, K. A., Jokić, S., Cikoš, A. -M., Banožić, M., Jakovljević Kovač, M., Fais, A., & Tuberoso, C. I. G. (2023). Comparison of Different Green Extraction Techniques Used for the Extraction of Targeted Flavonoids from Edible Feijoa (Acca sellowiana (O.Berg) Burret) Flowers. Plants, 12(7), 1461. https://doi.org/10.3390/plants12071461