Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model
Abstract
:1. Introduction
2. Results
2.1. Performance of Different Methanolic Extracts/Doses against Pharmacological Activities
2.1.1. Methanolic Extract Performance against Analgesic Activity
2.1.2. Methanolic Extract Performance against Anti-Inflammatory Action
2.1.3. Methanolic Extract Performance against Antipyretic Activity
2.1.4. Methanolic Extract Performance against Antispasmodic Activity
2.2. Phytochemical Studies
2.2.1. Qualitative Detection of Bioactive Compounds of P. lonchitis in Leaf and Rhizome
2.2.2. Quantitative Assessment of Total Flavonoids and Phenolic Content
2.3. Antioxidant Action
Antioxidant Scavenging Action of the P. lonchitis at Different Concentrations
2.4. GC–MS Studies
3. Discussion
3.1. Performance of Methanolic Extract against Pharmacological Activities
3.2. Antioxidant Performance, GC–MS Analysis and Phytochemical Screening of P. lonchitis
4. Materials and Methods
4.1. Plant Collection and Identification
4.2. Drying and Powdering
4.3. Preparation of Extracts
4.4. Animals Used
4.5. Analgesic Activity In Vivo
Acetic Acid-Induced Writhing Method
4.6. Anti-Inflammatory Activity
4.7. Antipyretic Activity
4.8. Antispasmodic Activity
4.9. Antioxidant Activity
DPPH Radical Scavenging Method
4.10. Gas Chromatography–Mass Spectrometry Analysis
4.11. Phytochemical Analysis
4.11.1. Flavonoid Content Determination
4.11.2. Phenolic Content Determination
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valizadeh, H.; Mahmoodi, K.F.; Alizadeh, Z.; Bahadori, M.B. Isolation and structure elucidation of secondary metabolites from Echinophora platyloba DC from Iran. J. Med. Plants 2014, 13, 15–21. [Google Scholar]
- Ahmad, I.; Irfan, M.; Ali, I.; Khan, J.; Saeed, S.H.; Gulfaraz, A. Checklist of some medicinal plants of district Lower Dir, Pakistan. IASET J. Agric. Bio-Chem. Sci. 2016, 1, 15–22. [Google Scholar]
- Irfan, M.; Ahmad, I.; Saeed, S.H. Traditional medicinal plant knowledge of some spermatophytes of Samar Bagh Valley, Lower Dir district, Pakistan. Plant Sci. Today 2017, 4, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Nabeela; Kamil, M.; Khan, N.A.; Khan, H.; Khalil, S.; Ullah, S.; Shah, M.; Jan, G.; Murad, W. Ethnomedicinal plants uses of tehsil khall, district lower dir, khyber Pakhtunkhwa, Pakistan. Int. J. Biosci. 2018, 13, 219–229. [Google Scholar]
- Mahmoudi Kordi, F.; Valizadeh, H.; Hosseinzadeh, Z.; Bahadori, M.B. Furocoumarins from Heracleum rawianum in Iran. Q. J. Iran. Chem. Commun. 2015, 3, 1–5. [Google Scholar]
- Rehman, S.; Iqbal, Z.; Qureshi, R.; Shah, G.M.; Irfan, M. Ethnomedicinal plants uses for the treatment of respiratory disorders in tribal District North Waziristan, Khyber Pakhtunkhawa, Pakistan. Ethnobot. Res. Appl. 2023, 25, 1–16. [Google Scholar] [CrossRef]
- Ullah, K.; Shah, G.M.; Alam, J.; Gul, A.; Irfan, M. Ethnomedicinal uses of the Ferns of Shishikoh Valley, District Chitral, Pakistan. Plant Sci. Today 2022, 9, 687–692. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474. [Google Scholar] [CrossRef]
- Frecska, E.; Bokor, P.; Winkelman, M. The therapeutic potentials of ayahuasca: Possible effects against various diseases of civilization. Front. Pharmacol. 2016, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Bahadori, M.B.; Kordi, F.M.; Ahmadi, A.A.; Bahadori, S.; Valizadeh, H. Antibacterial evaluation and preliminary phytochemical screening of selected ferns from Iran. Res. J. Pharmacogn. 2015, 2, 53–59. [Google Scholar]
- De Britto, A.J.; Gracelin, D.H.S.; Kumar, P.B.J.R. Phytochemical studies on five medicinal ferns collected from Southern Western Ghats, Tamilnadu. Asian Pac. J. Trop. Biomed. 2012, 2, S536–S538. [Google Scholar] [CrossRef]
- Sultana, S.; Nandi, J.K.; Rahman, S.; Jahan, R.; Rahmatullah, M. Preliminary antihyperglycemic and analgesic activity studies with Angiopteris evecta leaves in Swiss albino mice. World J. Pharm. Pharm. Sci 2014, 3, 1–12. [Google Scholar]
- Upreti, K.; Jalal, J.S.; Tewari, L.M.; Joshi, G.C.; Pangtey, Y.P.S.; Tewari, G. Ethnomedicinal uses of pteridophytes of Kumaun himalaya, Uttarakhand, India. J. Am. Sci. 2009, 5, 167–170. [Google Scholar]
- Geetha, T.; Varalakshmi, P. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J. Ethnopharmacol. 2001, 76, 77–80. [Google Scholar] [CrossRef]
- Geetha, T.; Varalakshmi, P. Anti-inflammatory activity of lupeol and lupeol linoleate in adjuvant-induced arthritis. Fitoter. 1998, 69, 13–19. [Google Scholar]
- Johnson, M.A.A.; Madona, C.X.; Almeida, R.S.; Martins, N.; Coutinho, H.D.M. In vitro toxicity, antioxidant, anti-inflammatory, and antidiabetic potential of Sphaerostephanos unitus (L.) Holttum. Antibiotics 2020, 9, 333. [Google Scholar] [CrossRef]
- Sher, J.; Jan, G.; Israr, M.; Gul, F.; Khan, S.; Shah, M.; Ullah, S. Analgesic, anti-inflammatory, antioxidant activity and phytochemical screening of Dryopteris blanfordii plant. J. Pharmacogn. Phytochem. 2018, 7, 536–541. [Google Scholar]
- Ullah, S.; Jan, G.; Gul, F.; Khan, S.; Sher, J. Antifungal, nutritional and phytochemical investigation of Asplenium dalhousiae of district Dir Lower, Pakistan. J. Pharmacogn. Phytochem. 2018, 7, 3281–3288. [Google Scholar]
- Ali, A.; Rashid, M.; Sultan, A.; Irfan, M. Anisochilus carnosus (L. f.) Wall. ex Benth (Lamiaceae)–a new generic record for Pakistan. Plant Sci. Today 2017, 4, 102–104. [Google Scholar] [CrossRef] [Green Version]
- Okwu, D.E.; Okwu, M.E. Chemical composition of Spondias mombin Linn plant parts. J. Sustain. Agric. Environ. 2004, 6, 140–147. [Google Scholar]
- Oomah, B.D. Processing of flaxseed fiber, oil, protein, and lignan. In Flaxseed in Human Nutrition; AOCS Press: Champaign, IL, USA, 2003; pp. 363–386. [Google Scholar]
- Owoyele, V.B.; Oloriegbe, Y.Y.; Balogun, E.A.; Soladoye, A.O. Analgesic and anti-inflammatory properties of Nelsonia canescens leaf extract. J. Ethnopharmacol. 2005, 99, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Yonathan, M.; Asres, K.; Assefa, A.; Bucar, F. In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa. J. Ethnopharmacol. 2006, 108, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Nonato, F.R.; Barros, T.A.A.; Lucchese, A.M.; Oliveira, C.E.C.; dos Santos, R.R.; Soares, M.B.P.; Villarreal, C.F. Antiinflammatory and antinociceptive activities of Blechnum occidentale L. extract. J. Ethnopharmacol. 2009, 125, 102–107. [Google Scholar] [CrossRef]
- Bairagi, S.M.; Pathan, I.B.; Nitin, N. Analgesic and anti-inflammatory activity of crude leaf and bark extract of Lantana camara. Marmara Pharm. J. 2017, 21, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, O.O.; Igbinosa, E.O.; Aiyegoro, O.A. Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr. J. Pharm. Pharmacol. 2009, 3, 58–62. [Google Scholar]
- Anyasor, G.N.; Ogunwenmo, O.; Oyelana, O.A.; Akpofunure, B.E. Phytochemical constituents and antioxidant activities of aqueous and methanol stem extracts of Costus afer Ker Gawl (Costaceae). Afr. J. Biotechnol. 2010, 9, 4880–4884. [Google Scholar]
- Iftikhar, S.; Ali, W.; Ullah, S.; Khan, W.; Irfan, M. Comparative antibacterial potential of methanolic extract of the leaves of wild and cultivated Ficus carica L. Int. J. Bot. Stud. 2019, 4, 139–143. [Google Scholar]
- Rahmatullah, M.; Hosain, M.; Rahman, S.; Akter, M.; Rahman, F.; Rehana, F.; Munmun, M.; Kalpana, M.A. Antihyperglycemic and antinociceptive activity evaluation of methanolic extract of whole plant of Amaranthus tricolor L. (Amaranthaceae). Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Stein, C.; Clark, J.D.; Oh, U.; Vasko, M.R.; Wilcox, G.L.; Overland, A.C.; Vanderah, T.W.; Spencer, R.H. Peripheral mechanisms of pain and analgesia. Brain Res. Rev. 2009, 60, 90–113. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, M.R.; Shavit, Y.; Grace, P.M.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Exploring the neuroimmunopharmacology of opioids: An integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol. Rev. 2011, 63, 772–810. [Google Scholar] [CrossRef] [Green Version]
- Gawade, S. Acetic acid induced painful endogenous infliction in writhing test on mice. J. Pharmacol. Pharmacother. 2012, 3, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Jara, C.P.; Mendes, N.F.; do Prado, T.P.; de Araujo, E.P. Bioactive fatty acids in the resolution of chronic inflammation in skin wounds. Adv. Wound Care 2020, 9, 472–490. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, R.; Sarwar, M.S.; RahmanDewan, S.M.; Das, A.; Das, B.; NasirUddin, M.M.; Islam, M.S.; Islam, M.S. In vivo analgesic, antipyretic, and anti-inflammatory potential in Swiss albino mice and in vitro thrombolytic activity of hydroalcoholic extract from Litsea glutinosa leaves. Biol. Res. 2014, 47, 56. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ortega, M.; Ortiz-Moreno, A.; Hernández-Navarro, M.D.; Chamorro-Cevallos, G.; Dorantes-Alvarez, L.; Necoechea-Mondragón, H. Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J. Biomed. Biotechnol. 2012, 2012, 524019. [Google Scholar] [CrossRef] [Green Version]
- Çadirci, E.; Süleyman, H.; Gürbüz, P.; Uz, A.; Güvenalp, Z.; Demirezer, L.Ö. Anti-inflammatory effects of different extracts from three Salvia species. Turkish J. Biol. 2012, 36, 59–64. [Google Scholar] [CrossRef]
- Souto, A.L.; Tavares, J.F.; Da Silva, M.S.; de Diniz, M.F.F.M.; de Athayde-Filho, P.F.; Filho, J.M.B. Anti-inflammatory activity of alkaloids: An update from 2000 to 2010. Molecules 2011, 16, 8515–8534. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Younesi, H.M. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002, 2, 7. [Google Scholar]
- Valizadeh, H.; Sonboli, A.; Kordi, F.M.; Dehghan, H.; Bahadori, M.B. Cytotoxicity, antioxidant activity and phenolic content of eight fern species, from north of Iran. Pharm. Sci. 2016, 21, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Barile, E.; Bonanomi, G.; Antignani, V.; Zolfaghari, B.; Sajjadi, S.E.; Scala, F.; Lanzotti, V. Saponins from Allium minutiflorum with antifungal activity. Phytochemistry 2007, 68, 596–603. [Google Scholar] [CrossRef]
- Ayoola, G.A.; Coker, H.A.; Adesegun, S.A.; Adepoju-Bello, A.A.; Obaweya, K.; Ezennia, E.C.; Atangbayila, T.O. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Pharm. Res. 2008, 7, 1019–1024. [Google Scholar]
- Gracelin, D.H.S.; Britto, A.; Kumar, B. Qualitative and quantitative analysis of phytochemicals in five Pteris species. Int J. Pharm. Pharm. Sci. 2013, 5, 105–107. [Google Scholar]
- Musa, M.; Jan, G.; Jan, F.G.; Hamayun, M.; Irfan, M.; Rauf, A.; Alsahammari, A.; Alharbi, M.; Suleria, H.A.R.; Ali, N. Pharmacological activities and gas chromatography–mass spectrometry analysis for the identification of bioactive compounds from Justicia adhatoda L. Front. Pharmacol. 2022, 13, 922388. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Nabeela; Khan, H.; Khan, S. A review of different phytochemicals and pharmacological activities evaluations of Morus alba L. Spec. J. Chem. 2019, 4, 1–9. [Google Scholar]
- Sher, A.A.; Iqbal, A.; Adil, M.; Ullah, S.; Bawazeer, S.; Binmahri, M.K.; Zamil, L.Z.; Irfan, M. GC-MS analysis of organic fractions of Chrozophora tinctoria (L.) A. Juss. and their prokinetic propensity in animal models. Braz. J. Biol. 2022, 84, 260566. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, W.; Ali, W.; Khan, M.S.; Sajad, M.A.; Irfan, M. Antibacterial and antifungal potentials of the various solvents extracts of Quercus incana fruits. Int. J. Biosci. 2018, 13, 438–447. [Google Scholar]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Meena, M.; Divyanshu, K.; Kumar, S.; Swapnil, P.; Zehra, A.; Shukla, V.; Yadav, M.; Upadhyay, R.S. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019, 5, e02952. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, S.; Shareef, H.; Farrukh, U.; Kamil, A.; Rizwani, G.H. Antifungal activities of Vitex negundo Linn. Pak. J. Bot 2009, 41, 1941–1943. [Google Scholar]
- Andreadou, I.; Rekka, E.A.; Kourounakis, P.N. Effect of novel anti-inflammatory ethanolamine derivatives with antioxidant properties on drug metabolising enzymes. Eur. J. Drug Metab. Pharmacokinet. 2003, 28, 7–10. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Chen, S.; Xue, J.; Huang, S.; Wang, Y.; Chen, O. Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity. BMC Neurosci. 2019, 20, 41. [Google Scholar] [CrossRef] [Green Version]
- Merkl, R.; HRádkoVá, I.; FIlIp, V.; ŠMIdRkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci. 2010, 28, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Luecha, P.; Umehara, K.; Miyase, T.; Noguchi, H. Antiestrogenic constituents of the Thai medicinal plants Capparis flavicans and Vitex glabrata. J. Nat. Prod. 2009, 72, 1954–1959. [Google Scholar] [CrossRef] [PubMed]
- Adedapo, A.A.; Etim, U.; Falayi, O.O.; Ogunpolu, B.S.; Omobowale, T.O.; Oyagbemi, A.A.; Oguntibeju, O.O. Methanol stem extract of Moringa oleifera mitigates glycerol-induced acute kidney damage in rats through modulation of KIM-1 and NF-kB signaling pathways. Sci. Afr. 2020, 9, e00493. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Xiao, Y.; Zhang, L.; Fang, J.; Yang, N.; Zhang, Z.; Nasser, M.I.; Qin, H. D-ribose: Potential clinical applications in congestive heart failure and diabetes, and its complications. Exp. Ther. Med. 2021, 21, 496. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Chen, M.-L.; Kuo, H.-T.; Tsai, Y.-C.; Lin, B.-F.; Kuo, Y.-H. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata. J. Agric. Food Chem. 2008, 56, 7017–7022. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: An aromatic medicinal plant of industrial importance. Molecules 2015, 20, 8521–8547. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.S.; Wee, W.; Siong, J.Y.F.; Syamsumir, D.F. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 2011, 49, 670–674. [Google Scholar]
- Preethi, R.; Devanathan, V.V.; Loganathan, M. Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv. Biol. Res. 2010, 4, 122–125. [Google Scholar]
- Kumar, S.; Malhotra, S.; Prasad, K.A.; Van der Eycken, V.E.; Bracke, E.M.; Stetler-Stevenson, G.W.; Parmar, S.V.; Ghosh, B. Anti-inflammatory and antioxidant properties of Piper species: A perspective from screening to molecular mechanisms. Curr. Top. Med. Chem. 2015, 15, 886–893. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Yu, F.-R.; Lian, X.-Z.; Guo, H.-Y.; McGuire, P.M.; Li, R.-D.; Wang, R.; Yu, F.-H. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J. Pharm. Pharm. Sci. 2005, 8, 528–535. [Google Scholar]
- Karabay-Yavasoglu, N.U.; Sukatar, A.; Ozdemir, G.; Horzum, Z. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytother. Res. 2007, 21, 153–156. [Google Scholar] [CrossRef]
- Ghosh, P.; Chakraborty, P.; Basak, G. Antibacterial, Antifungal and Phytotoxic Screening of Some Prepared Pyrazine Derivatives in Comparison to Their Respective a-Diketo Precursors. Int. J. Pharm. Sci. Res. 2011, 2, 1687. [Google Scholar]
- Kaskoos, R. Physico-chemical parameters, phytochemical screening and antioxidant activity of seeds of Peganum harmala collected from Iraq. Asian J. Biomed. Pharm. Sci. 2014, 4, 20. [Google Scholar]
- Irfan, M.; Jan, G.; Murad, W.; Jan, F.G.; Rauf, A.; Alsayari, A.; Almarhoon, Z.M.; Mabkhot, Y.N. Ethnomedicinal and traditional uses of the Ferns of Khyber Pakhtunkhwa, Pakistan. Braz. J. Bio. 2022, 84, e250256. [Google Scholar] [CrossRef]
- Irfan, M.; Jan, G.; Jan, F.G.; Murad, W. Floristic diversity and chorotype analysis of the pteridophytes of Pakistan. J. Anim. Plant Sci. 2022, 32, 1–10. [Google Scholar]
- Haq, F.; Irfan, M.; Fraser-Jenkins, C.R. Multivariate statistical analysis of the pteridophytic diversity of district Battagram, Khyber Pakhtunkhwa, Pakistan. Acta Ecol. Sin. 2022, 42, 322–331. [Google Scholar] [CrossRef]
- Gul, A.; Alam, J.; Ahmad, H.; Irfan, M. An updated checklist of pteridophytes of district Mansehra, Khyber Pukhtunkhwa-Pakistan. Plant Sci. Today 2016, 3, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Podder, M.K.; Das, B.N.; Saha, A.; Ahmed, M. Analgesic activity of bark of Murraya paniculata. Int. J. Med. Med. Sci. 2011, 3, 105–108. [Google Scholar]
- Obertreis, B.; Giller, K.; Teucher, T.; Behnke, B.; Schmitz, H. Anti-inflammatory effect of Urtica dioica folia extract in comparison to caffeic malic acid. Arzneimittelforschung 1996, 46, 52–56. [Google Scholar] [PubMed]
- Niazi, J.; Gupta, V.; Chakarborty, P.; Kumar, P. Antiinflammatory and antipyretic activity of Aleuritis moluccana leaves. Asian J. Pharm. Clin. Res. 2010, 3, 35–37. [Google Scholar]
- Shamkuwar, P.B.; Hoshamani, A.H.; Gonjari, I.D. Antispasmodic effect of Cyperus rotundus L. (Cyperaceae) in diarrhoea. Der. Pharm. Lett. 2012, 4, 522–524. [Google Scholar]
- Kumaran, A. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Sajeesh, T.; Parimelazhagan, T. Analgesic, anti-inflammatory, and GC-MS studies on Castanospermum australe A. Cunn. & C. Fraser ex Hook. Sci. World J. 2014, 2014, 587807. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Subedi, N.K.; Rahman, S.M.; Akbar, M.A. Analgesic and antipyretic activities of methanol extract and its fraction from the root of Schoenoplectus grossus. Evid.-Based Complement. Altern. Med. 2016, 2016, 3820704. [Google Scholar] [CrossRef] [Green Version]
Groups | Dose | No of Writhing Rates in 5 min (Mean ± SEM) | % Inhibition of Mice |
---|---|---|---|
Group1 (control) | 10 mL/kg (Normal Saline) | 21.4 ± 0.10 | ---------- |
Group 2 | 150 mg/kg (Aspirin) | 4.4 ± 0.02 * | 25 |
Group 3 | 150 mg/kg | 13 ± 0.07 | 60.74 |
Group 4 | 300 mg/kg | 7.8 ± 0.05 | 36.44 |
Group 5 | 450 mg/kg | 7 ± 0.24 * | 30 |
Treatment Groups | Dose | Paw Edema (mm3) | Paw Edema (mm3) after Drug Administration | ||||
---|---|---|---|---|---|---|---|
Before Carrageenin Injection (Mean ± SEM) | 1 h. after Carrageenin Injection (Mean ± SEM) | 1 h (Mean ± SEM) | 2 h (Mean ± SEM) | 3 h (Mean ± SEM) | 4 h (Mean ± SEM) | ||
Group 1 (Control) | 0.76 ± 0.05 | 1.72 ± 0.10 | 1.76 ± 0.08 | 1.93 ± 0.14 | 1.94 ± 0.0 | 1.98 ± 0.06 | |
Group 2 (Diclofenac sodium) | 10 mg/kg | 0.83 ± 0.03 * | 1.86 ± 0.12 | 1.48 ± 0.11 | 1.00 ± 0.11 * | 0.25 ± 0.03 * | 0.99 ± 0.02 * |
Group 3 | 150 mg/kg | 0.72 ± 0.05 | 1.14 ± 0.10 | 1.23 ± 0.12 | 1.33 ± 0.08 | 1.24 ± 0.06 | 1.53 ± 0.07 |
Group 4 | 300 mg/kg | 0.78 ± 0.05 | 1.12 ± 0.06 | 1.10 ± 0.06 | 1.31 ± 0.06 | 0.98 ± 0.04 * | 0.92 ± 0.03 * |
Group 5 | 450 mg/kg | 0.77 ± 0.05 | 1.86 ± 0.08 | 1.13 ± 0.06 | 1.11 ± 0.04 * | 0.87 ± 0.03 * | 0.86 ± 0.02 * |
Treatment Groups | Dose | Rectal Temperature | |||||
---|---|---|---|---|---|---|---|
Before Yeast Induction (Mean ± SEM) | After 18 h of Yeast Induction (Mean ± SEM) | 1 h (Mean ± SEM) | 2 h (Mean ± SEM) | 3 h (Mean ± SEM) | 4 h (Mean ± SEM) | ||
Group 1 (control) | 10 mL/kg | 37.6 ± 0.14 | 39.1 ± 0.06 | 39.1 ± 0.07 | 39.1 ± 0.08 | 38.1 ± 0.06 | 38.0 ± 0.11 |
Group 2 Paracetamol | 150 mg/kg | 37.2 ± 0.14 | 39 ± 0.12 | 38.8 ±0.09 | 37.8 ± 0.04 * | 37.1 ± 0.03 * | 37.0 ± 0.03 * |
Group 3 | 150 mg/kg | 36.7 ± 0.02 | 38.7 ± 0.03 | 38.6 ± 0.08 | 38.4 ± 0.07 | 38.4 ± 0.09 | 38 ± 0.08 |
Group 4 | 300 mg/kg | 37.2 ± 0.06 | 38.6 ± 0.06 | 38.7 ± 0.08 | 38.2 ± 0.06 * | 37.9 ± 0.05 * | 37.5 ± 0.05 * |
Group 5 | 450 mg/kg | 36.5 ± 0.02 | 38.9 ± 0.12 | 38.0 ± 0.07 | 38.2 ± 0.06 | 37.8 ± 0.04 * | 37 ± 0.03 * |
Treatment Groups | Dose (mg/mL) | Total Intestine Length (cm) (Mean ± SEM) | Charcoal Meal Length (cm) (Mean ± SEM) | % Charcoal Meal Transit |
---|---|---|---|---|
Group 1 (control) | 45.4 ± 0.1 | _________ | _______ | |
Group 2 Atropine sulphate | 10 mg/kg | 45.4 ± 0.1 | 37.2 ± 0.03 * | 78.71 |
Group 3 | 150 mg/kg | 44.2 ± 0.25 | 28 ± 0.08 * | 63.34 |
Group 4 | 300 mg/kg | 55.6 ± 0.10 | 33.1 ± 0.09 * | 59.56 |
Group 5 | 450 mg/kg | 43.2 ± 0.33 | 21.5 ± 0.06 | 49.76 |
S.no | Phytochemical Test | Methanolic Extracts | Ethanolic Extracts | Aqueous Extracts | |||
---|---|---|---|---|---|---|---|
Leaf | Rhizome | Leaf | Rhizome | Leaf | Rhizome | ||
1 | Carbohydrates | + | + | + | + | + | + |
2 | Alkaloids | + | + | + | + | + | + |
3 | Flavonoids | + | + | + | + | + | + |
4 | Phenols | + | + | + | + | + | + |
5 | Saponins | + | + | + | + | − | − |
6 | Quinine | − | + | + | − | + | + |
7 | Tannins | + | + | + | + | + | + |
Plant Name | Part Used | Total Flavonoids Contents (µg/mL) | Total Phenolic Contents (µg/mL) | |
---|---|---|---|---|
P. lonchitis | Extracts | Mean ± SEM | Mean ± SEM | |
Whole | Methanol | 5.26 ± 0.81 * | 6.35 ± 0.581 * | |
Whole | Ethanol | 4.61 ± 0.50 * | 5.00 ± 0.988 * | |
whole | Aqueous | 2.91 ± 0.65 | 3.676 ± 0.039 * |
Plant Part Used | Concentration | Extracts | Mean ± SD | % Potential | |
---|---|---|---|---|---|
Whole | 0.05 mg/ml | Methanol | 0.41 ± 0.04 * | 52.9 | |
Ethanol | 0.54 ± 0.010 * | 59.7 | |||
Aqueous | 0.84 ± 0.04 * | 28.5 | |||
Whole | 1 mg/ml | Methanol | 0.48 ± 0.11 * | 51.0 | |
Ethanol | 0.42 ± 0.001 * | 70 | |||
Aqueous | 0.74 ± 0.01 * | 39. | |||
Whole | 1.5 mg/ml | Methanol | 0.44 ± 0.01 * | 65 | |
Ethanol | 0.41 ± 0.07 * | 79 | |||
Aqueous | 0.69 ± 0.08 * | 43.9 |
Identified Compounds | Formula | Metabolic Rate |
---|---|---|
Lupeol | C30H50O | 0.603 |
L-proline | C5H9NO2 | 0.587 |
Tetratriacontane | C34H70 | 0.472 |
Ethanolamine | C2H7NO | 0.351 |
4-aminobutyric acid | C4H9NO2 | 0.582 |
3-hydroxybenzoate | C7H5O3- | 0.721 |
Glycerol | C3H8O3 | 0.722 |
Ribose | C5H10O5 | 0.631 |
Fructose | C6H12O6 | 0.532 |
Maleic acid | C4H4O4 | 0.575 |
Succinic acid | C4H6O4 | 0.621 |
Caryophyllene oxide | C15H24O | 0.721 |
Phytol | C20H40O | 0.621 |
Hexadecanoic acid, methyl ester | C17H34O2 | 0.743 |
𝛼-D-Galactopyranoside, methyl | C7H14O6 | 0.851 |
n-hexadecanoic acid | C16H32O2 | 0.972 |
9,12-octadecadienoic acid (Z, Z)-, methyl ester | C19H34O2 | 0.534 |
7-dehydrodiosgenin | C27H40O3 | 0.432 |
friedelan-3-one | C30H50O | 0.632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sher, J.; Jan, G.; Israr, M.; Irfan, M.; Yousuf, N.; Ullah, F.; Rauf, A.; Alshammari, A.; Alharbi, M. Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model. Plants 2023, 12, 1455. https://doi.org/10.3390/plants12071455
Sher J, Jan G, Israr M, Irfan M, Yousuf N, Ullah F, Rauf A, Alshammari A, Alharbi M. Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model. Plants. 2023; 12(7):1455. https://doi.org/10.3390/plants12071455
Chicago/Turabian StyleSher, Jan, Gul Jan, Muhammad Israr, Muhammad Irfan, Nighat Yousuf, Fazal Ullah, Abdur Rauf, Abdulrahman Alshammari, and Metab Alharbi. 2023. "Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model" Plants 12, no. 7: 1455. https://doi.org/10.3390/plants12071455
APA StyleSher, J., Jan, G., Israr, M., Irfan, M., Yousuf, N., Ullah, F., Rauf, A., Alshammari, A., & Alharbi, M. (2023). Biological Characterization of Polystichum lonchitis L. for Phytochemical and Pharmacological Activities in Swiss Albino Mice Model. Plants, 12(7), 1455. https://doi.org/10.3390/plants12071455