Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Optimization
2.2. Effect of Dilution on the Matrix Effect
2.3. Method Validation
2.3.1. Linearity
2.3.2. LOD and LOQ
2.3.3. Accuracy
2.3.4. Recovery
2.3.5. Matrix Effect (ME)
2.4. Dissipation of Spiromesifen and Spirodiclofen in Tomato Fruits
2.5. Half-Life and PHI
2.6. Terminal Residues
2.7. Chronic Dietary Risk Assessment
3. Materials and Methods
3.1. Chemicals and Solutions
3.2. Standard Solutions Preparation
3.3. Field Trial
3.4. Terminal Residues
3.5. Sample Extraction
3.6. LC-MS/MS
3.7. Method Validation
3.8. Statistic Calculations
3.9. Dietary Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT; Food and Agriculture Organization of the United Nations. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 October 2022).
- Beecher, G.R. Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med. 1998, 218, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Maguer, M.L. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 2000, 40, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Stahl, W.; Sundquist, A.R. Antioxidant Functions of Vitamins: Vitamins E and C, Beta-Carotene, and Other Carotenoids a. Ann. N. Y. Acad. Sci. 1992, 669, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013, 61, 9534–9550. [Google Scholar] [CrossRef]
- Olaniyi, J.; Akanbi, W.; Adejumo, T.; Ak, O. Growth, fruit yield and nutritional quality of tomato varieties. Afr. J. Food Sci. 2010, 4, 398–402. [Google Scholar]
- Schmidt-Jeffris, R.; Snipes, Z.; Bergeron, P. Acaricide efficacy and resistance in South Carolina tomato populations of twospotted spider mite. Fla. Entomol. 2021, 104, 1–8. [Google Scholar] [CrossRef]
- Khan, N.; Yaqub, G.; Hafeez, T.; Tariq, M. Assessment of Health Risk due to Pesticide Residues in Fruits, Vegetables, Soil, and Water. J. Chem. 2020, 2020, 5497952. [Google Scholar] [CrossRef]
- Dekeyser, M.A. Acaricide mode of action. Pest Manag. Sci. 2005, 61, 103–110. [Google Scholar] [CrossRef]
- Varghese, T.S.; Mathew, T.B.; George, T.; Beevi, S.N.; Xavier, G. Dissipation of propargite and spiromesifen in/on chilli fruits. Pestic. Res. J. 2011, 23, 135–139. [Google Scholar]
- Raj, M.; Solanki, P.; Singh, S.; Vaghela, K.; Shah, P.; Patel, A.; Diwan, K. Dissipation of spiromesifen in/on okra under middle Gujarat conditions. Pestic. Res. J. 2012, 24, 25–27. [Google Scholar]
- Siddamallaiah, L.; Mohapatra, S. Residue level and dissipation pattern of spiromesifen in cabbage and soil from 2-year field study. Environ. Monit. Assess. 2016, 188, 155. [Google Scholar] [CrossRef]
- Sharma, K.; Dubey, J.; Mukherjee, I.; Parihar, N.; Battu, R.; Singh, B.; Sharma, I. Residual behavior and risk assessment of Spiromesifen (Oberon 240 SC) on eggplant (Solanum melonongena L) in India: A multilocational study. Bull. Environ. Contam. Toxicol. 2006, 76, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Siddamallaiah, L.; Mohapatra, S.; Buddidathi, R.; Hebbar, S.S. Dissipation of spiromesifen and spiromesifen-enol on tomato fruit, tomato leaf, and soil under field and controlled environmental conditions. Environ. Sci. Pollut Res. 2017, 24, 23559–23570. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, C.; Wang, S.; Liu, Y.; Liu, M. Dissipation, residues, and risk assessment of spirodiclofen in citrus. Environ. Monit. Assess. 2013, 185, 10473–10477. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhu, Y.; Pang, J.; Zhou, Z.; Jiao, B. Residue level, persistence and safety of spirodiclofen–pyridaben mixture in citrus fruits. Food Chem. 2016, 194, 805–810. [Google Scholar] [CrossRef]
- Fernández-Alba, A.R.; Tejedor, A.; Agüera, A.; Contreras, M.; Garrido, J. Determination of imidacloprid and benzimidazole residues in fruits and vegetables by liquid chromatography–mass spectrometry after ethyl acetate multiresidue extraction. J. AOAC Int. 2000, 83, 748–755. [Google Scholar] [CrossRef]
- Luke, M.A.; Froberg, J.E.; Doose, G.M.; Masumoto, H.T. Improved multiresidue gas chromatographic determination of organophosphorus, organonitrogen, and organohalogen pesticides in produce, using flame photometric and electrolytic conductivity detectors. J. Assoc. Off. Anal. Chem. 1981, 64, 1187–1195. [Google Scholar] [CrossRef]
- Andersson, A.; Palsheden, H. Comparison of the efficiency of different GLC multi-residue methods on crops containing pesticide residues. Fresenius J. Anal. Chem. 1981, 339, 365–367. [Google Scholar] [CrossRef]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Hou, X.; Han, M.; Dai, X.; Yang, X.; Yi, S. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography—Tandem mass spectrometry. Food Chem. 2013, 138, 1198–1205. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.E.; Yoo, M.; Nam, T.G. Multi-residue analysis of 203 pesticides in strawberries by liquid chromatography tandem mass spectrometry in combination with the QuEChERS method. CyTA J. Food 2019, 17, 976–987. [Google Scholar] [CrossRef]
- Lehotay, S. pesticide residues in foods by acetonitrile extraction and partitioning with Magnesium Sulfate. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2019-12682.pdf (accessed on 25 October 2022).
- Abdallah, O.I.; Ahmed, N.S. Development of a vortex-assisted dispersive liquid-liquid microextraction (VA-DLLME) and LC-MS/MS procedure for simultaneous determination of fipronil and its metabolite fipronil sulfone in tomato fruits. Food Anal. Methods 2019, 12, 2314–2325. [Google Scholar] [CrossRef]
- Ferrer, C.; Lozano, A.; Agüera, A.; Girón, A.J.; Fernández-Alba, A. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A 2011, 1218, 7634–7639. [Google Scholar] [CrossRef]
- Kaczyński, P. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food Chem. 2017, 230, 524–531. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P.; Hu, D.; Bhadury, P.S.; Zhang, Y.; Zhang, K. Determination of dufulin residue in vegetables, rice, and tobacco using liquid chromatography with tandem mass spectrometry. J. AOAC Int. 2015, 98, 1739–1744. [Google Scholar] [CrossRef]
- Dubey, J.K.; Katna, S.; Shandil, D.; Devi, N.; Singh, G.; Singh, G.; Sharma, A. Dissipation kinetics and dietary risk assessment of spiromesifen on major summer vegetables using good agricultural practices. Biomed. Chromatogr. 2021, 35, e5085. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Mukherjee, I.; Sing, B.; Mandal, K.; Sahoo, S.K.; Banerjee, H.; Patel, H.K. Persistence and risk assessment of spiromesifen on tomato in India: A multilocational study. Environ. Monit. Assess. 2014, 186, 8453–8461. [Google Scholar] [CrossRef]
- Vinothkumar, B.; Shibani, P.; Kaviya, R.; Kowshika, J. Dissipation pattern of spiromesifen in/on brinjal fruits. Int. J. Chem. Stud. 2018, 6, 2485–2488. [Google Scholar]
- Sharma, K.; Dubey, J.; Kumar, A.; Gupta, P.; Singh, B.; Sharma, I.; Nath, A. Persistence and Safety Evaluation of Spiromesifen on Apple (Maius domestica L) in India: A Multilocation Study. Pestic. Res. J. 2005, 17, 77–81. [Google Scholar]
- Sharma, K.; Dubey, J.; Deka, S.; Chandrasekaran, S.; Gupta, P.; Kumar, A.; Kennedy, J. Dissipation kinetics of spiromesifen on tea (Camellia sinensis) under tropical conditions. Chemosphere 2007, 68, 790–796. [Google Scholar] [CrossRef]
- Sharma, K.; Rao, C.S.; Dubey, J.; Patyal, S.; Parihar, N.; Battu, R.; Jaya, M. Persistence and dissipation kinetics of spiromesifen in chili and cotton. Environ. Monit. Assess. 2007, 132, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, Y.; Li, Q.; Wu, J.; Yang, X.; Wu, F.; Qin, Y. Degradation of Spirodiclofen and Spirotetramat Residue in Kumquat with Film Mulching. Chin. J. Trop. Crops 2020, 41, 127. [Google Scholar]
- Amany, R.M.; Dalia, E.E. Residues assessment of captan, spirodiclofen and thiophanate-methyl in apple fruits under the field conditions. Middle East J. Agric. Res. 2017, 6, 135–142. [Google Scholar]
- Fantke, P.; Juraske, R. Variability of pesticide dissipation half-lives in plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Hoskins, W. Mathematical treatment of the rate of loss of pesticide residues. FAO Plant Prot. Bull. 1961, 9, 214–215. [Google Scholar]
- Hingmire, S.; Oulkar, D.P.; Utture, S.C.; Shabeer, T.A.; Banerjee, K. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chem. 2015, 176, 145–151. [Google Scholar] [CrossRef]
- Abdallah, O.I.; Soliman, H.; El-Hefny, D.; Abd El-Hamid, R.; Malhat, F. Dissipation profile of sulfoxaflor on squash under Egyptian field conditions: A prelude to risk assessment. Int. J. Environ. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Brancato, A.; Brocca, D.; Ferreira, L.; Greco, L.; Jarrah, S.; Leuschner, R.; Nougadere, A. Use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). EFSA J. 2018, 16, e05147. [Google Scholar]
- Malhat, F.; Abdallah, O.I. Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. Environ. Monit. Assess. 2019, 191, 1–10. [Google Scholar] [CrossRef] [PubMed]
- WHO/GEMS/FOODS. 2013. Available online: https://www.who.int/data/gho/samples/food-cluster-diets (accessed on 25 October 2022).
- FAO. Manual on the Submission and Evaluation of Pesticide Residues Data; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance spiromesifen. EFSA J. 2012, 10, 2879. [Google Scholar]
- Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Ferreira, L.; Kazocina, A. Review of the existing maximum residue levels for spirodiclofen according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 2021, 19, 6908. [Google Scholar]
- Malhat, F.; Boulangé, J.; Abdelraheem, E.; Abdallah, O.I.; Abd El-Hamid, R.; Abd El-Salam, S. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography–flame photometric detector: Decline pattern and risk assessment. Food Chem. 2017, 229, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, T.; Cui, S.; Zhang, S.; Yu, J.; Song, G. Residue behaviors and dietary risk assessment of dinotefuran and its metabolites in Oryza sativa by a new HPLC–MS/MS method. Food Chem. 2017, 235, 188–193. [Google Scholar] [CrossRef]
Analyte | Precursor Ion [M + H]+ | Product Ions (m/z) | Collision Energy (V) | RF Lens (V) | Dwell Time (ms) | Rt (min) |
---|---|---|---|---|---|---|
Spiromesifen | 371.2 | 255.2 | 31 | 76 | 148 | 8.09 |
371.2 | 273.2 | 11 | 76 | 148 | ||
Spirodiclofen | 411.2 | 71.07 | 16 | 60 | 148 | 8.24 |
411.2 | 313.2 | 10 | 60 | 148 |
Analyte | Linear Range (µg/kg) | R2 | Residual (%) | LOD (µg/kg) | LOQ (µg/kg) | ME (%) | Accuracy | |||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Days (n = 18) | |||||||||
R (%) | RSDr (%) | R (%) | RSDR (%) | |||||||
Spiromesifen | 1–100 | 0.9993 | 16.4 | 0.26 | 5 | −8.9 | 94.22 | 8.35 | 96.42 | 15.85 |
Spirodiclofen | 0.5–100 | 0.9991 | 13.2 | 0.08 | 5 | −7.2 | 91.34 | 6.68 | 92.64 | 11.64 |
Analyte | Recovery ± RSD (%), (n = 6) | |||
---|---|---|---|---|
0.01 mg/kg | 0.10 mg/kg | 1 mg/kg | 5 mg/kg | |
Spiromesifen | 93.52 ± 6.22 | 90.75 ± 4.31 | 95.64 ± 3.14 | 97.22 ± 8.78 |
Spirodiclofen | 89.23 ± 5.87 | 94.13 ± 9.11 | 92.55 ± 12.88 | 96.71 ± 7.33 |
Spiromesifen | Spirodiclofen | |||
---|---|---|---|---|
Dosage (g a.i/ha) | Dosage (g a.i/ha) | |||
120 | 240 | 84 | 168 | |
Slope (C0) (mg/kg) | 3.159 | 4.308 | 2.126 | 3.365 |
Intercept (k) | 0.463 | 0.379 | 0.362 | 0.291 |
t1/2 (days) | 1.49 | 1.83 | 1.91 | 2.38 |
r2 | 0.9904 | 0.972 | 0.9915 | 0.996 |
PHI (days) | 2.48 | 3.85 | 3.99 | 6.55 |
Dosage (g a.i/ha) | Spray Times | Interval (Days) | Residue * (mg/kg) ± SD | |
---|---|---|---|---|
Spiromesifen | 120 | 2 | 3 | 0.798 ± 0.211 |
7 | 0.352 ± 0.107 | |||
3 | 3 | 0.471 ± 0.166 | ||
7 | 0.168 ± 0.084 | |||
240 | 2 | 3 | 1.652 ± 0.327 | |
7 | 0.757 ± 0.143 | |||
3 | 3 | 1.412 ± 0.225 | ||
7 | 0.307 ± 0.119 | |||
Spirodiclofen | 84 | 2 | 3 | 0.585 ± 0.314 |
7 | 0.101 ± 0.112 | |||
3 | 3 | 0.772 ± 0.221 | ||
7 | 0.281 ± 0.068 | |||
168 | 2 | 3 | 1.414 ± 0.345 | |
7 | 0.398 ± 0.117 | |||
3 | 3 | 0.962 ± 0.253 | ||
7 | 0.291 ± 0.138 |
Dosage (g a.i/ha) | STMR (mg/kg) | NEDI (mg/kg bw/d) | RQc (%) | |
---|---|---|---|---|
Spiromesifen | 84 | 0.4115 | 1.47E-03 | 4.89 |
168 | 1.0845 | 3.87E-03 | 12.89 | |
Spirodiclofen | 120 | 0.433 | 1.54E-03 | 10.30 |
240 | 0.68 | 2.43E-03 | 16.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, O.I.; Abd El-Hamid, R.M.; Ahmed, N.S.; Saleh, S.M.; Alminderej, F.M. Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits. Plants 2023, 12, 1493. https://doi.org/10.3390/plants12071493
Abdallah OI, Abd El-Hamid RM, Ahmed NS, Saleh SM, Alminderej FM. Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits. Plants. 2023; 12(7):1493. https://doi.org/10.3390/plants12071493
Chicago/Turabian StyleAbdallah, Osama I., Rania M. Abd El-Hamid, Nevein S. Ahmed, Sayed M. Saleh, and Fahad M. Alminderej. 2023. "Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits" Plants 12, no. 7: 1493. https://doi.org/10.3390/plants12071493
APA StyleAbdallah, O. I., Abd El-Hamid, R. M., Ahmed, N. S., Saleh, S. M., & Alminderej, F. M. (2023). Terminal Residues and Risk Assessment of Spiromesifen and Spirodiclofen in Tomato Fruits. Plants, 12(7), 1493. https://doi.org/10.3390/plants12071493