Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue
Abstract
:1. Introduction
2. Results
2.1. Saponins
2.2. Anti-Inflammatory Activity
2.3. Acute Toxicity
2.4. Reproductive Toxicity
3. Materials and Methods
3.1. Animals
3.2. Human Blood Cells
3.3. Plant Material
3.4. Preparation of Extract by Acid Hydrolysis (EAH)
3.5. Phytochemical Screening
3.6. Evaluation of the Anti-Inflammatory Activity
3.6.1. In Vitro
3.6.2. In Vivo
3.7. Evaluation of Toxicity
3.7.1. In Vivo Acute Toxicity
3.7.2. Evaluation of Reproductive Toxicity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Brasileiro De Geografia E Estatística (IBGE). Sistema IBGE de Recuperação Automática. 2021. Available online: https://sidra.ibge.gov.br/Tabela/1613 (accessed on 8 December 2021).
- De Souza, J.T.; Silva, A.C.M.; de Jesus Santos, A.F.; Santos, P.O.; Alves, P.S.; Cruz-Magalhães, V.; Marbach, P.A.S.; Loguercio, L.L. Endophytic Bacteria Isolated from Both Healthy and Diseased Agave sisalana Plants Are Able to Control the Bole Rot Disease. Biol. Control 2021, 157, 104575. [Google Scholar] [CrossRef]
- Omkar, A.K.; Sachin, R.; Kavya, B.M.; Srinivas, S.J.; Rakshitha, M.S. Experimental Investigation on Self Compacting Concrete using Sisal Fibre. IJESC 2019, 9, 23130–23134. [Google Scholar]
- Naveen, J.; Jawaid, M.; Amuthakkannan, P.; Chandrasekar, M. 21—Mechanical and Physical Properties of Sisal and Hybrid Sisal Fiber-Reinforced Polymer Composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 427–440. ISBN 978-0-08-102292-4. [Google Scholar]
- Srinivasakumar, P.; Nandan, M.; Kiran, C.U.; Rao, K.P. Sisal and its Potential for Creating Innovative Employment Opportunities and Economic Prospects. IOSR J. Mech. Civ. Eng. 2013, 8, 1–8. [Google Scholar] [CrossRef]
- Kumar, P.S.S.; Allamraju, K.A.V. Review of Natural Fiber Composites [Jute, Sisal, Kenaf]. Mater. Today Proc. 2019, 18, 2556–2562. [Google Scholar] [CrossRef]
- Cerqueira, G.S.; Silva, G.S.; Vasconcelos, E.R.; de Freitas, A.P.F.; Moura, B.A.; Macedo, D.S.; Souto, A.L.; Filho, J.M.B.; Leal, L.K.A.; Brito, G.A.C.; et al. Effects of Hecogenin and Its Possible Mechanism of Action on Experimental Models of Gastric Ulcer in Mice. Eur. J Pharm. 2012, 683, 260–269. [Google Scholar] [CrossRef]
- Araldi, R.P.; Dos Santos, M.O.; Barbon, F.F.; Manjerona, B.A.; Meirelles, B.R.; de Oliva Neto, P.; da Silva, P.I.; Dos Santos, L.; Camargo, I.C.C.; de Souza, E.B. Analysis of Antioxidant, Cytotoxic and Mutagenic Potential of Agave sisalana Perrine Extracts Using Vero Cells, Human Lymphocytes and Mice Polychromatic Erythrocytes. Biomed. Pharm. 2018, 98, 873–885. [Google Scholar] [CrossRef]
- Bermúdez-Bazán, M.; Castillo-Herrera, G.A.; Urias-Silvas, J.E.; Escobedo-Reyes, A.; Estarrón-Espinosa, M. Hunting Bioactive Molecules from the Agave Genus: An Update on Extraction and Biological Potential. Molecules 2021, 26, 6789. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Herbal Products in Postsurgical Wound Healing—Incision, Excision and Dead Space Wound Models. Planta Med. 2020, 86, 732–748. [Google Scholar] [CrossRef]
- López-Salazar, H.; Camacho-Díaz, B.H.; Ávila-Reyes, S.V.; Pérez-García, M.D.; González-Cortazar, M.; Arenas Ocampo, M.L.; Jiménez-Aparicio, A.R. Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave Angustifolia Haw. Molecules 2019, 24, 3926. [Google Scholar] [CrossRef]
- Chigodi, M.O.; Samoei, D.K.; Muthangya, M. Phytochemical Screening of Agave sisalana Perrine Leaves (Waste). Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 200–204. [Google Scholar]
- Dunder, R.J.; Quaglio, A.E.V.; Maciel, R.P.; Luiz-Ferreira, A.; Almeida, A.C.A.; Takayama, C.; de Faria, F.M.; Souza-Brito, A.R.M. Anti-Inflammatory and Analgesic Potential of Hydrolyzed Extract of Agave sisalana Perrine Ex Engelm., Asparagaceae. Rev. Bras. Farmacogn. 2010, 20, 376–381. [Google Scholar] [CrossRef]
- Dunder, R.J.; Luiz-Ferreira, A.; de Almeida, A.C.A.; de-Faria, F.M.; Takayama, C.; Socca, E.A.R.; Salvador, M.J.; Mello, G.C.; dos Santos, C.; de Oliva-Neto, P.; et al. Applications of the Hexanic Fraction of Agave sisalana Perrine Ex Engelm (Asparagaceae): Control of Inflammation and Pain Screening. Mem. Inst. Oswaldo Cruz 2013, 108, 263–271. [Google Scholar] [CrossRef]
- Viel, A.M.; Pereira, A.R.; Neres, W.E.; dos Santos, L.; Oliva-Neto, P.; Souza, E.B.; da Silva, R.M.G.; Camargo, I.C.C. Effect of Agave sisalana Perrine extract on the ovarian and uterine tissues and fetal parameters: Comparative interventional study. Int. J. Multispec. Health 2017, 3, 129–138. [Google Scholar]
- Tian, C.; Chang, Y.; Liu, X.; Zhang, Z.; Guo, Y.; Lan, Z.; Zhang, P.; Liu, M. Anti-Inflammatory Activity in Vitro, Extractive Process and HPLC-MS Characterization of Total Saponins Extract from Tribulus terrestris L. Fruits. Ind. Crops Prod. 2020, 150, 112343. [Google Scholar] [CrossRef]
- Sharma, P.; Tyagi, A.; Bhansali, P.; Pareek, S.; Singh, V.; Ilyas, A.; Mishra, R.; Poddar, N.K. Saponins: Extraction, Bio-Medicinal Properties and Way Forward to Anti-Viral Representatives. Food Chem. Toxicol. 2021, 150, 112075. [Google Scholar] [CrossRef]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-Based, Biological-Active Surfactants from Plants; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-3326-1. [Google Scholar]
- Juang, Y.-P.; Liang, P.-H. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef]
- Gu, G.; An, L.; Fang, M.; Guo, Z. Efficient one-pot synthesis of tigogenin saponins and their antitumor activities. Carbohydr. Res. 2014, 383, 21–26. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, B.; Du, D.; Guo, X.; Xin, G.; Xing, Z.; Liang, Y.; Chen, Y.; Chen, Q.; He, Y.; et al. Anti-thrombosis effect of diosgenyl saponins in vitro and in vivo. Steroids 2013, 78, 1064–1070. [Google Scholar] [CrossRef]
- Reichert, C.L.; Salminen, H.; Weiss, J. Quillaja saponin Characteristics and Functional Properties. Annu. Rev. Food Sci. Technol. 2019, 10, 43–73. [Google Scholar] [CrossRef]
- Ananthi, T.; Chitra, M. Screening of invitro anti-inflammatory activity of Michelia champaca Linn. Flowers. Asian J. Pharm. Clin. Res. 2013, 6, 71–72. [Google Scholar]
- Mwale, M.; Masika, P.J.; Francis, J. Anti-inflammatory and analgesic activities of the aqueous leaf extract of Agave sisalana in rats. Sci. Res. Essays 2012, 7, 1477–1484. [Google Scholar] [CrossRef]
- Alcázar, M.; Kind, T.; Gschaedler, A.; Silveria, M.; Arrizon, J.; Fiehn, O.; Vallejo, A.; Higuera, I.; Lugo, E. Effect of Steroidal Saponins from Agave on the Polysaccharide Cell Wall Composition of Saccharomyces cerevisiae and Kluyveromyces marxianus. LWT 2017, 77, 430–439. [Google Scholar] [CrossRef]
- Zanusso-Junior, G.; Melo, J.O.; Romero, A.L.; Dantas, J.A.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K.N. Avaliação da atividade antiinflamatória do coentro (Coriandrum sativum L.) em roedores. Rev. Bras. Plantas Med. 2011, 13, 17–23. [Google Scholar] [CrossRef]
- Pavin, N.F.; Izaguirry, A.P.; Soares, M.B.; Spiazzi, C.C.; Mendez, A.S.L.; Leivas, F.G.; dos Santos Brum, D.; Cibin, F.W.S. Tribulus terrestris Protects against Male Reproductive Damage Induced by Cyclophosphamide in Mice. Oxid. Med. Cell. Longev. 2018, 2018, e5758191. [Google Scholar] [CrossRef] [PubMed]
- Kuntze, L.B.; Kondo, A.K.; Bezerra, B.T.S.; Pinto, T.; Camargo, I.C.C. Estudo comparativo dos efeitos do extrato de Ginkgo biloba L. e Panax ginseng C.A. Meyer na reprodução de ratos machos e fêmeas Wistar. Rev. Bras. Plantas Med. 2012, 14, 34–42. [Google Scholar] [CrossRef]
- Hammami, I.; El May, M.V. Impact of Garlic Feeding (Allium sativum) on Male Fertility. Andrologia 2013, 45, 217–224. [Google Scholar] [CrossRef]
- Nde, Z.; Wankeu-Nya, M.; Koloko, B.L.; Ateba, S.B.; Ngaha, M.I.; Bend, E.F.; Mboumwa, P.V.G.; Nzeubang, D.C.N.; Lembè, D.M. Acute and Reproductive Toxicity of the Aqueous Extract of the Dry Seeds of Aframomum daniellii on the Female Wistar Rat Strain. Pharmacol. Pharm. 2021, 12, 141–153. [Google Scholar] [CrossRef]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med. 1976, 29, 116–122. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiiflammatory Drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Lee, C.Y.; Park, S.H.; Lim, H.Y.; Jang, S.G.; Park, K.J.; Kim, D.S.; Kim, J.H.; Cho, J.Y. In Vivo Anti-Inflammatory Effects of Prasiola Japonica Ethanol Extract. J. Funct. Foods 2021, 80, 104440. [Google Scholar] [CrossRef]
Saponins | 49.24 ± 0.07 EPS g/100 g |
Treatment | Protection Against Hemolysis (%) |
---|---|
NC | 0.00 ± 0.00 |
PC | 99.03 ± 0.03 * |
E1 | 94.07 ± 0.07 * |
E2 | 95.9 ± 0.10 * |
E3 | 97.53 ± 0.16 * |
E4 | 97.88 ± 0.14 * |
E5 | 98.47 ± 0.06 * |
Parameters | Experimental Groups (n = 6/Group) | |
---|---|---|
C/60 | EAH/60 | |
Body weight (g) | 464.2 ± 54.3 | 454.2 ± 51.7 |
Testes weight (g%) | 0.70 ± 0.11 | 0.69 ± 0.05 |
Epididymis weight (g%) | 0.29 ± 0.04 | 0.30 ± 0.07 |
Prostate weight # (g%) | 0.22 ± 0.09 | 0.13 ± 0.05 |
Full seminal vesicles weight (g%) | 0.46 ± 0.07 | 0.31 ± 0.06 * |
Empty seminal vesicles weight (g%) | 0.28 ± 0.08 | 0.16 ± 0.03 * |
Parameters | Experimental Groups (n = 6/Group) | |
---|---|---|
C/60 | EAH/60 | |
Tubular area (µm2) | 66,218.0 ± 11,785.0 | 62,446.0 ± 12,148.0 |
Luminal area (µm2) | 16,762.0 ± 10,422.0 | 16,622.0 ± 11,420.0 * |
Tubular diameter (µm) # | 286.7 ± 41.5 | 278.3 ± 40.6 * |
Seminiferous epithelium height (µm) | 70.8 ± 13.9 | 58.7 ± 12.8 * |
Parameters | Experimental Groups (n = 6/Group) | |
---|---|---|
C/60 | EAH/60 | |
Fertility Index (%) | 100 | 100 |
Gestation Index (%) | 100 | 66.7 |
Body weight of dams (g) | 362.6 ± 0.4 | 402.6 ± 0.4 |
Gravid uterus weight (g) | 46.3 ± 0.2 | 47.5 ± 0.6 |
Litter size | 12.6 ± 0.2 | 12.2 ± 0.3 |
Litter weight (g) | 22.8 ± 3.3 | 24.7 ± 6.9 |
Placental weight (g) | 5.8 ± 1.0 | 6.7 ± 0.9 |
Fetal viability (%) | 100 | 100 |
Pre-implantation loss (%) | 0 | 0 |
Post-implantation loss (%) # | 1.25 ± 2.8 | 12.4 ± 2.9 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, L.T.S.d.; Fracasso, J.A.R.; Guarnier, L.P.; Brito, G.R.d.; Fumis, D.B.; Camargo Bittencourt, R.A.d.; Guiotti, A.M.; Barros Barbosa, D.d.; Camargo, I.C.C.; Souza, E.B.d.; et al. Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue. Plants 2023, 12, 1523. https://doi.org/10.3390/plants12071523
Costa LTSd, Fracasso JAR, Guarnier LP, Brito GRd, Fumis DB, Camargo Bittencourt RAd, Guiotti AM, Barros Barbosa Dd, Camargo ICC, Souza EBd, et al. Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue. Plants. 2023; 12(7):1523. https://doi.org/10.3390/plants12071523
Chicago/Turabian StyleCosta, Luisa Taynara Silvério da, Julia Amanda Rodrigues Fracasso, Lucas Pires Guarnier, Gustavo Reis de Brito, Daniel Baldini Fumis, Renata Aparecida de Camargo Bittencourt, Aimée Maria Guiotti, Débora de Barros Barbosa, Isabel Cristina Cherici Camargo, Edislane Barreiros de Souza, and et al. 2023. "Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue" Plants 12, no. 7: 1523. https://doi.org/10.3390/plants12071523
APA StyleCosta, L. T. S. d., Fracasso, J. A. R., Guarnier, L. P., Brito, G. R. d., Fumis, D. B., Camargo Bittencourt, R. A. d., Guiotti, A. M., Barros Barbosa, D. d., Camargo, I. C. C., Souza, E. B. d., Oliva Neto, P. d., & Santos, L. d. (2023). Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue. Plants, 12(7), 1523. https://doi.org/10.3390/plants12071523