Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Marker Name | Allele Size Range (bp) | Allele Number | Ho 1 | PIC 2 | |
---|---|---|---|---|---|
1. | BPPCT040 | 115–155 | 27 | 0.991 | 0.232 |
2. | BPPCT034 | 216–258 | 24 | 0.981 | 0.213 |
3. | BPPCT039 | 124–177 | 24 | 1 | 0.239 |
4. | BPPCT014 | 185–225 | 18 | 0.869 | 0.182 |
5. | UDP98-407 | 164–233 | 24 | 0.766 | 0.139 |
6. | PacA33 | 168–223 | 30 | 0.832 | 0.136 |
7. | BPPCT007 | 124–161 | 20 | 0.832 | 0.282 |
8. | CPSCT026 | 166–213 | 24 | 0.991 | 0.235 |
9. | UDP96-005 | 96–154 | 28 | 0.757 | 0.162 |
Average | 24.33 | 0.891 | 0.203 |
References
- Manco, R.; Chiaiese, P.; Basile, B.; Corrado, G. Comparative analysis of genomic- and EST-SSRs in European plum (Prunus domestica L.): Implications for the diversity analysis of polyploids. 3 Biotech 2020, 10, 543. [Google Scholar] [CrossRef]
- Butac, M. Plum Breeding. In Prunus, 2nd ed.; Küden, A., Ali, A., Eds.; IntechOpen: London, UK, 2020; pp. 1–25. [Google Scholar]
- Nybom, H.; Giovannini, D.; Ordidge, M.; Hjeltnes, S.H.; Grahić, J.; Gaši, F. ECPGR recommended SSR loci for analyses of European plum (Prunus domestica) collections. Genet. Resour. 2020, 1, 40–48. [Google Scholar] [CrossRef]
- Crane, M.; Lawrence, W. The Genetic of Garden Plants; Mac Millan: London, UK, 1934. [Google Scholar]
- Zhebentyayeva, T.; Shankar, V.; Scorza, R.; Callahan, A.; Ravelonandro, M.; Castro, S.; DeJong, T.; Saski, C.A.; Dardick, C. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Hortic. Res. 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaši, F.; Sehic, J.; Grahic, J.; Hjeltnes, S.H.; Ordidge, M.; Benedikova, D.; Blouin-Delmas, M.; Drogoudi, P.; Giovannini, D.; Höfer, M.; et al. Genetic assessment of the pomological classification of plum Prunus domestica L. accessions sampled across Europe. Genet. Resour. Crop Evol. 2020, 67, 1137–1161. [Google Scholar] [CrossRef]
- Neumüller, M. Fundamental and applied aspects of plum (Prunus domestica) breeding. Fruit Veg. Cereal Sci. Biotechnol. 2011, 1, 139–156. [Google Scholar]
- Blažytė, A. Senosios Lietuviškos Vaismedžių Veislės: Mokomoji Priemonė; Spaudvita: Kėdainiai, Lithuania, 2008. [Google Scholar]
- Stanys, V.; Šikšnianas, T.; Gelvonauskiene, D.; Sasnauskas, A. Genetiniai ir biotechnologiniai tyrimai sodo augalų veislėms kurti. In Augalų Selekcija Lietuvoje Amžių Sandūroje; Monografija; Lietuvos Agrarinių ir Miškų Mokslų Centras: Kėdainiai, Lithuania, 2022; p. 308. [Google Scholar]
- Gharbi, O.; Wünsch, A.; Rodrigo, J. Characterization of accessions of “Reine Claude Verte” plum using Prunus SRR and phenotypic traits. Sci. Hortic. 2014, 169, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Urrestarazu, J.; Errea, P.; Miranda, C.; Santesteban, L.G.; Pina, A. Genetic diversity of Spanish Prunus domestica L. germplasm reveals a complex genetic structure underlying. PLoS ONE 2018, 13, e0195591. [Google Scholar] [CrossRef] [Green Version]
- Gregor, D.; Hartmann, W.; Stösser, R. Cultivar identification in Prunus domestica using random amplified polymorphic DNA markers. Acta Hortic. 1994, 359, 33–40. [Google Scholar] [CrossRef]
- Casas, A.M.; Igartua, E.; Balaguer, G.; Moreno, M.A. Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 1999, 110, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Katayama, H.; Uematsu, C. Structural analysis of chloroplast DNA in Prunus (Rosaceae): Evolution, genetic diversity and unequal mutations. Theor. Appl. Genet. 2005, 111, 1430–1439. [Google Scholar] [CrossRef]
- Hamdani, A.; Bouda, S.; Houmanat, K.; Outghouliast, H.; Razouk, R.; Adiba, A.; Charafi, J. Genetic diversity revealed via molecular analysis of moroccan and foreign plum (Prunus domestica; Prunus salicina) genotypes from an ex-situ collection. Vegetos 2022, 1–9. [Google Scholar] [CrossRef]
- Decroocq, V.; Hagen, L.S.; Favé, M.G.; Eyquard, J.P.; Pierronnet, A. Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol. Breed. 2004, 13, 135–142. [Google Scholar]
- Halapija Kazija, D.; Vujević, P.; JelaČić, T.; Milinović, B.; Drkenda, P.; Gaŝi, F.; Kurtović, M.; Pejić, I.; Ŝimon, S.; Žulj, M.; et al. Genetic identification of “bistrica” and its synonyms “pož egača” and “hauszwetsche” (prunus domestica l.) using SSRs. Acta Hortic. 2013, 976, 285–290. [Google Scholar] [CrossRef]
- Horvath, A.; Balsemin, E.; Barbot, J.C.; Christmann, H.; Manzano, G.; Reynet, P.; Laigret, F.; Mariette, S. Phenotypic variability and genetic structure in plum (Prunus domestica L.), cherry plum (P. cerasifera Ehrh.) and sloe (P. spinosa L.). Sci. Hortic. 2011, 129, 283–293. [Google Scholar] [CrossRef]
- Makovics-Zsohár, N.; Tóth, M.; Surányi, D.; Kovács, S.; Hegedűs, A.; Halász, J. Simple sequence repeat markers reveal Hungarian plum (Prunus domestica L.) germplasm as a valuable gene resource. HortScience 2017, 52, 1655–1660. [Google Scholar] [CrossRef]
- Manco, R.; Basile, B.; Capuozzo, C.; Scognamiglio, P.; Forlani, M.; Rao, R.; Corrado, G. Molecular and phenotypic diversity of traditional European plum (Prunus domestica L.) germplasm of Southern Italy. Sustainability 2019, 11, 4112. [Google Scholar] [CrossRef] [Green Version]
- Merkouropoulos, G.; Ganopoulos, I.; Tsaftaris, A.; Papadopoulos, I.; Drogoudi, P. Combination of high resolution melting (HRM) analysis and SSR molecular markers speeds up plum genotyping: Case study genotyping the Greek plum GeneBank collection. Plant Genet. Resour. Characterisation Util. 2017, 15, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Mnejja, M.; Garcia-Mas, J.; Howad, W.; Badenes, M.L.; Arus, P. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol. Ecol. Notes 2004, 4, 163–166. [Google Scholar] [CrossRef]
- Pop, R.; Hârţa, M.; Szabo, K.; Zănescu, M.; Sisea, C.R.; Cătană, C.; Pamfil, D. Genetic diversity and population structure of plum accessions from a Romanian germplasm collection assessed by simple sequence repeat (SSR) markers. Not. Bot. Horti Agrobot. 2018, 46, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Rallo, P.; López, C.; Suárez, M.P.; Morales-Sillero, A.M.; Casanova, L.; Jiménez, R.; Sánchez, A.; Guzmán, J.R. Molecular characterization of prunus accessions of traditional cultivars prospected in western andalusia, spain. Acta Hortic. 2011, 918, 685–688. [Google Scholar] [CrossRef]
- Suprun, I.I.; Stepanov, I.V.; Tokmakov, S.V.; Eremin, G.V. Study of Prunus domestica Genetic Diversity by Analysis of Microsatellite Loci. Russ. J. Genet. 2019, 55, 172–179. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Pina, A.; Errea, P. Diversity and genetic structure of European plum in mountainous areas of Northeastern Spain. Acta Hortic. 2017, 1172, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Wünsch, A. SSR Markers for Fingerprinting Prunus Species. Acta Hortic. 2009, 814, 689–694. [Google Scholar] [CrossRef]
- Xuan, H.; Spann, D.; Schlottmann, P.; Neumüller, M. Approaches to determine the origin of european plum (Prunus domestica) based on DNA nucleotide sequences. Acta Hortic. 2011, 918, 261–267. [Google Scholar] [CrossRef]
- Bird, K.A.; Hardigan, M.A.; Ragsdale, A.P.; Knapp, S.J.; VanBuren, R.; Edger, P.P. Diversification, spread, and admixture of octoploid strawberry in the Western Hemisphere. Am. J. Bot. 2021, 108, 2269–2281. [Google Scholar] [CrossRef] [PubMed]
- Stanys, V.; Baniulis, D.; Morkunaite-Haimi, S.; Siksnianiene, J.B.; Frercks, B.; Gelvonauskiene, D.; Stepulaitiene, I.; Staniene, G.; Siksnianas, T. Characterising the genetic diversity of Lithuanian sweet cherry (Prunus avium L.) cultivars using SSR markers. Sci. Hortic. 2012, 142, 136–142. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Lanauskas, J.; Kviklys, D.; Uselis, N.; Buskienė, L. Plum Cultivar Evaluation on Myrobalan Rootstock in Lithuania. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2019, 73, 232–237. [Google Scholar] [CrossRef] [Green Version]
- Janes, H.; Kahu, K. Winter Injuries of Plum Cultivars in Winters 2005–2007 in Estonia. In Proceedings of the International Scientific Conference Sustainable Fruit Growing: From Plant to Product, Jûrmala, Dobele, Latvia, 28–31 May 2008; pp. 149–153. [Google Scholar]
- Iezzoni, A.; Wünsch, A.; Höfer, M.; Giovannini, D.; Jensen, M.; Quero-García, J.; Campoy, J.A.; Vokurka, A.; Barreneche, T. Biodiversity, Germplasm Resources and Breeding Methods. In Cherries: Botany, Production and Uses; Quero-García, J., Iezzoni, A., Pulawska, J., Lang, G., Eds.; CABI: Wallingford, UK, 2017; pp. 36–59. [Google Scholar]
- Horak, J.; Peltanova, A.; Podavkova, A.; Safarova, L.; Bogusch, P.; Romport, D.; Zasadil, P. Biodiversity responses to land use in traditional fruit orchards of a rural agricultural landscape. Agric. Ecosyst. Environ. 2013, 178, 71–77. [Google Scholar] [CrossRef]
- Sehic, J.; Nybom, H.; Hjeltnes, S.H.; Gasi, F. Genetic diversity and structure of Nordic plum germplasm preserved ex situ and on-farm. Sci. Hortic. 2015, 160, 195–202. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Cipriani, G.; Lot, G.; Huang, W.G.; Marrazzo, M.T.; Peterlunger, E.; Testolin, R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 1999, 99, 65–72. [Google Scholar] [CrossRef]
- Decroocq, V.; Fave, M.G.; Hagen, L.; Bordenave, L.; Decroocq, S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 2003, 106, 912–922. [Google Scholar] [CrossRef]
- Dirlewanger, E.; Cosson, P.; Tavaud, M.; Aranzana, M.; Poizat, C.; Zanetto, A.; Arus, P.; Laigret, F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 2002, 105, 127–138. [Google Scholar] [CrossRef]
- Roldán-Ruiz, I.; Dendauw, J.; Van Bockstaele, E.; Depicker, A.; De Loose, M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 2000, 6, 125–134. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; WF Freeman & Co.: New York, NY, USA, 1973; p. 573. [Google Scholar]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Porras-Hurtado, L.; Ruiz, Y.; Santos, C.; Phillips, C.; Carracedo, Á.; Lareu, M.V. An overview of STRUCTURE: Applications, parameter settings, and supporting software. Front. Genet. 2013, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; Holdt, B.M.V. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2011, 4, 359–361. [Google Scholar] [CrossRef]
Lithuanian-Origin Cultivars (LT Origin-Plum Group) | Reference Cultivars (R-Plum) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Marker Name | Allele Size Range (bp) | Allele Number | Ho 1 | PIC 2 | Max. Number of Alleles in Genotype | Allele Size Range (bp) | Allele Number | Ho 1 | PIC 2 | Max. Number of Alleles in Genotype | |
1. | BPPCT040 | 115–155 | 21 | 1.00 | 0.274 | 6 | 116–147 | 8 | 1.00 | 0.410 | 5 |
2. | BPPCT034 | 216–258 | 17 | 1.00 | 0.256 | 6 | 216–258 | 13 | 1.00 | 0.308 | 4 |
3. | BPPCT039 | 126–171 | 15 | 1.00 | 0.286 | 5 | 126–177 | 13 | 1.00 | 0.368 | 5 |
4. | BPPCT014 | 185–225 | 12 | 0.71 | 0.243 | 5 | 185–225 | 9 | 1.00 | 0.358 | 5 |
5. | UDP98-407 | 168–197 | 11 | 0.71 | 0.258 | 3 | 164–194 | 6 | 0.33 | 0.343 | 3 |
6. | PacA33 | 175–213 | 13 | 0.79 | 0.265 | 6 | 168–210 | 11 | 1.00 | 0.333 | 4 |
7. | BPPCT007 | 124–161 | 14 | 1.00 | 0.374 | 6 | 124–149 | 11 | 1.00 | 0.369 | 6 |
8. | CPSCT026 | 166–213 | 18 | 1.00 | 0.280 | 6 | 166–210 | 13 | 1.00 | 0.368 | 3 |
9. | UDP96-005 | 96–154 | 19 | 0.71 | 0.240 | 6 | 104–152 | 11 | 0.83 | 0.414 | 5 |
Average | 15.67 | 0.88 | 0.275 | 5.44 | 10.56 | 0.91 | 0.363 | 4.44 |
Loci | Common Allele Lengths in bp (Frequencies in %) | Unique Allele Lengths in bp (Frequencies in %) * | |
---|---|---|---|
Lithuanian Origin Cultivars | Reference Cultivars | ||
BPPCT040 | 116 (20); 120 (25); 124 (35); 126 (50); 128 (50); 134 (30); 145 (25); 147 (40) | 115 (5); 118 (5); 119 (5); 131 (5); 136 (10); 138 (5); 140 (10); 141 (5); 144 (10); 149 (5); 150 (5); 153 (15); 155 (15) | - |
BPPCT034 | 216 (75); 226 (25); 229 (10); 235 (20); 236 (15); 238 (10); 241 (55); 243 (20); 250 (15); 258 (15) | 222 (10); 227 (5); 232 (5); 234 (35); 237 (5); 246 (10); 247 (5) | 225 (5); 249 (5); 256 (5) |
BPPCT039 | 126 (35); 129 (20); 131(15); 132 (30); 136 (25); 143 (25); 145 (15); 150 (15); 153 (70); 171 (25) | 128 (10); 130 (10); 141 (10); 163 (5); 167 (10) | 139 (5); 159 (5); 177 (10) |
BPPCT014 | 185 (85); 202 (20); 204 (45); 214 (15); 215 (20); 216 (15); 218 (10); 223 (10); 225 (25) | 203 (15); 208 (5); 221 (5) | - |
UDP98-407 | 181 (30); 187 (25); 194 (20) | 168 (10); 172 (5); 179 (25); 186 (5); 189 (5); 191 (15); 193 (15); 197 (5) | 164 (5); 177 (5); 185 (5) |
PacA33 | 175 (50); 177 (15); 185 (30); 193 (15); 194 (30); 196 (10); 209 (10) | 179 (10); 183 (20); 191 (15); 192 (5); 202 (5); 213 (10) | 168 (5); 198 (5); 206 (5); 210 (5) |
BPPCT007 | 124 (40); 126 (20); 128 (40); 130 (55); 134 (60); 136 (20); 138 (45); 140 (50); 142 (20); 144 (10); 149 (60) | 134 (10); 146 (10); 151 (30); 161 (5) | - |
CPSCT026 | 166 (55); 175 (25); 183 (25); 188 (10); 189 (80); 193 (35); 196 (25); 199 (35); 200 (20); 202 (55); 204 (25); 210 (15) | 173 (5); 195 (15); 197 (15); 208 (5); 211 (5); 213 (5) | 185 (5) |
UDP96-005 | 104 (25); 105 (10); 107 (20); 112 (30); 115 (20); 125 (15); 137 (15); 148 (35); 152 (30) | 96 (10); 120 (10); 124 (10); 128 (5); 130 (10); 132 (5); 134 (5); 139 (10); 142 (10); 154 (15) | 127 (5); 150 (10) |
No. of alleles | 79 (50.3%) | 62 (39,5%) | 16 (10,2%) |
No. of rare alleles | 8 (10,1%) | 50 (80,6%) | 16 (100%) |
Hybrids | Parental Forms of Hybrids | ||||||||
---|---|---|---|---|---|---|---|---|---|
Marker Name | Allele Size Range (bp) | Allele Number | Ho 1 | PIC 2 | Allele Size Range (bp) | Allele Number | Ho 1 | PIC 2 | |
1. | BPPCT040 | 115–155 | 26 | 1.00 | 0.253 | 117–155 | 17 | 1.00 | 0.333 |
2. | BPPCT034 | 216–256 | 22 | 1.00 | 0.221 | 216–250 | 15 | 1.00 | 0.352 |
3. | BPPCT039 | 124–177 | 23 | 1.00 | 0.251 | 126–177 | 13 | 1.00 | 0.363 |
4. | BPPCT014 | 185–225 | 14 | 0.95 | 0.225 | 185–221 | 9 | 1.00 | 0.284 |
5. | UDP98-407 | 164–225 | 17 | 0.80 | 0.179 | 164–198 | 9 | 0.50 | 0.358 |
6. | PacA33 | 168–221 | 26 | 0.82 | 0.157 | 168–194 | 8 | 0.83 | 0.347 |
7. | BPPCT007 | 124–161 | 18 | 1.00 | 0.279 | 124–161 | 12 | 1.00 | 0.352 |
8. | CPSCT026 | 166–211 | 20 | 1.00 | 0.260 | 166–211 | 13 | 1.00 | 0.333 |
9. | UDP96-005 | 96–154 | 25 | 0.77 | 0.179 | 96–154 | 13 | 0.83 | 0.355 |
Average | 21.22 | 0.93 | 0.223 | 12.11 | 0.91 | 0.342 |
Locus Name | DNA Sequence | Dye | Annealing Temp. °C | Reference |
---|---|---|---|---|
UDP 98-407 | 5′-AGCGGCAGGCTAAATATCAA-3′ 5′-AATCGCCGATCAAAGCAAC-3′ | HEX | 58 | Cipriani et al. [38] |
Pac A 33 | 5′-TCAGTCTCATCCTGCATACG-3′ 5′-CATGTGGCTCAAGGATCAAA-3′ | ATTO550 | 58 | Decroocq et al. [39] |
CPSCT 026 | 5′-TCTCACACGCTTTCGTCAAC-3′ 5′-AAAAAGCCAAAAGGGGTTGT-3′ | 6-FAM | 46 | Mnejja et al. [22] |
BPPCT 040 | 5′-ATGAGGACGTGTCTGAATGG-3′ 5′-AGCCAAACCCCTCTTATACG-3′ | 6-FAM | 58 | Dirlewanger et al. [40] |
BPPCT 007 | 5′-TCATTGCTCGTCATCAGC-3′ 5′-CAGATTTCTGAAGTTAGCGGTA-3′ | HEX | 60 | Dirlewanger et al. [40] |
BPPCT 034 | 5′-CTACCTGAAATAAGCAGAGCC AT-3′ 5′-CAATGGAGAATGGGGTGC-3′ | 6-FAM | 56 | Dirlewanger et al. [40] |
UDP 96-005 | 5′-GTAACGCTCGCTACCACAAA-3′ 5′-CCTGCATATCACCACCCAG-3′ | HEX | 56 | Cipriani et al. [38] |
BPPCT 039 | 5′-ATTACGTACCCTAAAGCTTCTGC-3′ 5′-GATGTCATGAAGATTGGAGAGG-3′ | HEX | 58 | Dirlewanger et al. [40] |
BPPCT 014 | 5′-TTGTCTGCCTCTCATCTTAACC-3′ 5′-CATCGCAGAGAACTGAGAGC-3′ | 6-FAM | 58 | Dirlewanger et al. [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antanynienė, R.; Šikšnianienė, J.B.; Stanys, V.; Frercks, B. Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers. Plants 2023, 12, 1538. https://doi.org/10.3390/plants12071538
Antanynienė R, Šikšnianienė JB, Stanys V, Frercks B. Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers. Plants. 2023; 12(7):1538. https://doi.org/10.3390/plants12071538
Chicago/Turabian StyleAntanynienė, Raminta, Jūratė Bronė Šikšnianienė, Vidmantas Stanys, and Birutė Frercks. 2023. "Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers" Plants 12, no. 7: 1538. https://doi.org/10.3390/plants12071538
APA StyleAntanynienė, R., Šikšnianienė, J. B., Stanys, V., & Frercks, B. (2023). Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers. Plants, 12(7), 1538. https://doi.org/10.3390/plants12071538