Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations
Abstract
:1. Introduction
2. Urbanization: The Fate of Modern Civilization
2.1. The Rural–Urban Shift
2.2. Impacts of Urbanization on PM Generation and Concentrations
2.2.1. In Developed Countries
2.2.2. In Developing and Under Developed Countries
3. PM Pollution: Sources, Elemental Composition, and Impacts
3.1. Sources of PM Pollution
- Natural sources:
- Windblown dust is mainly fugitive dust, often carried by the wind, observed mainly in arid and semi-arid regions, and contributes to PM10 [63].
- Sea salt aerosols (diameter of less than one to few micrometers) originate from wind pressure at the ocean surface due to bursting of bubbles, jet drops, etc. Ali et al. [63] reported that sea salt spray contributes to 80 percent of the total PM concentration at seashores.
- Volcanic particles (depending on types of magma, style of eruption, severity, temperature, pressure, and eruption’s duration) can make transient peaks in PM. These particles can transmit up to thousands of kilometers in the environment [70].
- Wildfires are prevalent in grasslands, shrub lands, and forests in the summertime and significantly contribute to PM [71].
- Biological processes generate‘primary biological aerosols’ such as plant debris, pollen grains, spores of bacteria, and fungus. They are dispersed into the air without going through any chemical changes [63].
- Anthropogenic sources:
- Non-exhaust emission: Resuspended road dust and road wear particles accumulate on the surface, and brake and tire wear particles (mostly fine and coarse particles) are major contributors to non-exhaust emissions [63].
- Brake wear emissions: Brake wear particles that consist of the lining of brakes and disk abrasion due to grinding, evaporation, and condensation of brake pad material generate PM less than 10 μm in diameter as well as potential toxic elements (PTEs) [72].
- Exhaust emission sources: Exhaust PM emits from combustion and mainly arises as a consequence of partial lube oil and burned fuel, ash of fuel oil, sulfate, and vehicle exhausts’ agglomeration of tiny particles [73].
- Industrial emissions: The major industrial PM emission sources are fuel combustion (oil, coal, and coke), gas turbines, and furnaces. PM can also be generated by the mechanical treatment of raw ingredients and cast operations. Fuel has high ash content and has significant potential to emit PM. Industrial emissions are the second largest contributor of PM in European regions [71].
3.2. Size Distribution and Elemental Composition of PM
3.3. Impacts of PM
3.3.1. Ecological Impacts
- Wet deposition, in which particles are settled in snow and rain;
- The dry deposition is significantly slower;
- The occult deposition is caused by cloud water, fog, and mist interception.
3.3.2. Human
4. Green Urban Architecture and Their Impact
4.1. Urban Meadows
4.2. Green Roofs
4.3. Vertical Greening Systems
4.3.1. Green Walls
4.3.2. Green Façade
4.4. Urban Agriculture
5. Avenue Trees: Potentials and Possibilities
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Z.; Mo, J.; Zhang, Y. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ. Int. 2014, 73, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Hamanaka, R.B.; Mutlu, G.M. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Junninen, H.; Dada, L.; Salma, I.; Weidinger, T.; Thén, W.; Vörösmarty, M.; Komsaare, K.; Stolzenburg, D.; Cai, R.; et al. Quiet New Particle Formation in the Atmosphere. Front. Environ. Sci. 2022, 10, 912385. [Google Scholar] [CrossRef]
- Miller, M.R.; Newby, D.E. Air pollution and cardiovascular disease: Car sick. Cardiovasc. Res. 2020, 116, 279–294. [Google Scholar] [CrossRef]
- Miller, M.R.; Shaw, C.A.; Langrish, J.P. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol. 2012, 8, 577–602. [Google Scholar] [CrossRef] [Green Version]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Gautam, M.; Gera, D. Parametric studies on the formation of diesel particulate matter via nucleation and coagulation modes. J. Aerosol. Sci. 2002, 33, 1609–1621. [Google Scholar] [CrossRef]
- World Health Organization. Health Effects of Particulate Matter: Policy implications for countries in Eastern Europe, Caucasus and central Asia. Available online: https://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 4 January 2023).
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental bio-monitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- World Health Organization. Particulate Matter Air Quality Guidelines—2nd ed. Available online: https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid=9AA08610991505EDDEA6FABBD2DF3E43?sequence=1 (accessed on 4 January 2023).
- Das, S.; Pal, D.; Sarkar, A. Particulate matter pollution and global agricultural productivity. In Sustainable Agriculture Reviews 50:Emerging Contaminants in Agriculture, 1st ed.; Kumar Singh, V., Singh, R., Lichtfouse, E., Eds.; Springer: Berlin, Germany, 2021; pp. 79–107. [Google Scholar]
- Sarkar, A.; Das, S. Urban Air Pollution and Avenue Trees: Benefits, Interactions and Future Prospects, 1st ed.; NovaScience and Technology: Hauppauge, NY, USA, 2021. [Google Scholar]
- Environmental Protection Agency. Residential Air Cleaners: A Technical Summary, 3rd ed.; Portable Air Cleaners, Furnace and HVAC Filters. In EPA Indoor Environments Division. Available online: www.epa.gov/iaq (accessed on 14 January 2023).
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Molina, L.; Wittich, R.-M.; van Dillewijn, P.; Segura, A. Plant-Bacteria Interactions for the Elimination of Atmospheric Contaminants in Cities. Agronomy 2021, 11, 493. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). J. Environ. Manage. 2008, 88, 665–676. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- McPherson, E.G.; Nowak, D.; Heisler, G.; Grimmond, S.; Souch, C.; Grant, R.; Rowntree, R. Quantifying urban forest structure, function, and value: The Chicago Urban Forest Climate Project. Urban Ecosyst. 1997, 1, 49–61. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Avn, A.; Chaudhry, P. Urban vegetation and air pollution mitigation: Some issues from India. C.J.U.E.S. 2016, 4, 1650001. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Sci. Total Environ. 2019, 688, 673–683. [Google Scholar] [CrossRef]
- Popek, R.; Haynes, A.; Przybysz, A.; Robinson, S.A. How much does weather matter? Effects of rain and wind on PM accumulation by four species of Australian native trees. Atmosphere 2019, 10, 633. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xia, J.; Gao, Y.; Zheng, W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 2020, 48, 126559. [Google Scholar] [CrossRef]
- Lovett, G.M.; Tear, T.H.; Evers, D.C.; Findlay, S.E.; Cosby, B.J.; Dunscomb, J.K.; Driscoll, C.T.; Weathers, K.C. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Ann. N. Y. Acad. Sci. 2009, 1162, 99–135. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Skiba, U.; Nemitz, E.; Choubedar, F.; Branford, D.; Donovan, R.; Rowland, P. Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil. Water Air Soil Pollut. 2004, 4, 483–499. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- World Urbanization Prospects. Department of Economic and Social Affairs, Population Division. Available online: https://population.un.org/wup/publications/files/wup2014-report.pdf (accessed on 31 January 2023).
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.L.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Güneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. IJERPH 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyna-Bensusan, N.; Wilson, D.C.; Smith, S.R. uncontrolled burning of solid waste by households in Mexicois a significant contributor to climate change in the country. Environ. Res. 2018, 163, 280–288. [Google Scholar] [CrossRef]
- Maximillian, J.; Brusseau, M.L.; Glenn, E.P.; Matthias, A.D. Pollution and environmental perturbations in the global system. In Environmental and Pollution Science, 3rd ed.; Brusseau, M.L., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 457–476. [Google Scholar]
- United Nations. Urbanization and Development: Emerging Futures. In World Cities Report 2016. Available online: https://unhabitat.org/world-cities-report-2016 (accessed on 21 February 2023).
- Satterthwaite, D. The transition to a predominantly urban world and its underpinnings. Human Settlements Discussion Paper Series Theme: Urban Change–4. Iied. 2007. Available online: http://www.iied.org/pubs/ (accessed on 31 January 2023).
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 21 February 2023).
- Sati, V.P.; Deng, W.; Lu, Y.; Zhang, S.; Wan, J.; Song, X. Urbanization and its impact on rural livelihoods: A study of Xichang City administration, Sichuan Province, China. CJUES 2017, 5, 1750028. [Google Scholar] [CrossRef]
- United Nations. Department of Economic and Social Affairs, Population Division. World Urbanization Prospects. Available online: https://esa.un.org/unpd/wup/Publications (accessed on 21 February 2023).
- United Nations. Department of Economic and Social Affairs, Population Division. Our Urbanizing World. Population Facts No. 2014/3. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2014_factsheet3.pdf (accessed on 21 February 2023).
- United Nations. Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). Available online: https://desapublications.un.org/file/615/download (accessed on 16 January 2023).
- United Nations. The World’s Cities in 2018 Data Booklet. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2018_worldcities_databooklet.pdf (accessed on 22 February 2023).
- Visser, H.; Petersen, A.C.; Ligtvoet, W. On the relation between weather-related disaster impacts, vulnerability and climate change. Clim. Change. 2014, 125, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Alaci, D.S.A. “Regulating Urbanization in Sub-Saharan Africa through Cluster Settlements: Lessons for Urban Mangers in Ethiopia. ” Theor. Empir. Res. Urban Manag. 2010, 5, 20–34. Available online: https://core.ac.uk/download/pdf/6546965.pdf (accessed on 31 January 2023).
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Bah, M.; Cissé, S.; Diyamett, B.; Diallo, G.; Lerise, F.; Okali, D.; Okpara, E.; Olawoye, J.; Tacoli, C. “Changing Rural-Urban Linkages in Mali Nigeria and Tanzania. ” Environ. Urban. 2003, 15, 1–24. [Google Scholar] [CrossRef]
- Kumar, M.; Tripathi, D.K.; Maitri, V.; Biswas, V. Impact of Urbanization on Land Surface Temperature in Nagpur, Maharashtra. In Sustainable Smart Cities in India. The Urban Book Series, 1st ed.; Sharma, P., Rajput, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 227–241. [Google Scholar]
- Afriyie, K.; Abass, K.; Adomako, J.A.A. Urbanization of the rural landscape: Assessing the effects in peri-urban Kumasi. Int. J. Urban Sustain. Dev. 2014, 6, 1–19. [Google Scholar] [CrossRef]
- Crane, R.; Landis, J. Introduction to the special issue: Planning for climate change: Assessing progress and challenges. J. Am Plann Assoc. 2010, 76, 389–401. [Google Scholar] [CrossRef]
- Shaw, R.; Sharma, A. Climate and Disaster Resilience in Cities: Community, Environment, and Disaster Risk Reduction, 1st ed.; Emerald Group Publishing Ltd.: Bingley, UK, 2011. [Google Scholar]
- Hall, T.; Barrett, H. Urban Geography, 4th ed.; Routledge: London, UK, 2012. [Google Scholar]
- Lu, X.; Yuan, D.; Chen, Y.; Fung, J.C. Impacts of urbanization and long-term meteorological variations on global PM2.5 and its associated health burden. Environ. Pollut. 2021, 270, 116003. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, C.; Wang, Z.; Feng, K.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 2017, 142, 1800–1809. [Google Scholar] [CrossRef]
- Liang, L.; Gong, P. Urban and air pollution: A multi-city study of long-term effects of urban landscape patterns on air quality trends. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.-P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environ. Pollut. 2019, 247, 989–998. [Google Scholar] [CrossRef]
- Kinney, P.L.; Gichuru, M.G.; Volavka-Close, N.; Ngo, N.; Ndiba, P.K.; Law, A.; Sclar, E. Traffic impacts on PM2. 5 air quality in Nairobi, Kenya. Environ. Sci. Policy 2021, 14, 369–378. [Google Scholar]
- Han, L.; Zhou, W.; Li, W. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 2015, 206, 183–187. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. Lett. 2014, 9, 024010. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Zhou, W.; Pickett, S.T.A.; Li, W.; Li, L. An optimum city size? The scaling relationship for urban population and fine particulate (PM2.5) concentration. Environ. Pollut. 2016, 208, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, B.R.; Ravindra, K.; Nagpure, A.S. Air pollution trends over Indian megacities and their local-to-global implications. Atmos. Environ. 2016, 142, 475–495. [Google Scholar] [CrossRef]
- Yang, D.; Ye, C.; Wang, X.; Lu, D.; Xu, J.; Yang, H. Global distribution and evolvement of urbanization and PM2.5 (1998–2015). Atmos. Environ. 2018, 182, 171–178. [Google Scholar] [CrossRef]
- Lin, C.; Lau, A.K.; Li, Y.; Fung, J.C.; Li, C.; Lu, X.; Li, Z. Difference in PM2. 5 variations between urban and rural areas over eastern China from 2001 to 2015. Atmosphere 2018, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Curtius, J. Nucleation of atmospheric aerosol particles. C. R. Phys. 2006, 7, 1027–1045. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Ullah, H.; Abbas, Q.; Munir, M.A.M. A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environ. Geochem. Health 2019, 41, 1131–1162. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Vega, E.; Ruiz, H.; Escalona, S.; Cervantes, A.; Lopez–Veneroni, D.; Gonzalez–Avalos, E.; Sanchez–Reyna, G. Chemical composition of fine particles in Mexico City during 2003–2004. Atmos. Pollut. Res. 2011, 2, 477–483. [Google Scholar] [CrossRef]
- Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. Green walls for mitigating urban particulate matter pollution—A review. Urban For. Urban Green. 2021, 59, 127014. [Google Scholar] [CrossRef]
- Pérez-Vidal, H.; Lunagómez-Rocha, M.; Acosta-Pérez, L. Analysis of total suspended particles (TSP) and breathable fraction–particulate matter (PM10) in Cunduacan, Tabasco. Univ. Cienc. 2010, 26, 151–162. Available online: https://www.scielo.org.mx/scielo.php?pid=S0186-29792010000200003&script=sci_arttext (accessed on 31 January 2023).
- Klimont, Z.; Kupiainen, K.; Heyes, C.; Purohit, P.; Cofala, J.; Rafaj, P.; Borken-Kleefeld, J.; Schopp, W. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 2017, 17, 8681–8723. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, A.; Wichser, A.; Hess, A.; Heeb, N.; Emmenegger, L.; Czerwinski, J.; Kasper, M.; Mooney, J.; Mayer, A. Particle and metal emissions of diesel and gasoline engines—are particle filters appropriate measures? In Proceedings of 16th Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 24–27 June 2012. [Google Scholar]
- Sandrini, S.; Giulianelli, L.; Decesari, S.; Fuzzi, S.; Cristofanelli, P.; Marinoni, A.; Bonasoni, P.; Chiari, M.; Calzolai, G.; Canepari, S.; et al. In situ physical and chemical characterisation of the Eyjafjallajo¨kull aerosol plume in the free troposphere over Italy. Atmos. Chem. Phys. 2014, 14, 1075–1092. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M. Emissions of primary particulate matter, airborne particulate matter: Sources, atmospheric processes and health. In Book Series: Issues in Environmental Science and Technology; The Royal Society of Chemistry: London, UK, 2016; pp. 1–34. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarrà, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Lawrence, S.; Sokhi, R.; Ravindra, K.; Mao, H.; Douglas, H.; Bull, I.D. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmos. Environ. 2013, 77, 548–557. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Falcon-Rodriguez, C.I.; Osornio-Vargas, A.R.; Sada-Ovalle, I.; Segura-Medina, P. Aeroparticles, composition, and lung diseases. Front. Immunol. 2016, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- De-Kok, T.M.C.M.; Driece, H.A.L.; Hogervorst, J.G.F.; Briede, J.J. Toxicological assessment of ambient and traffic-related particulate matter: A review of recent studies. Mutat. Res. 2006, 613, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.; Bergback, B.; Haggerud, A. New metal emission patterns in road traffic environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Lindbom, J.; Gustafsson, M.; Blomqvist, G.; Dahl, A.; Gudmundsson, A.; Swietlicki, E.; Ljungman, A.G. Exposure to wear particles generated fromstudded tires and pavement induces inflammatory cytokine release from human macrophages. Chem. Res. Toxicol. 2006, 19, 521–530. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Gidhagen, L. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 2007, 127, 477–487. [Google Scholar] [CrossRef]
- Siingh, D.; Gautam, A.S.; Kamra, A.K.; Komsaare, K. Nucleation events for the formation of charged aerosol particles at a tropical station—preliminary results. Atmos. Res. 2013, 132, 239–252. [Google Scholar] [CrossRef]
- Owen, B.; Anet, J.G.; Bertier, N.; Christie, S.; Cremaschi, M.; Dellaert, S.; Edebeli, J.; Janicke, U.; Kuenen, J.; Lim, L.; et al. Review: Particulate Matter Emissions from Aircraft. Atmosphere. 2022, 13, 1230. [Google Scholar] [CrossRef]
- Raes, F.; Dingenen, R.V.; Vignati, E.; Wilson, J.; Putaud, J.P.; Seinfeld, J.H.; Adams, P. Formation and cycling of aerosols in the global troposphere. Atmos. Environ. 2000, 34, 4215–4240. [Google Scholar] [CrossRef]
- Phalen, R.F.; Phalen, R.N. Introduction to Air Pollution Science: A Public Health Perspective, 1st ed.; Jones & Bartlett Learning: Burlington, ON, Canada, 2013; pp. 89–129. [Google Scholar]
- Guo, Q.; Yang, Z.; Zhang, J. Influence of a combined external field on the agglomeration of inhalable particles from a coal combustion plant. Powder. Technol. 2012, 227, 67–73. [Google Scholar] [CrossRef]
- Cheung, K.; Daher, N.; Kam, W.; Shafer, M.M.; Ning, Z.; Schauer, J.J.; Sioutas, C. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulatematter (PM10–2.5) in the Los Angeles area. Atmos. Environ. 2011, 45, 2651–2662. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Zapletal, M.; Cudlín, P.; Khadka, C.; Křůmal, K.; Mikuška, P.; Cigánková, H.; Polášek, M. Characteristics and Sources of PAHs, Hopanes, and Elements in PM10 Aerosol in Tulsipur and Charikot (Nepal). Wat. Air Soil Pollut. 2022, 233, 486. [Google Scholar] [CrossRef]
- Dos Santos Souza, E.J.; Zapata Mora, C.; Aristizábal Zuluaga, B.H.; Britto do Amaral, C.D.; Grassi, M.T. Multi-elemental analysis of particulate matter PM2.5 and PM10 by ICP OES. Talanta 2021, 221, 121457. [Google Scholar] [CrossRef]
- Usman, F.; Zeb, B.; Alam, K.; Huang, Z.; Shah, A.; Ahmad, I.; Ullah, S. In-Depth Analysis of Physicochemical Properties of Particulate Matter (PM10, PM2.5 and PM1) and Its Characterization through FTIR, XRD and SEM–EDX Techniques in the Foothills of the Hindu Kush Region of Northern Pakistan. Atmosphere 2022, 13, 124. [Google Scholar] [CrossRef]
- Khan, J.Z.; Sun, L.; Tian, Y.; Shi, G.; Feng, Y. Chemical characterization and source apportionment of PM1 and PM2. 5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. J. Environ. Sci. 2021, 99, 196–209. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J. Survey of measurement and composition of ultrafine particles. Aerosol Air Qual. Res. 2007, 7, 121–173. [Google Scholar] [CrossRef]
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikuška, P.; Vojtěšek, M.; Křůmal, K.; Mikuškova-Čampulova, M.; Michalek, J.; Večeřa, Z. Characterization and source identification of elements and water-soluble ions in submicrometre aerosols in Brno and Šlapanice (Czech Republic). Atmosphere 2020, 11, 688. [Google Scholar] [CrossRef]
- Biswas, K.; Chatterjee, A.; Chakraborty, J. Comparison of air pollutants between Kolkata and Siliguri, India, and its relationship to temperature change. J. Geovis. Spat. Anal. 2020, 4, 25. [Google Scholar] [CrossRef]
- Chen, P.; Li, C.; Kang, S.; Rupakheti, M.; Panday, A.K.; Yan, F.; Li, Q.; Zhang, Q.; Guo, J.; Ji, Z.; et al. Characteristics of particulate-phase polycyclicaromatic hydrocarbons (PAHs) in the atmosphere over the Central Himalayas. Aerosol Air Qual. Res. 2017, 17, 2942–2954. [Google Scholar] [CrossRef] [Green Version]
- Pace, R.; Grote, R. Deposition and resuspension mechanisms into and from tree canopies: A study modeling particle removal of conifers and broadleaves in different cities. Front. For. Glob. 2020, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; and Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Gheorghe, I.F.; Ion, B. The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. In The Impact of Air Pollution on Health, Economy, Environment and Agricultural Sources, 1st ed.; Khallaf, M., Ed.; Intech Open: London, UK, 2011; Volume 29, pp. 241–280. [Google Scholar]
- United States Environmental Protection Agency. Health and Environmental Effects of Particulate Matter. Available online: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (accessed on 12 February 2023).
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Lepeduš, H.; Cesar, V.E.R.A.; Suver, M.I.R.J.A.N.A. The annual changes of chloroplast pigments content in current-and previous-year needles of Norway spruce (Piceaabies L. Karst.) exposed to cement dust pollution. Acta. Bot. Croat. 2003, 62, 27–35. Available online: https://hrcak.srce.hr/file/5897 (accessed on 31 January 2023).
- Neumann, D. The Impact of Sea Salt Emissions on the Air Quality in the North Sea and Baltic Sea Regions. Ph.D. Thesis, University Hamburg, Hamburg, Germany, 14 July 2016. [Google Scholar]
- Yan, X.; Shi, W.Z.; Zhao, W.J.; Luo, N.N. Impact of aerosols and atmospheric particles on plant leaf proteins. Atmos. Environ. 2014, 88, 115–122. [Google Scholar] [CrossRef]
- Wei, X.; Lyu, S.; Yu, Y.; Wang, Z.; Liu, H.; Pan, D.; Chen, J. Phylloremediation of air pollutants: Exploiting the potential of plant leaves and leaf-associated microbes. Front. Plant Sci. 2017, 8, 1318. [Google Scholar] [CrossRef]
- Ruiz-Lupión, D.; Gavín-Centol, M.P.; Moya-Laraño, J. Studying the activity of leaf-litter fauna: A small world to discover. Soil Biodivers. 2022, 9, 552700–552710. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Y. Effects of particulate matter (PM2.5) and associated acidity on ecosystem functioning: Response of leaf litter breakdown. Environ.Sci. Pollut. Res. 2018, 25, 30720–30727. [Google Scholar] [CrossRef] [PubMed]
- Devesa-Rey, R.; Díaz-Fierros, F.; Barral, M.T. Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ. Moni. Assess. 2011, 179, 371–388. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; De Santo, A.V.; Alfani, A.; Bartoli, G.; De Cristofaro, A. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environ. Pollut. 1995, 89, 81–87. [Google Scholar] [CrossRef]
- Mullan-Boudreau, G.; Belland, R.; Devito, K.; Noernberg, T.; Pelletier, R.; Shotyk, W. Sphagnum moss as an indicator of contemporary rates of atmospheric dust deposition in the Athabasca Bituminous Sands region. Environ. Sci. Technol. 2017, 51, 7422–7431. [Google Scholar] [CrossRef]
- Grantz, D.A.; Garner, J.H.; Johnson, D.W. Ecological effects of particulate matter. Environ. Int. 2003, 29, 213–239. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Pickersgill, D.A.; Després, V.R.; Pöschl, U. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. 2009, 106, 12814–12819. [Google Scholar] [CrossRef] [Green Version]
- Abrego, N.; Crosier, B.; Somervuo, P.; Ivanova, N.; Abrahamyan, A.; Abdi, A.; Hämäläinen, K.; Junninen, K.; Maunula, M.; Purhonen, J.; et al. Fungal communities decline with urbanization—More in air than in soil. ISME J. 2020, 14, 2806–2815. [Google Scholar] [CrossRef]
- Rahul, J.; Jain, M.K. An Investigation in to the Impact of Particulate Matter on Vegetation along the National Highway: A Review. Res. J. Environ. Sci. 2014, 8, 356–372. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Bharati, A.M.; Kamilya, P.; Sarkar, A. Responses of some herbaceous road-side wild plant species against ambient particulate pollution (PM10): A case study from Malda district, West Bengal. Pleione 2020, 14, 311–322. [Google Scholar] [CrossRef]
- Mohapatra, K.; Biswal, S.K. Effect of particulate matter (PM) on plants, climate, ecosystem and human health. Int. J. Adv. Technol. Eng. Sci. 2014, 2, 2348–7550. Available online: http://www.ijates.com (accessed on 31 January 2023).
- Chen, S.L.; Chang, S.W.; Chen, Y.J.; Chen, H.L. Possible warming effect of fine particulate matter in the atmosphere. Commun. Earth Environ. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Darquenne, C. Aerosol deposition in the human lung in reduced gravity. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 170–177. [Google Scholar] [CrossRef]
- Nemmar, A.; Holme, J.A.; Rosas, I.; Schwarze, P.E.; Alfaro-Moreno, E. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. Biomed. Res. Int. 2013, 279371, 22. [Google Scholar] [CrossRef] [Green Version]
- Kreyling, W.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A.J.J.O.T. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health. 2002, 65, 1513–1530. [Google Scholar] [CrossRef]
- Oberdorster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pakbin, P.; Shafer, M.M.; Antkiewicz, D.; Schauer, J.J.; Sioutas, C. Macrophage reactive oxygen species activity of water-soluble and water- insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles. Atmos. Environ. 2013, 77, 301–310. [Google Scholar] [CrossRef]
- Knaapen, A.M.; Shi, T.; Borm, P.J.; Schins, R.P. Soluble metals as well as the insoluble particle fraction are involved in cellular DNA damage induced by particulate matter. Mol. Cell Biochem. 2002, 234, 317–326. [Google Scholar] [CrossRef]
- Verma, V.; Rico-Martinez, R.; Kotra, N.; King, L.; Liu, J.; Snell, T.W.; Weber, R.J. Contribution of water-soluble and insoluble components and their hydro-phobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ. Sci. Technol. 2012, 46, 11384–11392. [Google Scholar] [CrossRef]
- Jones, M.G.; Richeldi, L. Air pollution and acute exacerbations of idiopathic pulmonary fibrosis: Back to miasma? Eur. Respir. J. 2014, 43, 956–959. [Google Scholar] [CrossRef]
- Song, H.M.; Jang, A.S.; Ahn, M.H.; Takizawa, H.; Lee, S.H.; Kwon, J.H.; Lee, Y.M.; Rhim, T.; Park, C.S. Ym1 and Ym2 expression in a mouse model exposed to diesel exhaust particles. Environ. Toxicol. 2008, 23, 110–116. [Google Scholar] [CrossRef]
- Bodlet, A.; Maury, G.; Jamart, J.; Dahlqvist, C. Influence of radiological emphy-sema on lung function test in idiopathic pulmonary fibrosis. Respir. Med. 2013, 107, 1781–1788. [Google Scholar] [CrossRef] [Green Version]
- Cachon, B.F.; Firmin, S.; Verdin, A.; Ayi-Fanou, L.; Billet, S.; Cazier, F.; Martin, P.J.; Aissi, F.; Courcot, D.; Sanni, A.; et al. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin. Environ. Pollut. 2014, 185, 340–351. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Dellinger, B.; Pryor, W.A.; Cueto, R.; Squadrito, G.L.; Hegde, V.; Deutsch, W.A. Role of free radicals in the toxicity of airborne fine particulate matter. Chem. Res. Toxicol. 2001, 14, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- International Agency Research on Cancer. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 14 February 2023).
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health. Persp. 2014, 122, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.C.; Krewski, D.; Pope III, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long- term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am. J. Respir. Crit. Care Med. 2011, 184, 1374–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasooriya, V.M.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Wróblewska, K.; Jeong, B.R. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environ. Sci. Eur. 2021, 33, 1–24. [Google Scholar] [CrossRef]
- European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (accessed on 22 February 2023).
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Kašpar, V.; Zapletal, M.; Samec, P.; Komárek, J.; Bílek, J.; Juráň, S. Unmanned aerial systems for modelling air pollution removal by urban greenery. Urban For. Urban Green. 2022, 78, 127757. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Tong, Z.; Whitlow, T.H.; Landers, A.; Flanner, B. A case study of air quality above an urban roof top vegetable farm. Environ. Pollut. 2016, 208, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Popek, R.; Stankiewicz-Kosyl, M.; Zhu, C.Y.; Małecka-Przybysz, M.; Maulidyawati, T.; Mikowska, K.; Deluga, D.; Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow–Particulate matter accumulation by urban meadows. Sci. Total Environ. 2021, 785, 147310. [Google Scholar] [CrossRef]
- Perini, K.; Rosasco, P. Cost–benefit analysis for green façades and living wall systems. Build. Environ. 2013, 70, 110–121. [Google Scholar] [CrossRef]
- Viecco, M.; Jorquera, H.; Sharma, A.; Bustamante, W.; Fernando, H.J.; Vera, S. Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Build. Environ. 2021, 204, 108120. [Google Scholar] [CrossRef]
- del Carmen Redondo-Bermúdez, M.; Gulenc, I.T.; Cameron, R.W.; Inkson, B.J. ‘Green barriers’ for air pollutant capture: Leaf micromorphology as a mechanism to explain plants capacity to capture particulate matter. Environ. Pollut. 2021, 288, 117809. [Google Scholar] [CrossRef]
- Gao, T.; Liu, F.; Wang, Y.; Mu, S.; Qiu, L. Reduction of atmospheric suspended particulate matter concentration and influencing factors of green space in urban forest park. Forests 2020, 11, 950. [Google Scholar] [CrossRef]
- Weber, F.; Kowarik, I.; Saumel, I. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 2014, 186, 234–240. [Google Scholar] [CrossRef]
- Yin, R.; Wang, D.; Deng, H.; Shi, R.; Chen, Z. Heavy metal contamination and assessment of roadside and foliar dust along the outer-ring highway of Shanghai, China. J. Environ. Qual. 2013, 42, 1724–1732. [Google Scholar] [CrossRef] [Green Version]
- Horváth, L. Dry deposition velocity of PM2.5 ammonium sulfate particles to a Norway spruce forest on the basis of S-and N-balance estimations. Atmos. Environ. 2003, 37, 4419–4424. [Google Scholar] [CrossRef]
- Matsuda, K.; Fujimura, Y.; Hayashi, K.; Takahashi, A.; Nakaya, K. Deposition velocity of PM2.5 sulfate in the summer above adeciduous forest in central Japan. Atmos. Environ. 2010, 44, 4582–4587. [Google Scholar] [CrossRef]
- Ning, Z.H.; Chambers, R.; Abdollahi, K. Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana, USA. IFOREST-Bioge. For. 2016, 9, 860–867. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Z.; She, X.; Gao, J. Quantifying the Potential Contribution of Urban Forest to PM2. 5 Removal in the City of Shanghai, China. Atmosphere. 2021, 12, 1171. [Google Scholar] [CrossRef]
- Bi, Y.F.; Guo, F.Y.; Yang, L.; Zhong, H.; Wang, A.K.; Wang, Y.K.; Wu, Z.Z.; Du, X.H. Phyllostachysedulis forest reduces atmospheric PM2.5 and PAHs on hazy days at suburban area. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Popek, R.; Fornal-Pieniak, B.; Chyliński, F.; Pawełkowicz, M.; Bobrowicz, J.; Chrzanowska, D.; Piechota, N.; Przybysz, A. Not only trees matter—Traffic-related PM accumulation by vegetation of urban forests. Sustainability 2022, 14, 2973. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques—The state of the art. J. Civ.Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Das, S.; Rakwal, R.; Agrawal, G.K.; Sarkar, A. Phytoremediation: An Eco-friendly, Sustainable Solution for Indoor and Outdoor Air Pollution. In Innovative Bio-Based Technologies for Environmental Remediation, 1st ed.; Pardeep Singh, P., Hussain, C.M., Sillanpaa, M., Eds.; Taylor & Francis: Abingdon, UK, 2022; pp. 155–195. [Google Scholar]
- Mao, Y.; Wilson, J.D.; Kort, J. Effects of a shelterbelt on road dust dispersion. Atmos. Environ. 2013, 79, 590–598. [Google Scholar] [CrossRef]
- Das, S.; Sarkar, A. Utilization of mango plants (Mangiferaindica L.) as in situ bio-monitoring tool against vehicular air pollution along National and State Highways: A case study from Malda district, West Bengal, India. J. Biol. Today’s World 2022, 11, 1–4. [Google Scholar] [CrossRef]
- Mandal, M.; Sarkar, M.; Khan, A.; Biswas, M.; Masi, A.; Rakwal, R.; Agrawal, G.K.; Srivastava, A.; Sarkar, A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in Plants–maintenance of structural individuality and functional blend. Adv. Redox Res. 2022, 5, 100039. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mandal, M.; Chakraborty, A.P.; Majumdar, S. Zinc solubilizing rhizobacteria as soil health engineer managing zinc deficiency in plants. In Rhizosphere Engineering, 1st ed.; Dubey, R.C., Kumar, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–238. [Google Scholar]
- Chowdhury, A.; Roy, A.; Mandal, M.; Das, S.; Agrawal, G.K.; Rakwal, R.; Sarkar, A. Dynamics of biological contaminants along with microbial community during vermicomposting. In Fate of Biological Contaminants During Recycling of Organic Wastes, 1st ed.; Huang, K., Bhat, S.A., Cui, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 101–122. [Google Scholar]
- Mandal, M.; Chatterjee, S.; Majumdar, S. Outside the Cell Surface: Encoding the Role of Exopolysaccharide Producing Rhizobacteria to Boost the Drought Tolerance in Plants. In Plant Stress: Challenges and Management in the New Decade, 1st ed.; Roy, S., Mathur, P., Chakraborty, A.P., Saha, S.P., Eds.; Springer: Amsterdam, The Netherlands, 2022; pp. 295–310. [Google Scholar]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Gourdji, S. Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec. Environ. Pollut. 2018, 241, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of green walls and green roofs as soundscape measures: Including monetised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3788. [Google Scholar] [CrossRef] [Green Version]
- Bandehali, S.; Miri, T.; Onyeaka, H.; Kumar, P. Current state of indoor air phytoremediation using potted plants and green walls. Atmosphere 2021, 12, 473. [Google Scholar] [CrossRef]
- Giachetta, A.; Magliocco, A. Progettazione sostenibile. In Dalla Pianificazione TerritorialAll’ecodesign; Carocci: Roma, Italy, 2007. [Google Scholar]
- Ottelé, M.; Perini, K.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Comparative life cycle analysis for green façades and living wall systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Ottelé, M.; van Bohemen, H.D.; Fraaij, A.L. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Das, S.; Biswas, A.; Sarkar, A. Air pollution toxicity and global agricultural perspective: A brief review. In Emerging Issues in Environmental Science: Concerns and Management, 1st ed.; Pandey, P.K., Patra, P.K., Singh, U.K., Eds.; New Delhi Publishers: New Delhi, India, 2017; pp. 75–89. [Google Scholar]
- Lu, H.; Lu, L. A numerical study of particle deposition in ribbed duct flow with different rib shapes. Build. Environ. 2015, 94, 43–53. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2017, 14, 543–550. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Wagner, J.E.; Nowak, D.J.; De la Maza, C.L.; Rodriguez, M.; Crane, D.E. Analyzing the cost effectiveness of Santiago, Chile’s policy of using urban forests to improve air quality. J. Environ. Manag. 2008, 86, 148–157. [Google Scholar] [CrossRef]
- Cavanagh, J.A.E.; Peyman, Z.R.; Wilson, J.G. Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch. Urban For. Urban Green. 2009, 8, 21–30. [Google Scholar] [CrossRef]
- Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particles by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of thirteen urban greening plants to capture particulate matter on leaf surfaces across three levels of ambient atmospheric pollution. Inter. J. Environ. Res. Public Health. 2019, 16, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Leiva, N.; Castro, S.A.; Rubio, M.A.; Ortiz-Calderón, C. Retention of Atmospheric Particulate byThree Woody Ornamental Species in Santiago, Chile. Wat. Air Soil Pollut. 2016, 227, 435. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Bates, C.; Oleksyn, J. Particulate matter, heavy metals and polycyclic aromatic hydrocarbons accumulation on the leaves of Tiliacordata Mill. in five Polish cities with different level of air pollution. Inter. J. Phytoremediation 2017, 19, 1134–1141. [Google Scholar] [CrossRef]
- Popek, R.; Łukowski, A.; Karolewski, P. Particulate matter accumulation-further differences between nativePrunuspadus and non-native P. serotina. Dendrobillogy 2017, 78, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Shen, H.; Duan, W.; Chen, L. A review on particulate matter removal capacity by urban forests at different scales. Urban For. Urban. Green. 2020, 48, 126565. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 427, 3–47. [Google Scholar] [CrossRef]
- Popek, R.; Gawronska, H.; Gawronski, S.W. The Level of Particulate Matter on Foliage Depends on theDistance from the Source of Emission. Inter. J. Phytoremediation 2015, 17, 1262–1268. [Google Scholar] [CrossRef]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and theimportance of leaf trait combinations. Urban For Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Neinhuis, C.; Koch, K.; Barthlott, W. Movement and regeneration of epicuticular waxes through plant cuticles. Planta 2001, 213, 427–434. [Google Scholar] [CrossRef]
- Das, S.; Prasad, P. Particulate matter capturing ability of some plant species: Implication for phytoremediation of particulate pollution around Rourkela steel plant, Rourkela, India. Nat. Environ. Pollut. Technol. 2012, 11, 657–665. Available online: https://neptjournal.com/upload–images/NL-40-21-21.pdf (accessed on 31 January 2023).
- Molnár, V.É.; Simon, E.; Tóthmérész, B.; Ninsawat, S.; Szabó, S. Air pollution induced vegetation stress—The Air PollutionTolerance Index as a quick tool for city health evaluation. Ecol. Ind. 2020, 113, 106234–106242. [Google Scholar] [CrossRef]
- Jin, E.J.; Yoon, J.H.; Bae, E.J.; Jeong, B.R.; Yong, S.H.; Choi, M.S. Particulate Matter Removal Ability of Ten Evergreen Trees Planted in Korea Urban Greening. Forests 2021, 12, 438. [Google Scholar] [CrossRef]
- Srbinovska, M.; Andova, V.; Mateska, A.K.; Krtevska, M.C. The effect of small green walls on reduction of particulate matter concentration in open areas. J. Clean. Prod. 2021, 279, 123306. [Google Scholar] [CrossRef]
- Tillack, A.; Clasen, A.; Kleinschmit, B.; F¨orster, M. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 2014, 141, 52–63. [Google Scholar] [CrossRef]
- Bottalico, F.; Travaglini, D.; Chirici, G.; Garfì, V.; Giannetti, F.; De Marco, A.; Fares, S.; Marchetti, M.; Nocentini, S.; Paoletti, E.; et al. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban For. Urban Green. 2017, 27, 221–234. [Google Scholar] [CrossRef]
- Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Congedo, L.; Munaf‘o, M.; Ciancarella, L.; Manes, F. Mapping and assessment of PM10 and O3 removal by woody vegetation at urban and regional level. Remote Sens. 2017, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating ecosystem services of forests in ten Italian metropolitan cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Moeser, D.; Roubinek, J.; Schleppi, P.; Morsdorf, F.; Jonas, T. Canopy closure, LAI and radiation transfer from airborne LiDAR synthetic images. Agric. For. Meteorol. 2014, 197, 158–168. [Google Scholar] [CrossRef]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Tiwary, A.; Sinnett, D.; Peachey, C.; Chalabi, Z.; Vardoulakis, S.; Fletcher, T.; Leonardi, G.; Grundy, C.; Azapagic, A.; Hutchings, T.R. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London. Environ. Pollut. 2009, 157, 2645–2653. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal bytrees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Hirabayashi, S.; Ellis, E.; Greenfield, E.J. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Bodine, A.R.; Hoehn, R.E.; Low, S.C.; Roman, L.A.; Henning, J.G.; Stephan, T.; Endreny, T. The Urban Forest of Philadelphia. In Resource Bulletin NRS-106; U.S. Department of Agriculture, Forest Service; Northern ResearchStation: Newtown Square, PA, USA, 2016; p. 80. [Google Scholar]
- Nakazato, R.K.; Esposito, M.P.; Cardoso-Gustavson, P.; Bulbovas, P.; Pedroso, A.N.V.; de Assis, P.I.L.S.; Domingos, M. Efficiency of biomonitoring methods applying tropical bio-indicator plants for assessing the phytoxicity of the air pollutants in SE, Brazil. Environ. Sci. Pollut. Res. 2018, 25, 19323–19337. [Google Scholar] [CrossRef]
- Radhapriya, P.; Navaneethagopalakrishnan, A.; Malini, P.; Ramachandran, A. Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India. J. Environ. Biol. 2012, 33, 635–641. [Google Scholar]
- Fang, Y.; Hu, Z.; Zou, Y.; Fan, J.; Wang, Q.; Zhu, Z. Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. J. Clean. Prod. 2017, 162, 1111–1117. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Yan, P. Ranking the suitability of common urban tree species for controlling PM2.5 pollution. Atmos. Pollut. Res. 2015, 6, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.; Yu, S.; Hu, Y.; Bu, R.; Qi, L.; He, X.; Chen, W. How the morphology of urban street canyons affects suspended particulate matter concentration at the pedestrian level: An in-situ investigation. Sustain. Cities Soc. 2020, 55, 102042. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Ng, E.; et al. Progress in urban greenery mitigation science—Assessment methodologies advanced technologies and impact on cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef] [Green Version]
Study Site | GI System | Name of Plant | Size Fractions of PM Pollutants | References |
---|---|---|---|---|
Birmingham New Street railway station | Living wall systems | Hebe albicans Cockayne, Buxus sempervirens L., Hebe x youngii, and Thymus vulgaris L. | PM1, PM2.5 and PM10 | [134] |
National Institute of Social Insurance (INPS) Green Facade, Italy | Vertical greening system | Hedera helix Lowe, Cistus ‘Jessamy Beauty’, Trachelospermum jasminoides (Lindl.) Lem., Phlomis fruticosa L. | PM2.5 and PM10 | [137] |
Brooklyn industrial precinct, Melbourne, Australia | Tree | Eucalyptus cladocalyx F.Muell. | PM2.5 and PM10 | [133] |
Green Roof (GR) | Eucalyptus macrocarpa Hook. | |||
GW | Laurus nobilis L. | |||
Ghent, Belgium | Tree crowns and an urban street canyon | Platanus acerifolia (Aiton) Willd. | PM (not specific) | [7] |
Ostrava–Radvanice, Czechia | Urban greenery | Acer pseudoplatanus L., Salix daphnoides Vill. | PM10 | [138] |
Canada | Urban forests | Trees | PM2.5 | [139] |
New York City | Urban roof top vegetable farm | Vegetables | PM2.5 | [140] |
Warsaw, Poland | Urban meadows | Chenopodium album L. Achillea millefolium L., Echium vulgare L., Centaurea scabiosa L., Echium vulgare L., and Convolvulus arvensis L. | PM (not specific) | [141] |
Genoa, Italy | Green façade | Hedera helix Lowe | - | [142] |
Living wall system | Evergreen climbing plants and small shrubs | |||
Santiago, Chile | GRs and GWs | Sedum album L. | PM2.5 | [143] |
Sheffield, UK | Green barriers | Thuja occidentalis L., Hedera helix Lowe, Phyllostachys nigra (Lodd. ex Lindl.) Munro | PM1 and PM2.5 | [144] |
Beijing, China | Urban Forest Park | Trees/shrubs (lawn grass flower, coniferous broadleaved mixed) | PM10, PM2.5 and PM1.0 | [145] |
Study Site | Name of Plant | Family | Habitat | PM Load | Reference |
---|---|---|---|---|---|
Rourkela Steel Plant, Rourkela, India | Albizia lebbeck (L.) Benth. | Fabaceae | Evergreen | 0.405 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Alstonia scholaris L.R.Br. | Apocynaceae | Evergreen | 1.352 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Anthocephalus indicus A.Rich. | Rubiaceae | Deciduous | 0.743 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Bougainvillea spectabilis Wild. | Nyctaginaceae | Semi evergreen | 0.437 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Caesalpinea pulcherima (L.) SW. | Fabaceae | Semi evergreen | 0.179 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Cassia auriculata L. | Fabaceae | Semi evergreen | 0.546 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Cassia siamea Lam. | Fabaceae | Evergreen medium-sized | 0.574 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Delonix regia (Bojer ex Hook.) Raf. | Fabaceae | Evergreen | 0.137 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Ficus religiosa L. | Moraceae | Evergreen | 0.493 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Lagerstroemia speciosa (L.) Pers. | Lythraceae | Evergreen medium-sized | 1.310 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Mimusops elengi L. | Sapotaceae | Evergreen | 0.652 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Peltophorum inerme (Roxb.) Navesex Fernandez Villar | Fabaceae | Deciduous | 0.729 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Swietenia mahagoni (L.) Lacq. | Meliaceae | Evergreen | 0.486 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Tabebuia aurea Benth Hook.f.ex S. Moore | Bignoniaceae | Deciduous medium sized | 0.552 mg/cm2 | [184] |
Rourkela Steel Plant, Rourkela, India | Thevetia nerifolia Juss Ex. Steud | Apocynaceae | Evergreen | 0.355 mg/cm2 | [184] |
Kunming City, China | Magnolia grandiflora L. | Magnoliaceae | Evergreen | 4.20 g m−2 | [175] |
Kunming City, China | Platanus acerifolia Ait. | Platanaceae | Evergreen deciduous | 3.43 g m−2 | [175] |
Kunming City, China | Osmanthus fragrans (Thunb.) Lour. | Oleaceae | Evergreen | 2.25 g m−2 | [175] |
Kunming City, China | Ligustrun lucidum Ait | Oleaceae | Evergreen | 1.47 g m−2 | [175] |
Kunming City, China | Cinnamomum camphora (L.) Presl. | Lauraceae | Evergreen | 0.99 g m−2 | [175] |
Kunming City, China | Cinnamomum japonicum Sieb | Lauraceae | Evergreen | 2.53 g m−2 | [175] |
Kunming City, China | Photinia glomerata Rehd. et Wils. | Rosaceae | Deciduous | 1.83 g m−2 | [175] |
Kunming City, China | Prunus majestica Koehne | Rosaceae | Evergreen | 1.34 g m−2 | [175] |
Kunming City, China | Prunus cerasifera f. atropurpurea | Rosaceae | Evergreen | 1.6 g m−2 | [175] |
Kunming City, China | Celtis kunmingensis C.C.Cheng & D.Y.Hong | Ulmaceae | Deciduous | 1.71 g m−2 | [175] |
Kunming City China | Euonymus japonica Thunb. | Celastraceae | Evergreen | 1.9 g m−2 | [175] |
Kunming City, China | Loropetalum chinense var. rubrum | Hamamelidaceae | Evergreen | 2.46 g m−2 | [175] |
Kunming City, China | Rhododendron pulchrum Sweet | Ericaceae | Semi evergreen | 2.12 g m−2 | [175] |
Debrecen, Hungary | Acer saccharinum L. | Sapindaceae | Deciduous | 13.9 g m−2 | [185] |
Debrecen, Hungary | Tilia europaea L. | Malvaceae | Deciduous | 464 g m−2 | [185] |
Debrecen, Hungary | Fraxinus excelsior L. | Oleaceae | Deciduous | 41.5 g m−2 | [185] |
Debrecen, Hungary | Tilia platyphyllos Scop. | Malvaceae | Deciduous | 313.6 g m−2 | [185] |
Debrecen, Hungary | Cydonia oblonga Mill. | Rosaceae | Deciduous | 254.6 g m−2 | [185] |
Debrecen, Hungary | Elaeagnus angustifolia L. | Elaeagnacea | Deciduous | 215.9 g m−2 | [185] |
Debrecen, Hungary | Ulmus pumila L. | Ulmaceae | Deciduous | 123.6 g m−2 | [185] |
Debrecen, Hungary | Gleditsia triacanthos L. | Legumes | Deciduous | 89.2 g m−2 | [185] |
Debrecen, Hungary | Picea pungens Engelm. | Pinaceae | Coniferous evergreen | 86.5 g m−2 | [185] |
Debrecen, Hungary | Sorbus aucuparia Poir. | Rosaceae | Evergreen | 68.2 g m−2 | [185] |
Debrecen, Hungary | Salix alba L. | Salicaceae | Deciduous | 64.4 g m−2 | [185] |
Jinju, Gyeongnam Province, Republic of Korea | Pinus densiflora Siebold & Zucc. | Pinaceae | Evergreen | 24.6 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Quercus salicina Blume | Fagaceae | Evergreen | 47.4 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Quercus glauca Thub. | Fagaceae | Evergreen | 27.76 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Rhaphiolepis indica (L.) Lindl. var. umbellata (Thunb. ex Murray) H.Ohashi | Rosaceae | Evergreen | 22.94 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Illicium anisatum L. | Illiciaceae | Evergreen | 13.72 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Ginkgo biloba L. | Ginkgoaceae | Evergreen | 23.58 µg cm−2 | [186] |
Jinju, Gyeongnam Province, Republic of Korea | Machilus thunbergiaSiebold and Zucc. ex Meisn. | Lauraceae | Evergreen | 13.64 µg cm−2 | [186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, M.; Popek, R.; Przybysz, A.; Roy, A.; Das, S.; Sarkar, A. Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. Plants 2023, 12, 1545. https://doi.org/10.3390/plants12071545
Mandal M, Popek R, Przybysz A, Roy A, Das S, Sarkar A. Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. Plants. 2023; 12(7):1545. https://doi.org/10.3390/plants12071545
Chicago/Turabian StyleMandal, Mamun, Robert Popek, Arkadiusz Przybysz, Anamika Roy, Sujit Das, and Abhijit Sarkar. 2023. "Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations" Plants 12, no. 7: 1545. https://doi.org/10.3390/plants12071545
APA StyleMandal, M., Popek, R., Przybysz, A., Roy, A., Das, S., & Sarkar, A. (2023). Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations. Plants, 12(7), 1545. https://doi.org/10.3390/plants12071545