Effects of Monochromatic Light on Growth and Quality of Pistacia vera L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stock Culture
2.2. Light Experiment
2.3. Morphological Parameters
2.4. Determination of Percentage of Apoplastic Water and Hyperhydricity
2.5. Pigment Content
2.6. Total Phenolic Compound (TPC)
2.7. 1,1-Diphenyl-2 Picrylhydrazyl (DPPH) Scavenging Activity
2.8. Determination of Total Flavonoid Content (TFC)
2.9. Statistical Analyses
3. Results and Discussion
3.1. Effect of Light Quality on Growth Parameters
3.2. Revealing the Effect of Light Quality on the Percentage of Hyperhydric Shoots and Severity of HH
3.3. The Effect of Light Quality on LN and STN
3.4. Blue LED Light Promotes Production of Photosynthetic Pigments
3.5. Effect of Light Quality on the Concentration of Flavonoids, Total Phenolic Compounds, and DPPH in Pistacia vera L.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nezami, E.; Gallego, P.P. History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia Spp.) Germplasm. Plants 2023, 12, 323. [Google Scholar] [CrossRef]
- Ouni, S.; Noguera-artiaga, L.; Carbonell-barrachina, A.; Ouerghui, I.; Jendoubi, F.; Rhouma, A.; Chelli-chaabouni, A. Cultivar and Rootstock Effects on Growth, Yield and Nut Quality of Pistachio under Semi-Arid Conditions of South Mediterranean. Horticulturae 2022, 8, 606. [Google Scholar] [CrossRef]
- Ghrab, M.; Zribi, F.; Chelli-Chaabouni, A.; Gouta, H.; Ben Mimoun, M. Genetic Diversity of Pistachio in Tunisia. In Proceedings of the GREMPA Meeting on Pistachios and Almonds, Athens, Greece, 31 March–4 April 2008; CIHEAM: Zaragoza, Spain, 2010; Volume 94, pp. 221–228. [Google Scholar]
- Abousalim, A.; Mantell, S.H. A Practical Method for Alleviating Shoot-Tip Necrosis Symptoms in In Vitro Shoot Cultures of Pistacia vera Cv. Mateur. J. Hortic. Sci. 1994, 69, 357–365. [Google Scholar] [CrossRef]
- Abdouli, D.; Plačková, L.; Doležal, K.; Bettaieb, T.; Werbrouck, S.P.O. Topolin Cytokinins Enhanced Shoot Proliferation, Reduced Hyperhydricity and Altered Cytokinin Metabolism in Pistacia vera L. Seedling Explants. Plant Sci. 2022, 322, 111360. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.A.; Maleki, S.; Landín, M.; Gallego, P.P. Predicting Optimal In Vitro Culture Medium for Pistacia vera Micropropagation Using Neural Networks Models. Plant Cell. Tissue Organ Cult. 2017, 129, 19–33. [Google Scholar] [CrossRef]
- Akdemir, H.; Süzerer, V.; Onay, A.; Tilkat, E.; Ersali, Y.; Çiftçi, Y.O. Micropropagation of the Pistachio and Its Rootstocks by Temporary Immersion System. Plant Cell. Tissue Organ Cult. 2014, 117, 65–76. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant Tissue Culture Media and Practices: An Overview. Vitr. Cell. Dev. Biol. Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
- Smith, H. Sensing the Light Environment: The Functions of the Phytochrome Family. In Photomorphogenesis in Plants; Springer: Dordrecht, The Netherlands, 1994; pp. 377–416. [Google Scholar]
- dos Reis Oliveira, T.; Aragão, V.P.M.; Moharana, K.C.; Fedosejevs, E.; do Amaral, F.P.; Sousa, K.R.; Thelen, J.J.; Venâncio, T.M.; Silveira, V.; Santa-Catarina, C. Light Spectra Affect the In Vitro Shoot Development of Cedrela Fissilis Vell. (Meliaceae) by Changing the Protein Profile and Polyamine Contents. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140529. [Google Scholar] [CrossRef]
- Cavallaro, V.; Pellegrino, A.; Muleo, R.; Forgione, I. Light and Plant Growth Regulators on In Vitro Proliferation. Plants 2022, 11, 844. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and Applications of Light-Emitting Diodes (LEDs) in In Vitro Plant Growth and Morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant Biol. 2020, 71, 103–129. [Google Scholar] [CrossRef] [Green Version]
- Demotes-mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le, J.; Pelleschi-travier, S.; Crespel, L.; Morel, P.; Huché-thélier, L.; Boumaza, R.; et al. Plant Responses to Red and Far-Red Lights, Applications in Horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Chung, I.M.; Lee, C.; Hwang, M.H.; Kim, S.H.; Chi, H.Y.; Yu, C.Y.; Chelliah, R.; Oh, D.H.; Ghimire, B.K. The Influence of Light Wavelength on Resveratrol Content and Antioxidant Capacity in Arachis hypogaeas L. Agronomy 2021, 11, 305. [Google Scholar] [CrossRef]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of Red- and Blue-Light-Emitting Diodes on Growth and Morphogenesis of Grapes. Plant Cell. Tissue Organ Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Werbrouck, S.; Buyle, H.; Geelen, D.; Van Labeke, M.C. Effect of Red-, Far-Red- and Blue-Light-Emitting Diodes on In Vitro Growth of Ficus Benjamina. Acta Hortic. 2012, 961, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Batista, D.S.; de Castro, K.M.; da Silva, A.R.; Teixeira, M.L.; Sales, T.A.; Soares, L.I.; das Graças Cardoso, M.; de Oliveira Santos, M.; Viccini, L.F.; Otoni, W.C. Light Quality Affects in vitro Growth and Essential Oil Profile in Lippia alba (Verbenaceae). Vitr. Cell. Dev. Biol. Plant 2016, 52, 276–282. [Google Scholar] [CrossRef]
- Zárate-Salazar, J.R.; de Souza, L.M.; de Morais, M.B.; Neto, L.P.; Willadino, L.; Gouveia-Neto, A.; Ulisses, C. Light-Emitting Diodes and Gas Exchange Facilitation Minimize Hyperhydricity in Lippia grata: Physiological, Biochemical and Morpho Anatomical Aspects. South Afr. J. Bot. 2020, 135, 164–171. [Google Scholar] [CrossRef]
- Lotfi, M.; Mars, M.; Werbrouck, S. Optimizing Pear Micropropagation and Rooting with Light Emitting Diodes and Trans-Cinnamic Acid. Plant Growth Regul. 2019, 88, 173–180. [Google Scholar] [CrossRef]
- Kemat, N.; Visser, R.G.F. Hypolignification: A Decisive Factor in the Development of Hyperhydricity. Plants 2021, 10, 2625. [Google Scholar] [CrossRef]
- Van Den Dries, N.; Gianní, S.; Czerednik, A.; Krens, F.A.; De Klerk, G.J.M. Flooding of the Apoplast Is a Key Factor in the Development of Hyperhydricity. J. Exp. Bot. 2013, 64, 5221–5230. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin-Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, N.Q.; An, T.N.T.; Van, N.T.; Anh, N.H.T. Evaluation of Polyphenol Content and Antioxidant Activities of Dill Leaves Extract Anethum graveolens L. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012032. [Google Scholar] [CrossRef]
- Széliga, M.E.; Nacucchio, M.C. Pharmaceutical Products. Pharm. Policy Law 2015, 17, 81–89. [Google Scholar] [CrossRef]
- Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on Net Photosynthetic Rate, Growth and Leaf Stomata of Chrysanthemum Plantlets In Vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Hahn, E.-J.; Kozai, T.; Paek, K.-Y. Blue and Red Light-Emitting Diodes with or without Sucrose and Ventilation Affect In Vitro Growth of Rehmannia glutinosa Plantlets. J. Plant Biol. 2000, 43, 247–250. [Google Scholar] [CrossRef]
- Huber, M.; Nieuwendijk, N.M.; Pantazopoulou, C.K. Light Signalling Shapes Plant—Plant Interactions in Dense Canopies. Plant. Cell Environ. 2021, 44, 1014–1029. [Google Scholar] [CrossRef]
- Sasidharan, R.; Chinnappa, C.C.; Voesenek, L.A.C.J.; Pierik, R. The Regulation of Cell Wall Extensibility during Shade Avoidance: A Study Using Two Contrasting Ecotypes of Stellaria longipes. Plant Physiol. 2008, 148, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Pierik, R.; Cuppens, M.L.C.; Voesenek, L.A.C.J.; Visser, E.J.W. Interactions between Ethylene and Gibberellins in Phytochrome-Mediated Shade Avoidance Responses in Tobacco. Plant Physiol. 2004, 136, 2928–2936. [Google Scholar] [CrossRef] [Green Version]
- Millenaar, F.F.; Van Zanten, M.; Cox, M.C.H.; Pierik, R.; Voesenek, L.A.C.J.; Peeters, A.J.M. Differential Petiole Growth in Arabidopsis thaliana: Photocontrol and Hormonal Regulation. New Phytol. 2009, 184, 141–152. [Google Scholar] [CrossRef]
- Mullen, J.L.; Weinig, C.; Hangarter, R.P. Shade Avoidance and the Regulation of Leaf Inclination in Arabidopsis. Plant Cell Environ. 2006, 29, 1099–1106. [Google Scholar] [CrossRef] [Green Version]
- Pudasaini, A.; Zoltowski, B.D. Zeitlupe Senses Blue-Light Fluence to Mediate Circadian Timing in Arabidopsis thaliana. Biochemistry 2013, 52, 7150–7158. [Google Scholar] [CrossRef]
- Keller, M.M.; Jaillais, Y.; Pedmale, U.V.; Moreno, J.E.; Chory, J.; Ballaré, C.L. Cryptochrome 1 and Phytochrome B Control Shade-Avoidance Responses in Arabidopsis via Partially Independent Hormonal Cascades. Plant J. 2011, 67, 195–207. [Google Scholar] [CrossRef]
- Pedmale, U.V.; Huang, S.S.C.; Zander, M.; Cole, B.J.; Hetzel, J.; Ljung, K.; Reis, P.A.B.; Sridevi, P.; Nito, K.; Nery, J.R.; et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell 2016, 164, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tang, C.; Xu, Z. The Effects of Different Light Qualities on Rapeseed (Brassica napus L.) Plantlet Growth and Morphogenesis In Vitro. Sci. Hortic. 2013, 150, 117–124. [Google Scholar] [CrossRef]
- Mengxi, L.; Zhigang, X.; Yang, Y.; Yijie, F. Effects of Different Spectral Lights on Oncidium PLBs Induction, Proliferation, and Plant Regeneration. Plant Cell. Tissue Organ Cult. 2011, 106, 1–10. [Google Scholar] [CrossRef]
- Manivannan, A.; Soundararajan, P.; Halimah, N.; Ko, C.H.; Jeong, B.R. Blue LED Light Enhances Growth, Phytochemical Contents, and Antioxidant Enzyme Activities of Rehmannia Glutinosa Cultured In Vitro. Hortic. Environ. Biotechnol. 2015, 56, 105–113. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef]
- Kevers, C.; Franck, T.; Strasser, R.J.; Dommes, J.; Gaspar, T. Hyperhydricity of Micropropagated Shoots: A Typically Stress-Induced Change of Physiological State. Plant Cell Tissue Organ Cult. 2004, 77, 181–191. [Google Scholar] [CrossRef]
- Muneer, S.; Soundararajan, P.; Jeong, B.R. Proteomic and Antioxidant Analysis Elucidates the Underlying Mechanism of Tolerance to Hyperhydricity Stress in In Vitro Shoot Cultures of Dianthus caryophyllus. J. Plant Growth Regul. 2016, 35, 667–679. [Google Scholar] [CrossRef]
- Chen, S.; Yin, C.; Jörg, R.; Yang, C.; Qiang, S. Plant Physiology and Biochemistry Reactive Oxygen Species from Chloroplasts Contribute to 3-Acetyl-5-Isopropyltetramic Acid-Induced Leaf Necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 2012, 52, 38–51. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Nezami-Alanagh, E.; Barreal, M.E.; Kher, M.M.; Wicaksono, A.; Gulyás, A.; Hidvégi, N.; Magyar-Tábori, K.; Mendler-Drienyovszki, N.; Márton, L.; et al. Shoot Tip Necrosis of In Vitro Plant Cultures: A Reappraisal of Possible Causes and Solutions; Springer: Berlin/Heidelberg, Germany, 2020; Volume 252, ISBN 0123456789. [Google Scholar]
- Davey, M.R.; Anthony, P. Plant Cell Culture: Essential Methods; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Smirnoff, N.; Arnaud, D. Tansley Review Hydrogen Peroxide Metabolism and Functions in Plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, L.; Masi, A.; Ripoll, D.R.; Lee, M.J.; van Wijk, K.J. Arabidopsis thaliana Deficient in Two Chloroplast Ascorbate Peroxidases Shows Accelerated Light-Induced Necrosis When Levels of Cellular Ascorbate Are Low. Plant Mol. Biol. 2007, 65, 627–644. [Google Scholar] [CrossRef]
- Bairu, M.W.; Jain, N.; Stirk, W.A.; Doležal, K.; Van Staden, J. Solving the Problem of Shoot-Tip Necrosis in Harpagophytum procumbens by Changing the Cytokinin Types, Calcium and Boron Concentrations in the Medium. S. Afr. J. Bot. 2009, 75, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Olle, M.; Bender, I. Causes and Control of Calcium Deficiency Disorders in Vegetables: A Review. J. Hortic. Sci. Biotechnol. 2009, 84, 577–584. [Google Scholar] [CrossRef]
- Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P.; Witczak, J.; Castello, P.; El-esawi, M.; Corbineau, F.; Harlingue, A.; et al. Blue-Light Dependent Reactive Oxygen Species Formation by Arabidopsis Cryptochrome May Define a Novel Evolutionarily Conserved Signaling Mechanism. New Phytol. 2015, 206, 1450–1462. [Google Scholar] [CrossRef]
- Chung, I.M.; Paudel, N.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. The Influence of Light Wavelength on Growth and Antioxidant Capacity in Pachyrhizus erosus (L.) Urban. J. Plant Growth Regul. 2020, 39, 296–312. [Google Scholar] [CrossRef]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Muneer, S.; Kim, E.J.; Park, J.S.; Lee, J.H. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.). Int. J. Mol. Sci. 2014, 15, 4657–4670. [Google Scholar] [CrossRef] [Green Version]
- Doroshenko, A.S.; Danilova, M.N.; Medvedeva, A.S.; Kusnetsov, V.V. Influence of Blue-Light Signaling Components on the Regulation of Cytokinin-Dependent Arabidopsis thaliana Seedlings’ Greening. Russ. J. Plant Physiol. 2019, 66, 864–871. [Google Scholar] [CrossRef]
- Arias, J.P.; Zapata, K.; Rojano, B.; Arias, M. Effect of Light Wavelength on Cell Growth, Content of Phenolic Compounds and Antioxidant Activity in Cell Suspension Cultures of Thevetia peruviana. J. Photochem. Photobiol. B Biol. 2016, 163, 87–91. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue Light Added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
Light Treatments | Shoot Weight (mg) | Callus Weight (mg) | Total Weight (mg) | Shoot Weight (%) | Callus Weight (%) |
---|---|---|---|---|---|
Fluorescent | 196.0 ± 0.00 b | 192 ± 0.01 c | 389.6 ± 0.01 a | 53.4 ± 0.33 a | 46.6 ± 0.33 b |
100% Blue | 166.2 ± 0.00 b | 179.1 ± 0.00 c | 345.3 ± 0.01 b | 49.1 ± 0.28 b | 50.9 ± 0.28 a |
100% Red | 342.7 ± 0.00 a | 475.6 ± 0.01 a | 817.1 ± 0.01 b | 44.7 ± 0.40 b | 55.3 ± 0.40 a |
50% Blue + 50% Red | 276.9 ± 0.00 a | 320.9 ± 0.00 b | 596.2 ± 0.01 b | 45.8 ± 0.28 b | 54.2 ± 0.28 a |
Light Treatments | Number of Shoots/Explant | Number of Usable Shoots/Explant | Length of Usable Shoots (cm) | Proliferation Rate | Total Number of Leaves |
---|---|---|---|---|---|
Fluorescent | 3.6 ± 0.04 a | 0.9 ± 0.02 b | 1.9 ± 0.05 b | 1.5 ± 0.04 b | 10.2 ± 0.08 a |
100% Blue | 3.8 ± 0.04 a | 0.7 ± 0.02 b | 1.3 ± 0.01 b | 0.8 ± 0.02 b | 9.7 ± 0.09 a |
100% Red | 4.6 ±0.07 a | 2.6 ± 0.05 a | 3.7 ± 0.04 a | 7.3 ± 0.15 a | 10.4 ± 0.05 a |
50% Blue + 50% Red | 4.4 ±0.05 a | 0.7 ± 0.02 b | 1.4 ± 0.02 b | 0.9 ± 0.03 b | 9.7 ± 0.10 a |
Light Treatments | Chlorophyll a (µg /mg DW) | Chlorophyll b (µg /mg DW) | Total Chlorophyll (µg /mg DW) | Carotenoids (µg /mg DW) |
---|---|---|---|---|
Fluorescent | 0.64 ± 0.02 c | 0.35 ± 0.01 a | 0.99 ± 0.03 b | 0.16 ± 0.01 ab |
100% Blue | 1.14 ± 0.01 a | 0.54 ± 0.00 a | 1.67 ± 0.01 a | 0.26 ± 0.00 a |
100% Red | 0.79 ± 0.01 bc | 0.60 ± 0.09 a | 1.39 ± 0.10 ab | 0.10 ± 0.03 b |
50% Blue + 50% Red | 0.83 ± 0.03 b | 0.39 ± 0.00 a | 1.22 ± 0.04 b | 0.22 ± 0.01 ab |
Light Treatments | TPC (mg GAE/mL Methanol Extract) | TFC (µg QE/mL Methanol Extract) | DPPH (%) |
---|---|---|---|
Fluorescent | 2.49 ± 0.08 b | 65.54 ± 4.91 a | 93.74 ± 0.09 ab |
100% Blue | 3.61 ± 0.21 ab | 64.15 ± 1.70 a | 94.20 ± 0.14 a |
100% Red | 3.61 ± 0.31 ab | 35.50 ± 1.16 b | 92.65 ± 0.20 b |
50% Blue + 50% Red | 4.88 ± 0.08 a | 10.68 ± 0.30 c | 94.48 ± 0.20 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdouli, D.; Soufi, S.; Bettaieb, T.; Werbrouck, S.P.O. Effects of Monochromatic Light on Growth and Quality of Pistacia vera L. Plants 2023, 12, 1546. https://doi.org/10.3390/plants12071546
Abdouli D, Soufi S, Bettaieb T, Werbrouck SPO. Effects of Monochromatic Light on Growth and Quality of Pistacia vera L. Plants. 2023; 12(7):1546. https://doi.org/10.3390/plants12071546
Chicago/Turabian StyleAbdouli, Dhekra, Sihem Soufi, Taoufik Bettaieb, and Stefaan P. O. Werbrouck. 2023. "Effects of Monochromatic Light on Growth and Quality of Pistacia vera L." Plants 12, no. 7: 1546. https://doi.org/10.3390/plants12071546
APA StyleAbdouli, D., Soufi, S., Bettaieb, T., & Werbrouck, S. P. O. (2023). Effects of Monochromatic Light on Growth and Quality of Pistacia vera L. Plants, 12(7), 1546. https://doi.org/10.3390/plants12071546