Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes
Abstract
:1. Introduction
2. Results
2.1. Total Metabolism of the Flowers
2.2. Detection of Aromatic Compounds
2.3. Coefficient of Variation of Aromatic Compounds
2.4. Network Diagram among Fragrance Metabolites
2.5. Environmental Correlation of Aromatic Substances
3. Discussion
3.1. Different Metabolites of the Flowers
3.2. Different Aromatic Substances of the Flowers
4. Materials and Methods
4.1. Sample Sites and Materials
4.2. Total Metabolite of the Flowers
4.2.1. Extraction of Total Metabolite
4.2.2. Determination of Differential Metabolites
4.2.3. Venn Diagram among Differential Metabolites
4.3. Aromatic Substances of the Flowers
4.3.1. Determination of Aromatic Substances
4.3.2. Variation Coefficient of Identified Aromatic Compounds
4.3.3. PCA (Principal Component Analysis) and Heat Map of Different Aromatic Compounds
4.3.4. Network Relationship among Different Aromatic Metabolites
4.4. Correlations between Floral Metabolites and Environment Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TH/CLT | TH/CLW | CLW/CLT | ||||
---|---|---|---|---|---|---|
Pathway | p Value | Pathway | p Value | Pathway | p Value | |
1 | Aminoacyl–tRNA biosynthesis | 0.0000001 | Flavone and flavonol biosynthesis | 0.000001 | Phenylpropanoid biosynthesis | 0.000126 |
2 | Biosynthesis of plant secondary metabolites | 0.0000018 | Aminoacyl–tRNA biosynthesis | 0.000002 | Flavonoid biosynthesis | 0.000146 |
3 | Purine metabolism | 0.0000134 | Purine metabolism | 0.000003 | Biosynthesis of plant secondary metabolites | 0.000603 |
4 | Arginine biosynthesis | 0.0000260 | Phenylpropanoid biosynthesis | 0.000014 | Arginine biosynthesis | 0.000669 |
5 | Biosynthesis of amino acids | 0.0000294 | Biosynthesis of amino acids | 0.000051 | D-Arginine and D-ornithine metabolism | 0.002512 |
6 | Alanine, aspartate, and glutamate metabolism | 0.0000715 | Alanine, aspartate, and glutamate metabolism | 0.000096 | Monobactam biosynthesis | 0.003177 |
7 | Phenylpropanoid biosynthesis | 0.0000787 | Biosynthesis of plant secondary metabolites | 0.000125 | Plant hormone signal transduction | 0.003649 |
8 | Flavone and flavonol biosynthesis | 0.0001179 | Arginine biosynthesis | 0.000566 | alpha-Linolenic acid metabolism | 0.003928 |
9 | ABC transporters | 0.0001642 | Glutathione metabolism | 0.003880 | Purine metabolism | 0.005093 |
10 | Glycosylphosphatidylinositol (GPI)–anchor biosynthesis | 0.0007732 | Nitrogen metabolism | 0.003933 | Ascorbate and aldarate metabolism | 0.005406 |
11 | Nitrogen metabolism | 0.0033012 | alpha-Linolenic acid metabolism | 0.005587 | Aminoacyl-tRNA biosynthesis | 0.007179 |
12 | Monobactam biosynthesis | 0.0034142 | Flavonoid biosynthesis | 0.005988 | Glycerophospholipid metabolism | 0.007179 |
13 | Biosynthesis of plant hormones | 0.0045998 | Biosynthesis of plant hormones | 0.005988 | Nicotinate and nicotinamide metabolism | 0.008390 |
14 | Phenylalanine metabolism | 0.0058746 | Arginine and proline metabolism | 0.009545 | Biosynthesis of secondary metabolites | 0.008622 |
15 | Histidine metabolism | 0.0067199 | Glycerophospholipid metabolism | 0.011879 | Caffeine metabolism | 0.011118 |
16 | Arginine and proline metabolism | 0.0073812 | Pantothenate and CoA biosynthesis | 0.011902 | Valine, leucine, and isoleucine biosynthesis | 0.013267 |
17 | Glycerophospholipid metabolism | 0.0096015 | Nicotinate and nicotinamide metabolism | 0.014398 | Carbon fixation in photosynthetic organisms | 0.013267 |
18 | D-Arginine and D-ornithine metabolism | 0.0107750 | Sulfur relay system | 0.014663 | Biosynthesis of plant hormones | 0.014980 |
19 | Sulfur relay system | 0.0130323 | Carbapenem biosynthesis | 0.017159 | ABC transporters | 0.015198 |
20 | beta-Alanine metabolism | 0.0145440 | beta-Alanine metabolism | 0.017159 | Stilbenoid, diarylheptanoid, and gingerol biosynthesis | 0.015581 |
21 | Plant hormone signal transduction | 0.0154762 | Plant hormone signal transduction | 0.017401 | Ether lipid metabolism | 0.015581 |
22 | Biosynthesis of secondary metabolites | 0.0155926 | Biosynthesis of secondary metabolites | 0.019561 | Biosynthesis of amino acids | 0.015608 |
23 | Cysteine and methionine metabolism | 0.0175387 | ABC transporters | 0.020756 | Phenylalanine metabolism | 0.017460 |
24 | Isoflavonoid biosynthesis | 0.0185040 | Cysteine and methionine metabolism | 0.021527 | Cutin, suberine, and wax biosynthesis | 0.018056 |
25 | Lysine biosynthesis | 0.0185420 | Lysine biosynthesis | 0.021826 | Alanine, aspartate, and glutamate metabolism | 0.019352 |
26 | Phenylalanine, tyrosine, and tryptophan biosynthesis | 0.0185420 | Phenylalanine, tyrosine, and tryptophan biosynthesis | 0.021826 | Linoleic acid metabolism | 0.019352 |
27 | Glutathione metabolism | 0.0230920 | 2-Oxocarboxylic acid metabolism | 0.027176 | Pantothenate and CoA biosynthesis | 0.019352 |
28 | Flavonoid biosynthesis | 0.0238246 | Monobactam biosynthesis | 0.029026 | Pyruvate metabolism | 0.023468 |
29 | alpha-Linolenic acid metabolism | 0.0300204 | Zeatin biosynthesis | 0.029026 | beta-Alanine metabolism | 0.024913 |
30 | Cyanoamino acid metabolism | 0.0358597 | Phenylalanine metabolism | 0.034937 | Lysine biosynthesis | 0.029461 |
31 | Ascorbate and aldarate metabolism | 0.0400552 | Cyanoamino acid metabolism | 0.041900 | Cyanoamino acid metabolism | 0.046743 |
32 | Caffeine metabolism | 0.0448472 | Histidine metabolism | 0.046734 | Histidine metabolism | 0.050557 |
33 | Glycine, serine, and threonine metabolism | 0.0467952 | Caffeine metabolism | 0.050120 | Flavone and flavonol biosynthesis | 0.054482 |
34 | Taurine and hypotaurine metabolism | 0.0488251 | Glycine, serine, and threonine metabolism | 0.054479 | Glycine, serine, and threonine metabolism | 0.056484 |
35 | Carbon fixation in photosynthetic organisms | 0.0529265 | Taurine and hypotaurine metabolism | 0.054530 | Fatty acid biosynthesis | 0.056484 |
36 | Nicotinate and nicotinamide metabolism | 0.0591885 | Valine, leucine, and isoleucine biosynthesis | 0.059071 | Biosynthesis of unsaturated fatty acids | 0.064746 |
37 | Stilbenoid, diarylheptanoid, and gingerol biosynthesis | 0.0614800 | Carbon fixation in photosynthetic organisms | 0.059071 | Pentose and glucuronate interconversions | 0.066873 |
38 | Ether lipid metabolism | 0.0614800 | Stilbenoid, diarylheptanoid, and gingerol biosynthesis | 0.068528 | Cysteine and methionine metabolism | 0.082391 |
39 | 2-Oxocarboxylic acid metabolism | 0.0653205 | Ether lipid metabolism | 0.068528 | 2-Oxocarboxylic acid metabolism | 0.083403 |
40 | Linoleic acid metabolism | 0.0751166 | Linoleic acid metabolism | 0.083564 | Isoflavonoid biosynthesis | 0.084693 |
41 | Biotin metabolism | 0.0751166 | Biotin metabolism | 0.083564 | Anthocyanin biosynthesis | 0.091717 |
42 | Pantothenate and CoA biosynthesis | 0.0751166 | Glyoxylate and dicarboxylate metabolism | 0.087651 | Arginine and proline metabolism | 0.116284 |
43 | Glyoxylate and dicarboxylate metabolism | 0.0758846 | Isoflavonoid biosynthesis | 0.094429 | Sesquiterpenoid and triterpenoid biosynthesis | 0.147696 |
44 | Metabolic pathways | 0.0936330 | Pyruvate metabolism | 0.099500 | Amino sugar and nucleotide sugar metabolism | 0.203258 |
45 | Carbapenem biosynthesis | 0.0946195 | C5-Branched dibasic acid metabolism | 0.104990 | Carbon metabolism | 0.214688 |
46 | C5-Branched dibasic acid metabolism | 0.0946195 | Tyrosine metabolism | 0.151417 | Metabolic pathways | 0.426795 |
47 | Glycerolipid metabolism | 0.1100949 | Butanoate metabolism | 0.157551 | beta-Alanine metabolism | 0.150846 |
48 | Zeatin biosynthesis | 0.1316694 | Galactose metabolism | 0.182275 | ||
49 | Tyrosine metabolism | 0.1326520 | Lysine degradation | 0.226724 | ||
50 | Butanoate metabolism | 0.1427985 | Carbon metabolism | 0.305920 | ||
51 | Lysine degradation | 0.2068783 | Anthocyanin biosynthesis | 0.317058 | ||
52 | Fructose and mannose metabolism | 0.2188817 | Tropane, piperidine, and pyridine alkaloid biosynthesis | 0.329871 | ||
53 | Pentose and glucuronate interconversions | 0.2249079 | Pyrimidine metabolism | 0.329871 | ||
54 | Carbon metabolism | 0.2740372 | Metabolic pathways | 0.360415 | ||
55 | Tropane, piperidine, and pyridine alkaloid biosynthesis | 0.3038096 | Glucosinolate biosynthesis | 0.374164 | ||
56 | Pyrimidine metabolism | 0.3038096 | Porphyrin and chlorophyll metabolism | 0.410889 | ||
57 | Glucosinolate biosynthesis | 0.3459471 | Sesquiterpenoid and triterpenoid biosynthesis | 0.453081 | ||
58 | Porphyrin and chlorophyll metabolism | 0.3729929 | Ubiquinone and other terpenoid–quinone biosynthesis | 0.464742 | ||
59 | Ubiquinone and other terpenoid–quinone biosynthesis | 0.4331321 | Diterpenoid biosynthesis | 0.536900 | ||
60 | Diterpenoid biosynthesis | 0.5036407 | ||||
61 | Amino sugar and nucleotide sugar metabolism | 0.5292665 |
Substance | CLT-CV | CLW-CV | TH-CV |
---|---|---|---|
Chlorogenate | 4.36 | 2.59 | 8.80 |
Caffeate | 3.97 | 3.03 | 4.60 |
Carvacrol | 11.79 | 20.25 | 6.01 |
Thymol | 7.58 | 6.66 | 3.03 |
Eugenol | 6.54 | 5.70 | 4.05 |
Cinnamaldehyd | 4.25 | 24.60 | 6.88 |
Scopoletin | 3.61 | 8.01 | 4.96 |
Coniferyl aldehyde | 11.83 | 55.25 | 6.88 |
Trans-2-Hydroxycinnamate | 48.72 | 29.11 | 8.26 |
4-Hydroxycinnamyl aldehyde | 3.16 | 23.66 | 29.63 |
4-Hydroxystyrene | 8.34 | 34.21 | 2.17 |
Quercetin | 47.03 | 33.96 | 20.87 |
Vitexin | 17.04 | 6.76 | 9.71 |
Luteolin | 1.46 | 53.42 | 31.48 |
Chrysoeriol | 5.49 | 4.31 | 14.87 |
Rutin | 10.91 | 7.93 | 5.42 |
Syringetin | 4.28 | 4.80 | 10.89 |
Taxifolin | 7.36 | 9.03 | 10.61 |
Delphinidin | 13.97 | 10.22 | 38.06 |
Naringenin chalcone | 3.00 | 6.24 | 36.66 |
Dioctyl phthalate | 21.35 | 39.00 | 38.26 |
Phenol | 35.77 | 44.32 | 10.05 |
p-Cresol | 18.11 | 5.94 | 33.29 |
3-Hydroxybenzaldehyde | 6.76 | 9.14 | 27.61 |
Phenyl acetate | 7.71 | 6.63 | 10.97 |
3-Nitrophenol | 1.65 | 9.08 | 10.75 |
trans-2-Hydroxycinnamic acid | 8.11 | 4.38 | 14.84 |
Hesperetin | 3.78 | 7.47 | 11.98 |
Rrange | 0.1–48.72 | 0.58–55.25 | 2.17–38.06 |
Environmental Factors | PCA | VIF |
---|---|---|
The coldest month minimum temperature | 0.23253 | - |
Lowest temperature January | 0.23253 | - |
Lowest temperature December | 0.23059 | 1.502 |
Average temperature December | 0.21505 | - |
Water vapor pressure Feb | 0.20949 | - |
Lowest temperature November | 0.19197 | - |
Water vapor pressure April | 0.18347 | - |
Average precipitation November | 0.18101 | - |
Average temperature January | 0.17675 | - |
Lowest temperature February | 0.16969 | - |
Driest quarterly average temperature | 0.1695 | - |
Coldest quarterly average temperature | 0.1695 | - |
Water vapor pressure March | 0.16804 | - |
Lowest temperature October | 0.15701 | 1.460 |
Species | Sample | Location | Batch | Class |
---|---|---|---|---|
Opisthopappus longilobus | CLW1 | Xiangtang Moutains, Hebei | 1 | CLW |
CLW2 | Xiangtang Moutains, Hebei | 1 | CLW | |
CLW3 | Xiangtang Moutains, Hebei | 1 | CLW | |
CLW4 | Xiangtang Moutains, Hebei | 1 | CLW | |
CLT1 | Xiangtangshan National Park, Hebei | 1 | CLT | |
CLT2 | Xiangtangshan National Park, Hebei | 1 | CLT | |
CLT3 | Xiangtangshan National Park, Hebei | 1 | CLT | |
Opisthopappus taihangensis | TH1 | Shennong Moutains, Henan | 1 | TH |
TH2 | Shennong Moutains, Henan | 1 | TH | |
TH3 | Shennong Moutains, Henan | 1 | TH | |
TH4 | Shennong Moutains, Henan | 1 | TH | |
TH5 | Shennong Moutains, Henan | 1 | TH |
References
- Webb, C. Engineering Fundamentals of Biotechnology; Elsevier: Oxford, UK, 2011. [Google Scholar]
- Apura, P.; Gonçalves, L.G.; Viegas, S.C.; Arraiano, C.M. The world of ribonucleases from pseudomonads: A short trip through the main features and singularities. Microb. Biotechnol. 2021, 14, 2316–2333. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, Q.; Ma, Y.; Zhang, S.; Zhang, L.; Liu, Z.; Zhang, Y. Iron toxicity-induced regulation of key secondary metabolic processes associated with the quality and resistance of Panax ginseng and Panax quinquefolius. Ecotoxicol. Environ. Saf. 2021, 224, 112648. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Zhang, X.; Luo, J.; Liu, H.; Wen, W.; Luo, H.; Yan, J.; Xiao, Y. Metabolomics analysis reveals differences in evolution between maize and rice. Plant J. 2020, 103, 1710–1722. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Groves, N.R.; Biel, A.M.; Newman-Griffis, A.H.; Meier, I. Dynamic Changes in Plant Nuclear Organization in Response to Environmental and Developmental Signals. Plant Physiol. 2017, 176, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators and primary metabolites—The blurred functional trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments. Plant Signal Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Brett, J.R. Environmental factors and growth. Fish Physiol. 1979, 8, 599–675. [Google Scholar]
- Mondal, A.K.; Parui, S.; Mandal, S. Analysis of the free amino acid content in pollen of nine Asteraceae species of known allergenic activity. Ann. Agric. Environ. Med. Aaem 1998, 5, 17. [Google Scholar]
- Joshi, J.; Hasnain, G.; Logue, T.; Lynch, M.; Wu, S.; Guan, J.C.; Alseekh, S.; Fernie, A.R.; Hanson, A.D.; McCarty, D.R. A Core Metabolome Response of Maize Leaves Subjected to Long-Duration Abiotic Stresses. Metabolites 2021, 11, 797. [Google Scholar] [CrossRef]
- Katz, E.; Li, J.J.; Jaegle, B.; Ashkenazy, H.; Abrahams, S.R.; Bagaza, C.; Holden, S.; Pires, C.J.; Angelovici, R.; Kliebenstein, D.J. Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe. Elife Sci. 2021, 10, e67784. [Google Scholar] [CrossRef]
- Hou, J.L.; Li, W.D.; Zheng, Q.Y.; Wang, W.Q.; Xiao, B.; Xing, D. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 2010, 38, 160–168. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, X.; Wu, H.; Shen, S.; Yang, X.; Deng, W.; Ning, J. Characterizing Volatile Metabolites in Raw Pu’er Tea Stored in Wet-Hot or Dry-Cold Environments by Performing Metabolomic Analysis and using the Molecular Sensory Science Approach. Food Chem. 2021, 350, 129186. [Google Scholar] [CrossRef]
- Paré, P.; Tumlinson, J.H. Induced synthesis of plant volatiles. Nature 1997, 385, 30–31. [Google Scholar] [CrossRef]
- Sudha, G.; Ravishankar, G.A. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult. 2002, 71, 181–212. [Google Scholar] [CrossRef]
- Ogbe, A.A.; Finnie, J.F.; Staden, J.V. The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. S. Afr. J. Bot. 2020, 134, 126–134. [Google Scholar] [CrossRef]
- Sampaio, B.L.; Edrada-Ebel, R.A.; Costa, F. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 29265. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Cong, W.-F.; Lambers, H. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends Ecol. Evol. 2021, 36, 899–906. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, G. Genetic diversity and population structure of Opisthopappus longilobus and Opisthopappus taihangensis (Asteraceae) in China determined using sequence related amplified polymorphism markers. Biochem. Syst. Ecol. 2013, 49, 115–124. [Google Scholar] [CrossRef]
- Li, J.; Teng, N.; Chen, F.; Chen, S.; Sun, C.; Fan, W. Reproductive characteristics of Opisthopappus taihangensis (Ling) Shih, an endangered Asteraceae species endemic to China. Sci. Hortic. 2009, 121, 474–479. [Google Scholar] [CrossRef]
- Chu, S. Opisthopappus Shih—A new genus of Compositae from China. Chih Wu Fen Lei Hsueh Pao. Acta Phytotaxon. Sin. 1979, 3, 110–112. [Google Scholar]
- Liu, H.F.; Wei, D.W.; Liu, J.Q.; Sun, W.Y.; Ye, Y.Z. Determination of Chlorogenic acid and Four flavonoids in Different Organs of Opisthopappus taihangensis (Ling)Shih. Nat. Prod. Res. Dev. 2013, 25, 646–651. [Google Scholar]
- Wei, D.; Xu, M.; Sun, W.; Jia, C.; Zhang, X. Antioxidant activity of aqueous extracts from different organs of Opisthopappus Shih. J. Chin. Inst. Food Sci. Technol. 2015, 15, 56–63. [Google Scholar]
- Ye, H.; Wang, Z.; Hou, H.; Wu, J.; Gao, Y.; Han, W.; Ru, W.; Sun, G.; Wang, Y. Localized environmental heterogeneity drives the population differentiation of two endangered and endemic Opisthopappus Shih species. BMC Ecol. Evol. 2021, 21, 1–20. [Google Scholar]
- Chai, M.; Ye, H.; Wang, Z.; Zhou, Y.; Wu, J.; Gao, Y.; Han, W.; Zang, E.; Zhang, H.; Ru, W.; et al. Genetic Divergence and Relationship Among Opisthopappus Species Identified by Development of EST-SSR Markers. Front. Genet. 2020, 11, 177. [Google Scholar] [CrossRef] [Green Version]
- Zaynab, M.; Fatima, M.; Sharif, Y.; Zafar, M.H.; Ali, H.; Khan, K.A. Role of primary metabolites in plant defense against pathogens. Microb. Pathog. 2019, 137, 103728. [Google Scholar] [CrossRef]
- Fang, C.; Fernie, A.R.; Luo, J. Exploring the Diversity of Plant Metabolism. Trends Plant Sci. 2018, 24, 83–98. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Q.; Wang, N.; Dai, J.; Lu, Q.; Jia, X.; Lin, L.; Yu, F.; Zuo, Y. Foliar arginine application improves tomato plant growth, yield, and fruit quality via nitrogen accumulation. Plant Growth Regul. 2021, 95, 421–428. [Google Scholar] [CrossRef]
- Kamel, A.M.; El-Gengaihi, S.E. Secondary and Primary Plant Metabolites as Chemical Markers for Resistance of Bitter Candytuft (Iberis amara) Plant against Insect Attack. Not. Bot. Horti Agrobot. Cluj-Napoca 2008, 36, 80–87. [Google Scholar]
- Bonaventure, G. Perception of insect feeding by plants. Plant Biol. 2012, 14, 872–880. [Google Scholar] [CrossRef]
- Larue, A.A.C.; Raguso, R.A.; Junker, R.R. Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. J. Anim. Ecol. 2016, 85, 396–408. [Google Scholar] [CrossRef]
- Biere, A.; Marak, H.B.; Damme, J. Plant chemical defense against herbivores and pathogens: Generalized defense or trade-offs? Oecologia 2004, 140, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.A.; Schiestl, F.P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 2009, 23, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Reddy, M.S.; Wang, L.J. The phenylpropanoid pathway and plant defence—A genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Padilla-González, G.F.; Frey, M.; Gómez-Zeledón, J.; Da Costa, F.B.; Spring, O. Metabolomic and gene expression approaches reveal the developmental and environmental regulation of the secondary metabolism of yacón (Smallanthus sonchifolius, Asteraceae). Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Lanot, A.; Hodge, D.; Lim, E.K.; Vaistij, F.E.; Bowles, D.J. Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 2008, 228, 609–616. [Google Scholar] [CrossRef]
- Garibay-Hernández, A.; Kessler, N.; Józefowicz, A.M.; Türksoy, G.M.; Lohwasser, U.; Mock, H.P. Untargeted metabotyping to study phenylpropanoid diversity in crop plants. Physiol. Plant. 2021, 173, 680–697. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. Front. Plant. Sci. 2022, 13, 860157. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, B.; Kirikae, H.; Koeduka, T.; Takeuchi, Y.; Asai, T.; Naito, Y.; Tokuoka, H.; Horoiwa, S.; Nakagawa, Y.; Shimizu, B.I.; et al. Synthesis and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors. Bioorganic Med. Chem. 2018, 26, 2466–2474. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, W.; Zhu, D.; Geng, M.; Zhou, W.; Yang, T. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. J. Plant Nutr. Soil Sci. 2010, 173, 268–274. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Rhee, M.S. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans -cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control 2016, 60, 447–454. [Google Scholar]
- Marone, D.; Mastrangelo, A.M.; Borreli, G.M.; Mores, A.; Laidò, G.; Russo, M.R.; Ficco, M.D. Specialized metabolites: Physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management. Plant Physiol. Biochem. 2022, 172, 48–55. [Google Scholar] [CrossRef]
- Sagae, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Effect of Temperature on the Floral Scent Emission and Endogenous Volatile Profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008, 72, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Cheng, S.; Fu, X.; Mei, X.; Zhou, Y.; Du, B.; Watanabe, N.; Yang, Z. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiol. Biochem. 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, H.; Leng, P.; Zhao, J.; Wang, W.; Wang, S. The emission of floral scent from Lilium ‘siberia’ in response to light intensity and temperature. Acta Physiol. Plant. 2013, 35, 1691–1700. [Google Scholar] [CrossRef]
- Leyva, A.; Jarillo, J.A.; Salinas, J.; Martinez-Zapater, J.M. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner. Plant Physiol. 1995, 108, 39–46. [Google Scholar] [CrossRef]
- Li, W.Q. Monitoring of Vegetation Change in Mining Area Based on Multi-Source Remote Sensing Data: A Case Study of Fengfeng Mining Area. Bachelor’s Thesis, Hebei University of Engineering, Handan, China, 2021. [Google Scholar]
- Liu, L.; Zhang, H.; Zang, E.; Qie, Q.; He, S.; Hao, W.; Lan, Y.; Liu, Z.; Sun, G.; Wang, Y. Geographic distribution pattern and ecological niche differentiation of endangered Opisthopappusin Taihang Mountains. Braz. J. Bot. 2023, 46, 217–226. [Google Scholar] [CrossRef]
- Kim, C.; Ryu, H.D.; Chung, E.G.; Kim, Y. Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. J. Chromatogr. B 2018, 1084, 158–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, L.; Li, Y.; Zeng, Q.; Guo, S.; Nkinahamira, F.; Yu, C.P.; Sun, Q. Determination of 38 pharmaceuticals and personal care products in water by lyophilization combined with liquid chromatography-tandem mass spectrometry. Anal. Methods 2021, 13, 299–310. [Google Scholar] [CrossRef]
- Hoi, B.V.; Vu, C.T.; Phung-Thi, L.A.; Nguyen, T.T.; Nguyen, P.T.; Mai, H.; Le, P.T.; Nguyen, T.H.; Duong, D.T.; Thi, H.N.; et al. Determination of Pharmaceutical Residues by UPLC-MS/MS Method: Validation and Application on Surface Water and Hospital Wastewater. J. Anal. Methods Chem. 2021, 2021, 1–12. [Google Scholar]
- Cha, J.M.; Yang, S.; Carlson, K.H. Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J. Chromatogr. A 2006, 1115, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Bakker, J.; Bijlsma, L.; de Boer, J.; Botero-Coy, A.M.; de Bruin, Y.B.; Fischer, S.; Hollender, J.; Kasprzyk-Hordern, B.; Lamoree, M.; et al. The role of analytical chemistry in exposure science: Focus on the aquatic environment. Chemosphere 2019, 222, 564–583. [Google Scholar] [CrossRef] [PubMed]
- Mahtani-Williams, S.; Fulton, W.; Desvars-Larrive, A.; Lado, S.; Elbers, J.P.; Halpern, B.; Herczeg, D.; Babocsay, G.; Lauš, B.; Nagy, Z.T.; et al. Landscape Genomics of a Widely Distributed Snake, Dolichophis caspius (Gmelin, 1789) across Eastern Europe and Western Asia. Genes 2020, 11, 1218. [Google Scholar] [CrossRef]
Substance | CLT | CLW | TH | Pathway |
---|---|---|---|---|
Chlorogenate | 105,479.21 | 19,921.39 | 274,799.37 | Phenylpropanoid biosynthesis |
Caffeate | 10,786.84 | 26,437.30 | 169,303.97 | Phenylpropanoid biosynthesis |
Carvacrol | 45,265.46 | 5310.48 | 13,994.04 | Phenylpropanoid biosynthesis |
Thymol | 92,435.68 | 16,687.11 | 40,157.56 | Phenylpropanoid biosynthesis |
Eugenol | 450,751.55 | 11,388.27 | 3814.11 | Phenylpropanoid biosynthesis |
Cinnamaldehyde | 12,952.79 | 5892.94 | 4449.50 | Phenylpropanoid biosynthesis |
Scopoletin | 59,001.51 | 10,522.40 | 132,320.74 | Flavone and flavonol biosynthesis |
Coniferyl aldehyde | 2351.69 | 2560.67 | 4449.50 | Phenylpropanoid biosynthesis |
Trans-2-HyDdroxycinnamate | 1242.84 | 1394.90 | 16,694.42 | Phenylpropanoid biosynthesis |
4-Hydroxycinnamyl aldehyde | 3320.20 | 1792.73 | 7750.14 | Phenylpropanoid biosynthesis |
4-Hydroxystyrene | 9294.67 | 7470.99 | 2751.54 | Phenylpropanoid biosynthesis |
Quercetin | 2609.50 | 3928.13 | 9140.53 | Flavone and flavonol biosynthesis |
Vitexin | 2274.42 | 9813.69 | 3345.64 | Flavone and flavonol biosynthesis |
Luteolin 7-O-beta-D-glucoside | 6273.09 | 7178.23 | 16,711.09 | Flavone and flavonol biosynthesis |
Chrysoeriol | 78,813.62 | 120,830.08 | 21,661.31 | Flavone and flavonol biosynthesis |
Rutin | 4227.24 | 5222.34 | 20,086.61 | Flavone and flavonol biosynthesis |
Syringetin | 45,869.14 | 12,767.33 | 41,409.86 | Flavone and flavonol biosynthesis |
Taxifolin | 15,370.62 | 6753.96 | 8319.35 | Flavone and flavonol biosynthesis |
Delphinidin | 2436.45 | 18,204.98 | 4483.08 | arginine biosynthesis |
Naringenin chalcone | 8136.07 | 16,785.24 | 10,369.81 | Flavone and flavonol biosynthesis |
Dioctyl phthalate | 123,258.45 | 39,622.58 | 47,210.77 | Chemical carcinogenesis—Receptor activation |
Phenol | 3296.28 | 3956.37 | 2215.23 | Bisphenol degradation |
p-Cresol | 1951.54 | 514.12 | 327.25 | Toluene degradation |
3-Hydroxybenzaldehyde | 8049.15 | 7936.81 | 1037.18 | Toluene degradation |
Phenyl acetate | 166,712.44 | 148,542.13 | 13,535.54 | Phenylpropanoid biosynthesis |
3-Nitrophenol | 8723.93 | 14,561.86 | 5941.29 | Aminobenzoate degradation |
Trans-2-Hydroxycinnamic acid | 25,270.25 | 4991.71 | 1565.01 | Phenylpropanoid biosynthesis |
Hesperetin | 88,158.46 | 56,960.99 | 39,691.62 | Flavone and flavonol biosynthesis |
Lowest Temperature in October | Lowest Temperature in October | Lowest Temperature in December | Lowest Temperature in December | |
---|---|---|---|---|
Pearson correlation | p-value | Pearson correlation | p-value | |
Chlorogenate | −0.2601 | 0.41424 | 0.72105 * | 0.00814 |
Caffeate | −0.54904 | 0.06449 | 0.47613 | 0.11764 |
Carvacrol | 0.93519 * | 8.07 × 10−6 | 0.73249 * | 0.00674 |
thymol | 0.88483 * | 1.31 × 10−4 | 0.82039 * | 0.00108 |
eugenol | 0.88483 * | 1.31 × 10−4 | 0.82039 * | 0.00108 |
cinnamaldehyd | 0.95583 * | 1.23 × 10−6 | 0.3087 | 0.32893 |
Scopoletin | −0.21318 | 0.50589 | 0.75863 * | 0.00423 |
Coniferyl aldehyde | −0.44013 | 0.15218 | 0.38082 | 0.22198 |
trans-2-Hydroxycinnamate | −0.49241 | 0.10389 | 0.52838 | 0.0774 |
4-Hydroxycinnamyl aldehyde | −0.28309 | 0.37261 | 0.60134 * | 0.03861 |
4-Hydroxystyrene | 0.60689 * | 0.03639 | −0.30418 | 0.33643 |
Quercetin | −0.55199 | 0.06278 | 0.35871 | 0.2522 |
Vitexin | −0.37871 | 0.22477 | −0.98711 | 2.75 × 10−9 |
Luteolin 7-O-beta-D-glucoside | −0.42553 | 0.16785 | 0.38042 * | 0.22251 |
Chrysoeriol | 0.19279 | 0.54829 | −0.77187 * | 0.00327 |
Rutin | −0.5253 | 0.07946 | 0.49815 | 0.0993 |
Syringetin | 0.36739 | 0.24007 | 0.97295 * | 1.09 × 10−7 |
Taxifolin | 0.9309 * | 1.10 × 10−5 | 0.68244 * | 0.01447 |
Delphinidin | −0.36309 | 0.24603 | −0.9719 * | 1.32 × 10−7 |
Naringenin chalcone | −0.39108 | 0.20873 | −0.80275 * | 0.00167 |
Dioctyl phthalate | 0.86946 * | 2.39 × 10−4 | 0.53605 | 0.07241 |
Phenol | 0.14631 | 0.65002 | −0.48033 | 0.11398 |
p-Cresol | 0.97346 * | 9.92 × 10−8 | 0.37682 | 0.22728 |
3-Hydroxybenzaldehyde | 0.49574 | 0.10121 | −0.52455 | 0.07997 |
Phenyl acetate | 0.56086 | 0.05782 | −0.46192 | 0.13059 |
3-Nitrophenol | −0.0152 | 0.9626 | −0.87167 * | 2.20 × 10−4 |
trans-2-Hydroxycinnamic acid | 0.98848 * | 1.57 × 10−9 | 0.34875 | 0.26656 |
Hesperetin | 0.89367 * | 8.93 × 10−5 | 0.07483 | 0.81721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Lan, Y.; Zhang, H.; Hao, W.; He, S.; Liu, L.; Feng, X.; Qie, Q.; Chai, M.; Wang, Y. Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes. Plants 2023, 12, 1592. https://doi.org/10.3390/plants12081592
Liu Z, Lan Y, Zhang H, Hao W, He S, Liu L, Feng X, Qie Q, Chai M, Wang Y. Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes. Plants. 2023; 12(8):1592. https://doi.org/10.3390/plants12081592
Chicago/Turabian StyleLiu, Zhixia, Yafei Lan, Hao Zhang, Weili Hao, Shan He, Li Liu, Xiaolong Feng, Qiyang Qie, Min Chai, and Yiling Wang. 2023. "Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes" Plants 12, no. 8: 1592. https://doi.org/10.3390/plants12081592
APA StyleLiu, Z., Lan, Y., Zhang, H., Hao, W., He, S., Liu, L., Feng, X., Qie, Q., Chai, M., & Wang, Y. (2023). Responses of Aroma Related Metabolic Attributes of Opisthopappus longilobus Flowers to Environmental Changes. Plants, 12(8), 1592. https://doi.org/10.3390/plants12081592