Effect of Foliar Application of Hydrogen Peroxide Macroconcentrations on Growth Parameters, Phenolic Compounds and Antioxidant Capacity in the Leaves and Seeds of Amaranthus hypochondriacus L.
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis
2.2. Chlorophyll
2.3. Growth Parameters
2.4. Antioxidant Capacity
2.5. Total Phenolic Compounds
2.6. Condensed Tannins
2.7. Anthocyanins
3. Discussion
4. Materials and Methods
4.1. Biological Reagents and Materials
4.2. Greenhouse Features
4.3. Preparations and Applications of H2O2 and Study Design
4.4. Sample Selection
4.5. Analytical Determinations
4.6. Growth Parameters
4.7. Antioxidant Capacity
4.8. Phenol Content
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Kongdang, P.; Dukaew, N.; Pruksakorn, D.; Koonrungsesomboon, N. Biochemistry of Amaranthus Polyphenols and Their Potential Benefits on Gut Ecosystem: A Comprehensive Review of the Literature. J. Ethnopharmacol. 2021, 281, 114547. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.T.; Brenner, D. Grain Amaranth (Amaranthus Species). In Cereals and Pseudocereals; Chapman & Hall: London, UK, 1995; pp. 129–186. [Google Scholar]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Therapeutic Uses of Amaranthus caudatus L. Trop. Biomed. 2019, 36, 1038–1053. [Google Scholar] [PubMed]
- Sarker, U.; Islam, T.; Rabbani, M.G.; Oba, S. Variability in Total Antioxidant Capacity, Antioxidant Leaf Pigments and Foliage Yield of Vegetable Amaranth. J. Integr. Agric. 2018, 17, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Servín, J.L.; Cabrera-Baeza, H.F.; Jiménez Ugalde, E.A.; Mercado-Luna, A.; de la Torre-Carbot, K.; Escobar-García, K.; Barreyro, A.A.; Serrano-Arellano, J.; García-Gasca, T. Comparison of Chemical Composition and Growth of Amaranth (Amaranthus hypochondriacus) between Greenhouse and Open Field Systems. Int. J. Agric. Biol. 2017, 19, 577–583. [Google Scholar] [CrossRef]
- Peter, K.; Gandhi, P. Rediscovering the Therapeutic Potential of Amaranthus Species: A Review. Egypt. J. Basic Appl. Sci. 2017, 4, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A.; Hasrane, I. Design, Technology, and Management of Greenhouse: A Review. J. Clean. Prod. 2022, 373, 133753. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Yasaswini, D.; Reddy, P.P.R.; Reddy, A.N.; Hyder, I. Plant Secondary Metabolites as Feed Additives in Calves for Antimicrobial Stewardship. Anim. Feed Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Mark, R.; Lyu, X.; Lee, J.J.L.; Parra-Saldívar, R.; Chen, W.N. Sustainable Production of Natural Phenolics for Functional Food Applications. J. Funct. Foods 2019, 57, 233–254. [Google Scholar] [CrossRef]
- Rahaiee, S.; Assadpour, E.; Faridi Esfanjani, A.; Silva, A.S.; Jafari, S.M. Application of Nano/Microencapsulated Phenolic Compounds against Cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [Google Scholar] [CrossRef]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Roginsky, V.; Lissi, E.A. Review of Methods to Determine Chain-Breaking Antioxidant Activity in Food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving Production of Plant Secondary Metabolites through Biotic and Abiotic Elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Jin, S.; Ding, Z.; Xie, J. Study of Postharvest Quality and Antioxidant Capacity of Freshly Cut Amaranth after Blue LED Light Treatment. Plants 2021, 10, 1614. [Google Scholar] [CrossRef]
- Espinosa-Villarreal, N.; Chávez-Servín, J.L.; Mercado-Luna, A.; De La Torre-Carbot, K.; Aguilera-Barreyro, A.; Ferriz-Martínez, R.A.; Malda-Barrera, G.; Serrano-Arellano, J.; Saldaña, C.; García-Gasca, T. Effect of Foliar Application of Hydrogen Peroxide on Growth, Yield, Chemical Composition and Antioxidant Compounds of Amaranth Leaf and Seed. Int. J. Agric. Biol. 2017, 19, 1541–1550. [Google Scholar]
- Guru, A.; Dwivedi, P.; Kaur, P.; Pandey, D.K. Exploring the Role of Elicitors in Enhancing Medicinal Values of Plants under in Vitro Condition. S. Afr. J. Bot. 2022, 149, 1029–1043. [Google Scholar] [CrossRef]
- Fosket, D.E. Biotic Factors Regulate Some Aspects of Plant Development. In Plant Growth Dev; Academic Press: Cambridge, MA, USA, 1994; pp. 517–557. [Google Scholar]
- Gulzar, B.; Mujib, A.; Qadir Malik, M.; Mamgain, J.; Syeed, R.; Zafar, N. Plant Tissue Culture: Agriculture and Industrial Applications. In Transgenic Technology Based Value Addition in Plant Biotechnology; Academic Press: Cambridge, MA, USA, 2020; pp. 25–49. [Google Scholar]
- Świeca, M. Production of Ready-to-Eat Lentil Sprouts with Improved Antioxidant Capacity: Optimization of Elicitation Conditions with Hydrogen Peroxide. Food Chem. 2015, 180, 219–226. [Google Scholar] [CrossRef]
- Belchí-Navarro, S.; Rubio, M.A.; Pedreño, M.A.; Almagro, L. Production and Localization of Hydrogen Peroxide and Nitric Oxide in Grapevine Cells Elicited with Cyclodextrins and Methyl Jasmonate. J. Plant Physiol. 2019, 237, 80–86. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Influence of Elicitation with H2O2 on Phenolics Content, Antioxidant Potential and Nutritional Quality of Lens Culinaris Sprouts. J. Sci. Food Agric. 2014, 94, 489–496. [Google Scholar] [CrossRef]
- Barba de la Rosa, A.P.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; De León-Rodríguez, A. Amaranth (Amaranthus hypochondriacus) as an Alternative Crop for Sustainable Food Production: Phenolic Acids and Flavonoids with Potential Impact on Its Nutraceutical Quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- López-Mejía, O.A.; López-Malo, A.; Palou, E. Antioxidant Capacity of Extracts from Amaranth (Amaranthus hypochondriacus L.) Seeds or Leaves. Ind. Crops Prod. 2014, 53, 55–59. [Google Scholar] [CrossRef]
- Foyer, C.H.C.H.; Vanacker, H.; Gomez, L.D.L.D.; Harbinson, J. Regulation of Photosynthesis and Antioxidant Metabolism in Maize Leaves at Optimal and Chilling Temperatures: Review. Plant Physiol. Biochem. 2002, 40, 659–668. [Google Scholar] [CrossRef]
- Kocsy, G.; Owttrim, G.; Brander, K.; Brunold, C. Effect of Chilling on the Diurnal Rhythm of Enzymes Involved in Protection against Oxidative Stress in a Chilling-Tolerant and a Chilling-Sensitive Maize Genotype. Physiol. Plant. 1997, 99, 249–254. [Google Scholar] [CrossRef]
- Cao, S.; Liu, T.; Jiang, Y.; He, S.; Harrison, D.; Joyce, D. The Effects of Host Defence Elicitors on Betacyanin Accumulation in Amaranthus mangostanus Seedlings. Food Chem. 2012, 134, 1715–1718. [Google Scholar] [CrossRef]
- Sepúlveda-Jiménez, G.; Rueda-Benítez, P.; Porta, H.; Rocha-Sosa, M. A Red Beet (Beta Vulgaris) UDP-Glucosyltransferase Gene Induced by Wounding, Bacterial Infiltration and Oxidative Stress. J. Exp. Bot. 2005, 56, 605–611. [Google Scholar] [CrossRef]
- Figueroa Pérez, M.G.; Rocha-Guzmán, N.E.; Mercado-Silva, E.; Loarca-Piña, G.; Reynoso-Camacho, R. Effect of Chemical Elicitors on Peppermint (Mentha piperita) Plants and Their Impact on the Metabolite Profile and Antioxidant Capacity of Resulting Infusions. Food Chem. 2014, 156, 273–278. [Google Scholar] [CrossRef]
- Cohen, S.; Kennedy, J. Plant Metabolism and the Environment: Implications for Managing Phenolics. Crit. Rev. Food Sci. Nutr. 2010, 50, 620–643. [Google Scholar] [CrossRef]
- Edreva, A.; Velikova, V.; Tsonev, T.; Dagnon, S.; Gürel, A.; Aktaş, L.; Gesheva, E. Stress Protective Role of Secondary Metabolites: Diversity of Functions and Mechanisms. Gen. Appl. PlantStress Prot. 2008, 34, 67–78. [Google Scholar]
- Ferrari, S. Biological Elicitors of Plant Secondary Metabolites: Mode of Action and Use in the Production of Nutraceutics. Adv. Exp. Med. Biol. 2010, 698, 152–166. [Google Scholar]
- Kumar, M.; Sirhindi, G.; Bhardwaj, R.; Kumar, S.; Jain, G. Effect of Exogenous H2O2 on Antioxidant Enzymes of Brassica juncea L. Seedlings in Relation to 24-Epibrassinolide under Chilling Stress. Indian J. Biochem. Biophys. 2010, 47, 378–382. [Google Scholar] [PubMed]
- Moskova, I.; Todorova, D.; Alexieva, V.; Ivanov, S.; Sergiev, I. Effect of Exogenous Hydrogen Peroxide on Enzymatic and Nonenzymatic Antioxidants in Leaves of Young Pea Plants Treated with Paraquat. Plant Growth Regul. 2009, 57, 193–202. [Google Scholar] [CrossRef]
- Cingoz, G.S.; Verma, S.K.; Gurel, E. Hydrogen Peroxide-Induced Antioxidant Activities and Cardiotonic Glycoside Accumulation in Callus Cultures of Endemic Digitalis Species. Plant Physiol. Biochem. 2014, 82, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Arreola Cortés, A.; Castro Mercado, E.; Lozoya Gloria, E.; García Pineda, E. Capsidiol Production in Pepper Fruits (Capsicum annuum L.) Induced by Arachidonic Acid Is Dependent of an Oxidative Burst. Physiol. Mol. Plant Pathol. 2007, 70, 69–76. [Google Scholar]
- Hung, S.-H.; Yu, C.-W.; Lin, C.H. Hydrogen Peroxide Functions as a Stress Signal in Plants. Hungal. Bot. Bull. Acad. Sin. 2005, 46, 1–10. [Google Scholar]
- Kovtun, Y.; Chiu, W.; Tena, G.; Sheen, J. Functional Analysis of Oxidative Stress-Activated Mitogen-Activated Protein Kinase Cascade in Plants. Proc. Natl. Acad. Sci. USA 2000, 97, 2940–2945. [Google Scholar] [CrossRef] [Green Version]
- Matkowski, A. Plant in Vitro Culture for the Production of Antioxidants-A Review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef]
- Vasconsuelo, A.; Boland, R. Molecular Aspects of the Early Stages of Elicitation of Secondary Metabolites in Plants. Plant Sci. 2007, 172, 861–875. [Google Scholar] [CrossRef]
- Cho, H.Y.; Son, S.Y.; Rhee, H.S.; Yoon, S.Y.H.; Lee-Parsons, C.W.T.; Park, J.M. Synergistic Effects of Sequential Treatment with Methyl Jasmonate, Salicylic Acid and Yeast Extract on Benzophenanthridine Alkaloid Accumulation and Protein Expression in Eschscholtzia Californica Suspension Cultures. J. Biotechnol. 2008, 135, 117–122. [Google Scholar] [CrossRef]
- Steiner, A.A. The Universal Nutrient Solution. In Proceedings of the Sixth International Congress on Soilless Culture, Wageningen, The Netherlands, 29 April–4 May 1984; pp. 633–649. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Haithersburg, Md. AOAC International: Madison, WI, USA, 2000. [Google Scholar]
- Krugh, B.; Bickham, L.; Miles, D. The Solid-State Chlorophyll Meter: A Novel Instrument for Rapidly and Accurately Determining the Chlorophyll Concentrations in Seedling Leaves. Maize Genet. Coop. Newsl. 1994, 68, 25–27. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Deshpande, S.S.; Cheryan, M. Evaluation of Vanillin Assay for Tannin Analysis of Dry Beans. J. Food Sci. 1985, 50, 905–910. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P. A Rapid Method for Quantifying Total Anthocyanins in Blue Aleurone and Purple Pericarp Wheats. Cereal Chem. 1999, 76, 350–354. [Google Scholar] [CrossRef]
Sample (Time) | H2O2 Treatments (mM) | Moisture (%) | Crude Ash a (%) | Crude Fiber a (%) | Crude Protein b (%) | Ether Extract a (%) |
---|---|---|---|---|---|---|
Leaf day 63 | 0 | 76.30 ± 2.1 | 3.66 ± 0.1 | 2.62 ± 0.1 | 3.93 ± 0.1 | 0.29 ± 0.1 |
125 | 78.00 ± 1.7 | 3.76 ± 0.2 | 2.64 ± 0.2 | 3.87 ± 0.2 | 0.41 ± 0.2 | |
250 | 77.89 ± 2.0 | 3.84 ± 0.1 | 2.63 ± 0.1 | 3.98 ± 0.2 | 0.37 ± 0.2 | |
400 | 76.40 ± 1.5 | 3.78 ± 0.1 | 2.70 ± 0.1 | 3.94 ± 0.2 | 0.45 ± 0.2 | |
Leaf day 90 | 0 | 76.58 ± 1.0 | 3.73 ± 0.1 | 2.64 ± 0.2 | 3.94 ± 0.2 | 0.30 ± 0.2 |
125 | 75.76 ± 2.0 | 3.66 ± 0.2 | 2.59 ± 0.1 | 3.91 ± 0.2 | 0.34 ± 0.2 | |
250 | 76.53 ± 2.1 | 3.67 ± 0.1 | 2.65 ± 0.2 | 3.97 ± 0.2 | 0.42 ± 0.1 | |
400 | 76.65 ± 1.5 | 3.68 ± 0.1 | 2.60 ± 0.1 | 3.90 ± 0.2 | 0.38 ± 0.2 | |
Leaf day 127 | 0 | 76.74 ± 2.6 | 3.61 ± 0.1 | 2.58 ± 0.1 | 3.96 ± 0.1 | 0.35 ± 0.1 |
125 | 76.66 ± 2.0 | 3.70 ± 0.1 | 2.57 ± 0.1 | 3.90 ± 0.2 | 0.26 ± 0.1 | |
250 | 77.46 ± 1.5 | 3.77 ± 0.1 | 2.72 ± 0.1 | 3.98 ± 0.1 | 0.52 ± 0.1 | |
400 | 76.90 ± 1.0 | 3.73 ± 0.2 | 2.66 ± 0.1 | 3.90 ± 0.2 | 0.38 ± 0.2 | |
Seed | 0 | 9.08 ± 1.2 | 3.12 ± 0.1 | 5.90 ± 0.2 | 17.08 ± 0.1 | 4.30 ± 0.2 |
125 | 9.72 ± 1.0 | 3.01 ± 0.1 | 5.95 ± 0.1 | 17.18 ± 0.2 | 4.32 ± 0.1 | |
250 | 10.32 ± 1.0 | 3.02 ± 0.1 | 5.95 ± 0.1 | 17.11 ± 0.1 | 4.22 ± 0.1 | |
400 | 10.26 ± 1.5 | 2.96 ± 0.1 | 5.99 ± 0.2 | 17.12 ± 0.1 | 4.24 ± 0.2 |
H2O2 Treatments (mM) | 41 Days | 55 Days | 63 Days | 76 Days | 90 Days | 104 Days | 127 Days |
---|---|---|---|---|---|---|---|
Plant height a (cm) | |||||||
0 | 44.94 ± 9.4 | 82.47 ± 17.3 | 121.80 ± 17.6 | 164.91 ± 22.6 | 218.0 ± 32.6 | 251.61 ± 35.0 | 297.0 ± 45.7 |
125 | 45.19 ± 11.2 | 77.25 ± 13.5 | 116.14 ± 15.8 | 158.75 ± 19.7 | 208.63 ± 23.2 | 254.25 ± 35.2 | 295.19 ± 42.0 |
250 | 46.85 ± 8.4 | 82.64 ± 15.5 | 122.05 ± 20.5 | 166.11 ± 27.1 | 213.50 ± 27.1 | 267.33 ± 36.5 | 309.88 ± 45.2 |
400 | 43.86 ± 9.0 | 79.61 ± 17.0 | 120.11 ± 18.4 | 164.62 ± 23.7 | 211.14 ± 26.0 | 274.02 ± 44.0 | 315.37 ± 47.0 |
Stem diameter a (cm) | |||||||
0 | 1.04 ± 0.1 | 1.60 ± 0.1 | 1.83 ± 0.2 | 2.01 ± 0.3 | 2.22 ± 0.3 | 2.40 ± 0.3 | 2.50 ± 0.4 |
125 | 1.03 ± 0.1 | 1.61 ± 0.1 | 1.82 ± 0.2 | 2.00 ± 0.3 | 2.13 ± 0.3 | 2.33 ± 0.4 | 2.43 ± 0.4 |
250 | 1.05 ± 0.1 | 1.64 ± 0.1 | 1.82 ± 0.2 | 2.00 ± 0.2 | 2.20 ± 0.3 | 2.34 ± 0.3 | 2.45 ± 0.3 |
400 | 1.01 ± 0.1 | 1.61 ± 0.1 | 1.86 ± 0.2 | 2.00 ± 0.2 | 2.14 ± 0.2 | 2.31 ± 0.3 | 2.45 ± 0.3 |
Number of leaves | |||||||
0 | 22.83 ± 3.4 | 67.42 ± 22.0 | 89.11 ± 23.0 | 153.42 ± 46.3 | |||
125 | 23.11 ± 5.1 | 67.53 ± 18.0 | 90.00 ± 23.0 | 156.13 ± 26.6 | |||
250 | 24.40 ± 4.8 | 61.00 ± 14.0 | 87.00 ± 24.6 | 153.24 ± 38.0 | |||
400 | 21.50 ± 4.0 | 57.00 ± 17.1 | 83.30 ± 24.5 | 157.00 ± 37.3 | |||
Panicle length a (cm) | |||||||
0 | 102.00 ± 20.0 | ||||||
125 | 96.22 ± 17.4 | ||||||
250 | 94.44 ± 24.4 | ||||||
400 | 102.00 ± 20.2 |
Treatments | Leaf (63 Days) | Leaf (90 Days) | Leaf (127 Days) | Seed | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O2 (mM) | mg AAE * | (% Inh) x | IC50 y | mg AAE * | (% Inh) x | IC50 y | mg AAE * | (% Inh) x | IC50 y | mg AAE * | (% inh) x | IC50 y |
DPPH, expressed in mg of ascorbic acid equivalents/100 g dry matter | ||||||||||||
0 | 472.5 ± 1.5 a | 78.3 ± 1 a | 36 | 288.0 ± 0.8 a | 58.8 ± 1 a | 62.6 | 585.0 ± 3.3 a | 90.2 ± 1 a | 19.9 | 25.0 ± 0.8 a | 17.6 ± 1 a | 102.5 |
125 | 556.4 ± 0.3 b | 87.2 ± 1 b | 24 | 251.8 ± 0.4 b | 55.0 ± 1 b | 67.8 | 510.4 ± 1.0 b | 82.3 ± 2 b | 30.6 | 16.7 ± 0.8 b | 16.8 ± 0 b | 101.7 |
250 | 493.8 ± 3.2 c | 80.6 ± 0 a | 33 | 118.9 ± 1.1 c | 41.0 ± 0 c | 86.9 | 511.9 ± 0.7 b | 82.5 ± 1 b | 30.4 | 32.4 ± 2.4 c | 18.4 ± 1 a | 99.3 |
400 | 392.2 ± 1.0 d | 69.9 ± 1 c | 47.6 | 124.9 ± 0.6 d | 41.6 ± 1 c | 86.0 | 513.2 ± 4.5 b | 82.6 ± 1 b | 30.2 | 26.8 ± 0.4 a | 17.8 ± 0 a | 100.1 |
FRAP, expressed in g of ascorbic acid equivalents/100 g dry matter | ||||||||||||
0 | 2.66 ± 0.0 a | 78.8 ± 1 a | 95.7 | 6.00 ± 0.0 a | 86.0 ± 2 a | 50.1 | 7.00 ± 0.0 a | 88.1 ± 1 a | 36.5 | 0.66 ± 0.0 a | 24.6 ± 0 a | 123.0 |
125 | 3.26 ± 0.0 b | 80.1 ± 0 a | 87.5 | 6.54 ± 0.0 b | 87.1 ± 1 a | 42.8 | 8.57 ± 0.0 b | 91.5 ± 1 b | 15.1 | 0.66 ± 0.0 a | 24.6 ± 0 a | 122.9 |
250 | 2.64 ± 0.0 a | 78.8 ± 1 a | 95.9 | 5.65 ± 0.0 c | 85.2 ± 2 a | 54.9 | 7.10 ± 0.0 c | 88.3 ± 2 a | 35.1 | 0.63 ± 0.0 a | 24.5 ± 0 a | 123.4 |
400 | 2.75 ± 0.0 c | 79.0 ± 2 a | 94.4 | 5.02 ± 0.0 d | 83.9 ± 2 b | 63.5 | 7.68 ± 0.0d | 89.6 ± 1a | 27.2 | 0.59 ± 0.0b | 24.4 ± 1a | 123.9 |
H2O2 Treatments (mM) | |||||||
---|---|---|---|---|---|---|---|
Sample (Days) | 0 | 125 | 250 | 400 | |||
C (%) * | C (%) * | C (%) * | |||||
TFC expressed in mg of gallic acid equivalents/100 g dry matter. | |||||||
Leaf (63 days) | 254.40 ± 2.2 a | 274.17 ± 4.2 b | 8 | 285.91 ± 2.0 c | 12 | 317.48 ± 0.6 d | 25 |
Leaf (90 days) | 373.66 ± 2.9 a | 453.84 ± 2.2 b | 21 | 486.99 ± 5.0 c | 30 | 362.01 ± 3.3 d | −3 |
Leaf (127 days) | 486.41 ± 4.0 a | 586.60 ± 1.6 b | 21 | 438.90 ± 3.4 c | −10 | 435.24 ± 0.0 c | −11 |
Seed | 130.51 ± 1.7 a | 162.47 ± 1.7 b | 24 | 187.92 ± 1.6 c | 44 | 145.90 ± 1.9 d | 12 |
H2O2 Treatments (mM) | |||||||
---|---|---|---|---|---|---|---|
Sample (Days) | 0 | 125 | 250 | 400 | |||
C (%) * | C (%) * | C (%) * | |||||
Condensed tannins expressed in mg of catechin equivalents/100 g dry matter. | |||||||
Leaf (63 days) | 948.65 ± 25.0 a | 1045.72 ± 15.7 b | 10 | 1333.30 ± 9.6 c | 41 | 924.69 ± 7.4 a | −3 |
Leaf (90 days) | 1632.28 ± 8.4 a | 2225.76 ± 46.6 b | 36 | 1495.61 ± 22.5 c | −8 | 1244.73 ± 14.1 d | −24 |
Leaf (127 days) | 1274.26 ± 8.5 a | 1475.17 ± 16.8 b | 16 | 1837.12 ± 12.0 c | 44 | 1518.0 ± 12.0 d | 19 |
Seed | 231.75 ± 6.2 a | 237.27 ± 5.1 a | 2 | 243.75 ± 19.7 a | 5 | 222.55 ± 11.3 a | −4 |
H2O2 Treatments (mM) | |||||||
---|---|---|---|---|---|---|---|
Sample (Days) | 0 | 125 | 250 | 400 | |||
C (%) * | C (%) * | C (%) * | |||||
Anthocyanin expressed in mg of cyanidin-3-glucoside equivalents/100 g dry matter. | |||||||
Leaf (63 days) | 667.54 ± 0.6 a | 875.23 ± 0.6 b | 31 | 840.41 ± 0.5 c | 26 | 814.01 ± 1.1 d | 22 |
Leaf (90 days) | 870.13 ± 1.0 a | 926.40 ± 1.0 b | 6 | 887.38 ± 1.8 c | 2 | 907.52 ± 0.2 d | 4 |
Leaf (127 days) | 832.0 ± 0.6 a | 893.07 ± 0.2 b | 7 | 849.50 ± 0.9 c | 2 | 850.75 ± 0.7 c | 2 |
Seed | 130.65 ± 0.2 a | 127.10 ± 0.6 a | −3 | 132.66 ± 0.6 a | 2 | 167.37 ± 1.5 c | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferriz-Martínez, R.A.; Espinosa-Villarreal, N.; Chávez-Servín, J.L.; Mercado-Luna, A.; de la Torre-Carbot, K.; Serrano-Arellano, J.; Saldaña, C.; García-Gasca, T. Effect of Foliar Application of Hydrogen Peroxide Macroconcentrations on Growth Parameters, Phenolic Compounds and Antioxidant Capacity in the Leaves and Seeds of Amaranthus hypochondriacus L. Plants 2023, 12, 1499. https://doi.org/10.3390/plants12071499
Ferriz-Martínez RA, Espinosa-Villarreal N, Chávez-Servín JL, Mercado-Luna A, de la Torre-Carbot K, Serrano-Arellano J, Saldaña C, García-Gasca T. Effect of Foliar Application of Hydrogen Peroxide Macroconcentrations on Growth Parameters, Phenolic Compounds and Antioxidant Capacity in the Leaves and Seeds of Amaranthus hypochondriacus L. Plants. 2023; 12(7):1499. https://doi.org/10.3390/plants12071499
Chicago/Turabian StyleFerriz-Martínez, Roberto Augusto, Nayeli Espinosa-Villarreal, Jorge Luis Chávez-Servín, Adán Mercado-Luna, Karina de la Torre-Carbot, Juan Serrano-Arellano, Carlos Saldaña, and Teresa García-Gasca. 2023. "Effect of Foliar Application of Hydrogen Peroxide Macroconcentrations on Growth Parameters, Phenolic Compounds and Antioxidant Capacity in the Leaves and Seeds of Amaranthus hypochondriacus L." Plants 12, no. 7: 1499. https://doi.org/10.3390/plants12071499
APA StyleFerriz-Martínez, R. A., Espinosa-Villarreal, N., Chávez-Servín, J. L., Mercado-Luna, A., de la Torre-Carbot, K., Serrano-Arellano, J., Saldaña, C., & García-Gasca, T. (2023). Effect of Foliar Application of Hydrogen Peroxide Macroconcentrations on Growth Parameters, Phenolic Compounds and Antioxidant Capacity in the Leaves and Seeds of Amaranthus hypochondriacus L. Plants, 12(7), 1499. https://doi.org/10.3390/plants12071499