In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Percentage Yield of the 70% Ethanol Extracts
2.2. In Vitro Cytotoxicity
2.3. Qualitative Phytochemical Screening
2.4. Quantitative Estimation of Some Major Phytochemicals
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of the Extracts
3.3. Chemicals and Reagents
3.4. Cytotoxicity Screening
3.4.1. Cell Culture
3.4.2. In Vitro Cytotoxicity Assay
3.4.3. Determination of IC50 Values
3.5. Data Analysis
3.6. Qualitative Phytochemical Analysis of Active Extracts
3.7. Quantitative Phytochemical Analysis
3.7.1. Determination of the Total Phenolics
3.7.2. Determination of the Total Flavonoids
3.7.3. Determination of the Total Terpenoids
3.7.4. Determination of Total Alkaloids
3.7.5. Determination of Total Saponins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Arafa, M.A.; Farhat, K. Colorectal cancer in the Arab world—Screening practices and future prospects. Asian Pac. J. Cancer Prev. 2015, 16, 7425–7430. [Google Scholar] [CrossRef] [Green Version]
- Arokiyaraj, S.; Dinesh Kumar, V.; Elakya, V.; Kamala, T.; Park, S.K.; Ragam, M.; Saravanan, M.; Bououdina, M.; Arasu, M.V.; Kovendan, K.; et al. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.—Potential for malaria vector control. Environ. Sci. Pollut. Res. 2015, 22, 9759–9765. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patra, C.R. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 2016, 8, 12444–12470. [Google Scholar] [CrossRef]
- Mittra, I.; Pal, K.; Pancholi, N.; Shaikh, A.; Rane, B.; Tidke, P.; Kirolikar, S.; Khare, N.K.; Agrawal, K.; Nagare, H.; et al. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin. Ann. Oncol. 2017, 28, 2119–2127. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef]
- McChesney, J.D.; Venkataraman, S.K.; Henri, J.T. Plant natural products: Back to the future or into extinction? Phytochemistry 2007, 68, 2015–2022. [Google Scholar] [CrossRef]
- Al-Eisawi, D. Vegetation of Jordan; Regional Office for Science and Technology for the Arab States: Cairo, Egypt, 1996. [Google Scholar]
- Oran, S.A.; Al-Eisawi, D.M. Check-list of medicinal plants in Jordan. Dirasat 1998, 25, 84–112. [Google Scholar]
- Afifi, F.U.; Kasabri, V.; Abu-Dahab, R. Medicinal plants from Jordan in the treatment of cancer: Traditional uses vs in vitro and in vivo evaluations part 1. Planta Med. 2011, 77, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Salama, M.M.; Ezzat, S.M.; Sleem, A.A. A new hepatoprotective flavone glycoside from the flowers of Onopordum alexandrinum growing in Egypt. Z. Naturforsch. C 2011, 66, 251–259. [Google Scholar] [CrossRef]
- Taban, K.; Eruygur, N.; Üstün, O. Biological activity studies on the aqueous methanol extract of Anchusa undulata L. subsp. hybrida (Ten.) Coutinho. Marmara Pharm. J. 2018, 21, 357–364. [Google Scholar] [CrossRef]
- Kaya, G.I.; Somer, N.U.; Konyalioğlu, S.; Yalcin, H.T.; Yavaşoğlu, N.Ü.K.; Sarikaya, B.; Onur, M.A.L.İ. Antioxidant and antibacterial activities of Ranunculus marginatus var. trachycarpus and R. sprunerianus. Turk. J. Biol. 2010, 34, 139–146. [Google Scholar]
- Sarikurkcu, C.; Zengin, G.; Aktumsek, A.; Ceylan, O. Screening of possible in vitro neuroprotective, skin care, antihyperglycemic, and antioxidative effects of Anchusa undulata L. subsp. hybrida (Ten.) Coutinho from Turkey and its fatty acid profile. Int. J. Food Prop. 2015, 18, 1491–1504. [Google Scholar] [CrossRef]
- Muhammed, A.; Arı, N. Antidiabetic activity of the aqueous extract of Anchusa strigosa Lab in streptozotocin diabetic rats. Int. J. Pharm. 2012, 2, 445–449. [Google Scholar]
- Bardaweel, S.K.; Hudaib, M.M.; Tawaha, K.A.; Bashatwah, R.M. Studies on the in vitro antiproliferative, antimicrobial, antioxidant, and acetylcholinesterase inhibition activities associated with Chrysanthemum coronarium essential oil. Evid.-Based Complement. Altern. Med. 2015, 2015, 790838. [Google Scholar] [CrossRef] [Green Version]
- Chohra, D.; Ferchichi, L.; Cakmak, Y.S.; Zengin, G.; Alsheikh, S.M. Phenolic profiles, antioxidant activities and enzyme inhibitory effects of an Algerian medicinal plant (Clematis cirrhosa L.). S. Afr. J. Bot. 2020, 132, 164–170. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Abu Ghdeib, S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999, 42, 665–672. [Google Scholar] [CrossRef]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef]
- Landoulsi, A.; Roumy, V.; Duhal, N.; Skhiri, F.H.; Rivière, C.; Sahpaz, S.; Neut, C.; Benhamida, J.; Hennebelle, T. Chemical composition and antimicrobial activity of the essential oil from aerial parts and roots of Eryngium barrelieri Boiss. and Eryngium glomeratum Lam. from Tunisia. Chem. Biodivers. 2016, 13, 1720–1729. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Statti, G.A.; Houghton, P.J.; Miljkovic-Brake, A.; Menichini, F. In vitro hypoglycemic and antimicrobial activities of Senecio leucanthemifolius Poiret. Nat. Prod. Res. 2007, 21, 396–400. [Google Scholar] [CrossRef]
- Qasem, J.R. Prospects of wild medicinal and industrial plants of saline habitats in the Jordan valley. Pak. J. Bot. 2015, 47, 551–570. [Google Scholar]
- Al-Quran, S. Taxonomical and pharmacological survey of therapeutic plants in Jordan. J. Nat. Prod. 2008, 1, 10–26. [Google Scholar]
- Al-Khalil, S. A survey of plants used in Jordanian traditional medicine. Int. J. Pharmacogn. 1995, 33, 317–323. [Google Scholar] [CrossRef]
- Agulló-Ortuño, M.T.; Díaz, C.E.; González-Coloma, A.; Reina, M. Structure-dependent cytotoxic effects of eremophilanolide sesquiterpenes. Nat. Prod. Commun. 2017, 12, 663–665. [Google Scholar] [CrossRef] [Green Version]
- Goo, Y.K. Therapeutic Potential of Ranunculus Species (Ranunculaceae): A literature review on traditional medicinal herbs. Plants 2022, 11, 1599. [Google Scholar] [CrossRef]
- Wang, P.; Su, Z.; Yuan, W.; Deng, G.; Li, S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm. Crop. 2012, 3, 99–120. [Google Scholar] [CrossRef] [Green Version]
- Yazdanshenas, H.; Shafeian, E.; Nasiri, M.; Mousavi, S.A. Indigenous knowledge on use values of Karvan district plants, Iran. Environ. Dev. Sustain. 2016, 18, 1217–1238. [Google Scholar] [CrossRef]
- Boik, J. Natural Compounds in Cancer Therapy; Oregon Medical Press: Princeton, MN, USA, 2001; Volume 851. [Google Scholar]
- Youn, U.-J.; Jin, W.-Y.; Song, K.-S.; Seong, Y.-H.; Bae, K.-H. Cytotoxic constituents from the aerial part of Clematis apiifolia L. Korean J. Med. Crop Sci. 2006, 14, 299–302. [Google Scholar]
- Conforti, F.; Marrelli, M.; Statti, G.; Menichini, F. Antioxidant and cytotoxic activities of methanolic extract and fractions from Senecio gibbosus subsp. gibbosus (GUSS) DC. Nat. Prod. Res. 2006, 20, 805–812. [Google Scholar] [CrossRef]
- Zaher, A.M.; Sultan, R.; Ramadan, T.; Amro, A. New antimicrobial and cytotoxic benzofuran glucoside from Senecio glaucus L. Nat. Prod. Res. 2022, 36, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Ferreira, I. The role of phenolic compounds in the fight against cancer—A Review. Anticancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef]
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. 2007, 18, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 2001, 16, S28–S37. [Google Scholar] [CrossRef] [Green Version]
- Kerwin, S.M. Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr. Med. Chem. Agents 2004, 4, 263–272. [Google Scholar] [CrossRef]
- Bachran, C.; Bachran, S.; Sutherland, M.; Bachran, D.; Fuchs, H. Saponins in tumor therapy. Mini Rev. Med. Chem. 2008, 8, 575–584. [Google Scholar] [CrossRef]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as potentially cytotoxic compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Ma, N.; Qiu, F.; Hai, W.L.; Tang, H.F.; Zhang, Y.; Wen, A.D. Triterpenoid saponins from the roots of Clematis argentilucida and their cytotoxic activity. Planta Med. 2014, 80, 942–948. [Google Scholar] [CrossRef]
- Liang, X.; Gao, Y.; Luan, S. Two decades of advances in diterpenoid alkaloids with cytotoxicity activities. RSC Adv. 2018, 8, 23937–23946. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Dodaro, D.; Passalacqua, N.G.; Statti, G.; Menichini, F. In vitro cytotoxic effects of Senecio stabianus Lacaita (Asteraceae) on human cancer cell lines. Nat. Prod. Res. 2009, 23, 1707–1718. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Statti, G.A.; Menichini, F. Jacaranone: A cytotoxic constituent from Senecio ambiguus subsp. ambiguus (Biv.) DC. against renal adenocarcinoma ACHN and prostate carcinoma LNCaP cells. Arch. Pharm. Res. 2007, 30, 701–707. [Google Scholar] [CrossRef]
- Allemang, A.; Mahony, C.; Lester, C.; Pfuhler, S. Relative potency of fifteen pyrrolizidine alkaloids to induce DNA damage as measured by micronucleus induction in HepaRG human liver cells. Food Chem. Toxicol. 2018, 121, 72–81. [Google Scholar] [CrossRef]
- Li, W.-T.; Yang, B.-X.; Zhu, W.; Gong, M.-H.; Xu, X.-D.; Lu, X.-H.; Sun, L.-L.; Tian, J.-K.; Zhang, L. A new indole alkaloidal glucoside from the aerial parts of Clematis terniflora DC. Nat. Prod. Res. 2013, 27, 2333–2337. [Google Scholar] [CrossRef]
- Hai, W.; Cheng, H.; Zhao, M.; Wang, Y.; Hong, L.; Tang, H.; Tian, X. Two new cytotoxic triterpenoid saponins from the roots of Clematis argentilucida. Fitoterapia 2012, 83, 759–764. [Google Scholar] [CrossRef]
- El-Haddad, A.E.; Gendy, A.M.; Amin, M.M.; Alshareef, W.A.; Gizawy, H.A. El Comparative characterization of carob pulp and seeds extracts: HPLC, antimicrobial, anti-inflammatory, and cytotoxic studies. Egypt. J. Chem. 2022, 65, 279–284. [Google Scholar] [CrossRef]
- Evans, W.C. Trease and Evans’ Pharmacognosy E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009; ISBN 0702041890. [Google Scholar]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Kumar, C.B.M.; Mohammed, I. Comparison of total flavanoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Indumathi, C.; Durgadevi, G.; Nithyavani, S.; Gayathri, P.K. Estimation of terpenoid content and its antimicrobial property in Enicostemma litorrale. Int. J. Chem. Tech. Res. 2014, 6, 4264–4267. [Google Scholar]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis; Champman and Hall: London, UK, 1998. [Google Scholar]
- Saxena, R.; Rathore, S.S.; Barnwal, P.; Soni, A.; Sharma, L.; Saxena, S.N. Effect of cryogenic grinding on recovery of diosgenin content in fenugreek (Trigonella foenum-graecum L.) genotypes. Int. J. Seed Spices 2013, 3, 26–30. [Google Scholar]
Rank | Site | Number of Cases | Percent |
---|---|---|---|
1 | Breast | 2403 | 20.8% |
2 | Colorectal | 1260 | 10.9% |
3 | Lung | 1047 | 9.1% |
4 | Urinary Bladder | 572 | 4.9% |
5 | Leukemia | 569 | 4.9% |
Plant Scientific Name | Family | Common Names (English) | Local Name (Arabic) | Traditional Uses | Specimen No. |
---|---|---|---|---|---|
Glebionis segetum L. Fourr. | Asteraceae | Corn Marigold | (Albusbas) | Treatment for fever, nocturnal sweats, spasms, burns, and ulcers. Diuretic and stomachic [23] | 17-06-2021 Ι |
Onopordum alexandrinum Boiss. | Asteraceae | Cotton Thistle | (Atour) | Hepatoprotective [24] | 19-06-2021 Ι |
Phagnalon rupestre L. DC. | Asteraceae | African Fleabane | (Qadaha) | Abdominal pain Joints pain [23,25] | 16-06-2021 Ι |
Senecio leucanthemifolius Poir. | Asteraceae | Eastern Groundsel | (Shykha) | Cancer treatment [26] | 21-06-2021 Ι |
Clematis cirrhosa L. | Ranunculaceae | Evergreen Virgin´s-Bower | (Hublmiskiun) | Skin diseases [19] | 20-06-2021 Ι |
Ranunculus asiaticus L. | Ranunculaceae | Turban Buttercup | (Hawdhan) | Pertussis [27] | 18-06-2021 Ι |
Anchusa strigosa Banks & Sol. | Boraginaceae | Prickly Alkanet | (Humhum) | Astringent for burns and wounds, anti-ulcer, cough, and rheumatic inflammation [23] | 14-06-2021 A |
Anchusa undulata L. | Boraginaceae | Common Alkanet | (Humhum) | Antidiabetic [15] | 14-06-2021 B |
Eryngium glomeratum Lam. | Apiaceae | Clustered eryngo | (Euidalqizm) | Scorpion and snakes bite. Diuretic, renal stones [23,28] | 22-06-2021 Ι |
Lagoecia cuminoides L. | Apiaceae | False Cumin | (Amjiris) | Improving the digestion Bilestone repellent [29] | 15-06-2021 Ι |
Name of the Plant | Yield (%) |
---|---|
Glebionis segetum L. Fourr. | 7.7% |
Onopordum alexandrinum Boiss. | 9.2% |
Phagnalon rupestre L. DC. | 6.2% |
Senecio leucanthemifolius Poir. | 10.4% |
Clematis cirrhosa L. | 23.6% |
Ranunculus asiaticus L. | 16.8% |
Anchusa strigosa Banks & Sol. | 13.6% |
Anchusa undulata L. | 8.4% |
Eryngium glomeratum Lam. | 6.4% |
Lagoecia cuminoides L. | 2% |
Name of the Plant | IC50 Values of Cell Lines (μg/mL) | |
---|---|---|
HT-29 | MCF-7 | |
Glebionis segetum L. Fourr. | 203.90 μg/mL mL ± 17.11 | >100 μg/mL |
Onopordum alexandrinum Boiss. | 120.24 μg/mL ± 3.55 | 234.79 μg/mL ± 10.98 |
Phagnalon rupestre L. DC. | >100 μg/mL | >100 μg/mL |
Senecio leucanthemifolius Poir. | 13.84 μg/mL ± 0.14 | 56.27 μg/mL ± 1.02 |
Clematis cirrhosa L. | 13.28 μg/mL ± 0.69 | >100 μg/mL |
Ranunculus asiaticus L. | 175.94 μg/mL ± 2.25 | 656.47 μg/mL ± 20.77 |
Anchusa strigosa Banks & Sol. | 188.84 μg/mL ± 12.91 | 191.48 μg/mL ± 5.67 |
Anchusa undulata L. | 534.59 μg/mL ± 15.21 | >100 μg/mL |
Eryngium glomeratum Lam. | 68.51 μg/mL ± 3.46 | 173.45 μg/mL ± 5.31 |
Lagoecia cuminoides L. | 617.53 μg/mL ± 7.50 | >100 μg/mL |
Doxorubicin | 0.49 μg/mL ± 0.05 | 0.28 μg/mL ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwad, M.I.; Sabry, M.M.; Gendy, A.M.; El-Dine, R.S.; El Hefnawy, H.M. In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis. Plants 2023, 12, 1626. https://doi.org/10.3390/plants12081626
Alruwad MI, Sabry MM, Gendy AM, El-Dine RS, El Hefnawy HM. In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis. Plants. 2023; 12(8):1626. https://doi.org/10.3390/plants12081626
Chicago/Turabian StyleAlruwad, Manal I., Manal M. Sabry, Abdallah M. Gendy, Riham Salah El-Dine, and Hala M. El Hefnawy. 2023. "In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis" Plants 12, no. 8: 1626. https://doi.org/10.3390/plants12081626
APA StyleAlruwad, M. I., Sabry, M. M., Gendy, A. M., El-Dine, R. S., & El Hefnawy, H. M. (2023). In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis. Plants, 12(8), 1626. https://doi.org/10.3390/plants12081626