Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Z. punctata Extract Preparation and Chemical Characterization
2.2. Chilto Juice Characterization
2.3. Honey Characterization
2.4. Beverage Formulation and Chemical Characterization
2.5. Antioxidant Capacity
2.6. Physicochemical and Flow Properties of Beverage Powder
2.7. Toxicity
3. Material and Methods
3.1. Juice Preparation
3.2. Zuccagnia punctata Extract Preparation
3.3. Honey 12 °Brix Preparation
3.4. Beverage Preparation
3.5. Spray-Drying Process
3.6. Determination of Chemical Composition
3.6.1. Total Polyphenol and Flavonoid Quantification
3.6.2. Reducing and Total Sugar Quantification
3.6.3. HPLC-RID-DAD Analysis
3.7. Antioxidant Activity
3.7.1. ABTS Radical Cation Decolorization Assay
3.7.2. Hydrogen Peroxide (H2O2) Scavenging
3.7.3. 2-deoxy-D-ribose Degradation Assay
3.7.4. Xanthine Oxidase Assay
3.8. Physicochemical Properties
3.8.1. Moisture, Soluble Solid Content and Water Activity
3.8.2. Glass Transition Temperature (Tg)
3.8.3. Superficial Colour
3.8.4. Solubility
3.8.5. Bulk and Compacted Density, Flowability (Carr Index) and Cohesiveness (Hausner Ratio)
3.8.6. Hygroscopicity
3.9. Particle Morphology
3.10. Toxicity
3.10.1. Acute Toxicity
3.10.2. Salmonella typhymurium Assay
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Ramirez, B.A.; Catalan, U.; Pedret, A.; Valls, R.M.; Motilva, M.J.; Rubia, L.; Sola, R. Exploring the effects of phenolic compounds to reduce intestinal damage and improve the intestinal barrier integrity: A systematic review of in vivo animal studies. Clin. Nutr. 2021, 40, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Galvão Frota, E.; Vargas, B.; Cassia-Tonieto, C.; Dos Santos, F.; Bertolin, T. What is the role of phenolic compounds of yerba mate (Ilex paraguariensis) in gut microbiota? Phytochemistry 2022, 203, 113341. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory representation of typicality of Cabernet franc wines related to phenolic composition: Impact of ripening stage and maceration time. Anal. Chim. Acta 2012, 732, 91–99. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Isla, M.I.; Moreno, M.A.; Álvarez, M.; Zampini, I.C. Zuccagnia punctata Cav. Medicinal and Aromatic Plants of South America Volume 2: Argentina, Chile and Uruguay; Máthé, Á., Bandoni, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 537–551. ISBN 978-3-030-62817-8. [Google Scholar]
- Carabajal, M.P.A.; Perea, M.C.; Isla, M.I.; Zampini, I.C. The use of Jarilla native plants in a Diaguita-Calchaquí indigenous community from northwestern Argentina: An ethnobotanical, phytochemical and biological approach. J. Ethnopharmacol. 2020, 247, 112258. [Google Scholar] [CrossRef]
- Carabajal, M.P.A.; Isla, M.I.; Borsarelli, C.D.; Zampini, I.C. Infuence of in vitro gastro-duodenal digestion on the antioxidant activity of single and mixed three “Jarilla” species infusions. J. Herb. Med. 2020, 19, 100296. [Google Scholar] [CrossRef]
- Moreno, M.A.; Gómez-Mascaraque, L.; Arias, M.; Zampini, I.C.; Sayago, J.E.; Pino Ramos, L.L.; Schmeda-Hirschmann, G.; López-Rubio, A.; Isla, M.I. Electrosprayed chitosan microcapsules as delivery vehicles for vaginal phytoformulations. Carbohydr. Polym. 2018, 201, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.A.; Córdoba, S.; Zampini, I.C.; Mercado, M.I.; Ponessa, G.; Sayago, J.E.; Pino Ramos, L.L.; Schmeda-Hirschmann, G.; Isla, M.I. Argentinean Larrea dry extracts with potential use in vaginal candidiasis. Nat. Prod. Commun. 2018, 13, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Nuño, G.; Alberto, M.R.; Arena, M.E.; Zampini, I.C.; Isla, M.I. Effect of Zuccagnia punctata Cav. (Fabaceae) extract on pro-inflammatory enzymes and on planktonic cells and biofilm from Staphylococcus aureus. Toxicity studies. Saudi J. Biol. Sci. 2018, 25, 1713–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roco, J.; Alarcón, G.; Medina, M.; Zampini, I.C.; Isla, M.I.; Jérez, S. Oral administration of Zuccagnia punctata extract improves lipid profile, reduces oxidative stress and prevents vascular dysfunction in hypercholesterolemic rabbits. Phytomedicine 2018, 48, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabajal, M.P.A.; Isla, M.I.; Zampini, I.C. Evaluation of antioxidant and antimutagenic activity of herbal teas from native plants used in traditional medicine in Argentina. S. Afr. J. Bot. 2017, 110, 258–265. [Google Scholar] [CrossRef]
- Roco, J.; Alarcón, G.; Sierra, L.; Zampini, I.C.; Isla, M.I.; Jérez, S. Beneficial effects of hydroalcoholic extract and flavonoids from Zuccagnia punctata in a rabbit model of vascular dysfunction induced by high cholesterol diet. Med. Chem. Res. 2017, 26, 2336–2344. [Google Scholar] [CrossRef]
- Butassi, E.; Svetaz, L.A.; Ivancovich, J.J.; Feresin, G.E.; Tapia, A.; Zacchino, S.A. Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. And Larrea nitida Cav. Extracts in clinical isolates of Candida albicans and Candida glabrata. Phytomedicine 2015, 22, 578–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Almeida, R.E.; Alberto, M.R.; Morgan, P.G.; Sedensky, M.M.; Isla, M.I. Effect of structurally related flavonoids from Zuccagnia punctata Cav. On Caenorhabditis elegans. Acta Parasitol. 2015, 60, 164–172. [Google Scholar] [CrossRef]
- Moreno, M.A.; Nuño, G.; Cuello, A.S.; Sayago, J.E.; Alberto, M.R.; Zampini, I.C.; Isla, M.I. Antiinflammatory, antioxidant and antimicrobial activity characterization and toxicity studies of flowers of “Jarilla”, a medicinal shrub from Argentina. Nat. Prod. Commun. 2015, 6, 991–994. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.A.; Nuño, G.; Cuello, A.S.; Zampini, I.C.; Mercado, M.; Ponessa, G.; Sayago, J.E.; Isla, M.I. Histochemical localization and characterization of chalcones in foliar surface of Zuccagnia punctata Cav. Insight into their physiological role. Phytochem. Lett. 2015, 13, 134–140. [Google Scholar] [CrossRef]
- Nuño, G.; Alberto, M.R.; Zampini, I.C.; Cuello, A.S.; Ordoñez, R.; Sayago, J.E.; Baroni, V.; Wunderlin, D.; Isla, M.I. The effect of Zuccagnia punctata Cav, an Argentina medicinal plant, on virulence factors from Candida species. Nat. Prod. Commun. 2014, 9, 933–936. [Google Scholar] [CrossRef] [Green Version]
- Chieli, E.; Romiti, N.; Zampini, I.C.; Garrido, G.; Isla, M.I. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter. J. Ethnopharmacol. 2012, 144, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, S.L.; Cortadi, A.; Juárez, M.A.; Petenatti, E.; Tomi, F.; Casanova, J.; van Baren, C.M.; Zacchino, S.; Vila, R. (−)-5,6-dehydrocamphor from the antifungal essential oil of Zuccagnia punctata. Phytochem. Lett. 2012, 5, 194–199. [Google Scholar] [CrossRef]
- Zampini, I.C.; Villena, J.; Salva, S.; Herrera, M.; Isla, M.I.; Álvarez, S. Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: In vitro and in vivo studies. J. Ethnopharmacol. 2012, 140, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.B.; González, M.; Lima, B.; Svetaz, L.; Sánchez, M.; Zacchino, S.; Feresin, G.; SchmedaHirschmann, G.; Palermo, J.; Wunderlin, D.; et al. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: Phytochemical characterization and antifungal activity. J. Agric. Food. Chem. 2010, 58, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Morán Vieyra, F.; Boggetti, H.; Zampini, I.; Ordoñez, R.; Isla, M.I.; Álvarez, R.; De Rosso, V.; Mercadante, A.; Borsarelli, C. Singlet oxygen quenching and radical scavenging capacities of structurally related flavonoids present in Zuccagnia punctata Cav. Free Radic. Res. 2009, 43, 553–564. [Google Scholar] [CrossRef]
- Zampini, I.C.; Villarini, M.; Moretti, M.; Dominici, L.; Isla, M.I. Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav. J. Ethnopharmacol. 2008, 115, 330–335. [Google Scholar] [CrossRef]
- Svetaz, L.; Agüero, M.B.; Álvarez, S.; Luna, L.; Feresin, G.; Derita, M.; Tapia, A.; Zacchino, S. Antifungal activity of chalcones from Zuccagnia punctata Cav. Acting against clinically important fungi and studies of mechanism of action. Planta Med. 2007, 73, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Zampini, I.C.; Vattuone, M.A.; Isla, M.I. Antibacterial activity of Zuccagnia punctata Cav. Ethanolic extracts. J. Ethnopharmacol. 2005, 102, 450–456. [Google Scholar] [CrossRef]
- Zacchino, S. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J. Agric. Food Chem. 2004, 52, 3297–3300. [Google Scholar] [CrossRef]
- Ortega, C.A.; María, A.O.M.; Giordano, O.S.; Gianello, J.C. Effects of Zuccagnia punctata on the gastrointestinal tract in rats and mice. Phytotherapy Res. 2003, 17, 404–406. [Google Scholar] [CrossRef]
- Ortega, C.A.; María, A.O.M.; Gianello, J.C. Chemical components and biological activity of Bidens subalternans, B. aurea (Astereaceae) and Zuccagnia punctata (Fabaceae). Molecules 2000, 5, 465–467. [Google Scholar] [CrossRef] [Green Version]
- Prohens, J.; Nuez, F. The tamarillo (Cyphomandra betacea). Small Fruits Rev. 2001, 1, 43–68. [Google Scholar] [CrossRef]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y. Tamarillo (Solanum betaceum Cav.): A review of physicochemical and bioactive properties and potential applications. Food Rev. Int. 2020, 38, 1343–1367. [Google Scholar] [CrossRef]
- Rivas, M.; Gurni, A.; Vignale, D. Caracterizacion micrográfica de Solanum betaceum Cav. (Solanaceae), un cultivo andino medicinal. In Avances Sobre Plantas Medicinales Andinas; Vignale, N.D., Pochetino, M.L., Eds.; CYTED: Cambridge, UK, 2009; pp. 207–218. [Google Scholar]
- Orqueda, M.E.; Rivas, M.; Zampini, I.C.; Alberto, M.R.; Torres, S.; Cuello, S.; Sayago, J.; Thomas-Valdes, S.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; et al. Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress. Food Chem. 2017, 216, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Orqueda, M.E.; Torres, S.; Zampini, I.C.; Cattaneo, F.; Di Pardo, A.F.; Valle, E.M.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G.; Isla, M.I. Integral use of Argentinean Solanum betaceum red fruits as functional food ingredient to prevent metabolic syndrome: Effect of in vitro simulated gastroduodenal digestion. Heliyon 2020, 6, e03387. [Google Scholar] [CrossRef] [Green Version]
- Orqueda, M.E.; Torres, S.; Verón, H.; Pérez, J.; Rodriguez, F.; Zampini, I.C.; Isla, M.I. Physicochemical, microbiological, functional and sensory properties of frozen pulp of orange and orange-red chilto (Solanum betaceum Cav.) fruits. Sci. Hortic. 2021, 276, 109736. [Google Scholar] [CrossRef]
- Vasco, C.; Avila, J.; Ruales, J.; Svanberg, U.; Kamal-Eldin, A. Physical and chemical characteristics of golden-yellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). Int. J. Food Sci. Nutr. 2009, 60, 278–288. [Google Scholar] [CrossRef]
- Diep, T.T.; Pook, C.; Yoo, M.J.Y. Physicochemical properties and proximate composition of tamarillo (Solanum betaceum Cav.) fruits from New Zealand. J. Food Compos. Anal. 2020, 92, 103563. [Google Scholar] [CrossRef]
- Diep, T.T.; Pook, C.; Rush, E.C.; Yoo, M.J.Y. Quantification of carotenoids, α-tocopherol, and ascorbic acid in amber, mulligan, and laird’s large cultivars of New Zealand tamarillos (Solanum betaceum Cav.). Foods 2020, 9, 769. [Google Scholar] [CrossRef]
- Acosta-Quezada, P.G.; Raigón, M.D.; Riofrío-Cuenca, T.; García-Martínez, M.D.; Plazas, M.; Burneo, J.I.; Prohens, J. Diversity for chemical composition in a collection of different varietal types of tree tomato (Solanum betaceum Cav.), an Andean exotic fruit. Food Chem. 2015, 169, 327–335. [Google Scholar] [CrossRef]
- Espin, S.; Gonzalez-Manzano, S.; Taco, V.; Poveda, C.; Ayuda-Durán, B.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chem. 2016, 194, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Diep, T.T.; Yoo, M.J.Y.; Pook, C.; Sadooghy-Saraby, S.; Gite, A.; Rush, E. Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.). Foods 2021, 10, 2212. [Google Scholar] [CrossRef] [PubMed]
- Wrolstad, R.E.; Heatherbell, D.A. Identification of anthocyanins and distribution of flavonoids in tamarillo fruit (Cyphomandra betaceae (Cav.) Sendt.). J. Sci. Food Agric. 1974, 25, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Mendez, D.; Martínez-Abad, A.; Zampini, I.C.; Torres, S.; Isla, M.I.; Lopez-Rubio, A.; Fabra, M.J. Feasibility of active biobased films produced using red chilto wastes to improve the protection of fresh salmon fillets via a circular economy approach. Food Hydrocoll. 2022, 133, 107888. [Google Scholar] [CrossRef]
- Torres, A.; Guinand, J.; Pérez, S. Development of an energy drink including tree tomato (Solanum betaceum) pulp. Rev. Venez. Cienc. Tecnol. Aliment. 2015, 6, 57–68. [Google Scholar]
- Benavides Arévalo, J.F.; Lopera Pérez, Y.E.; Rojas, J. Production of an effervescent powder from Solanum betaceum fruit having enhanced antioxidant properties. J. Food Nutr. Res. 2021, 9, 108–113. [Google Scholar] [CrossRef]
- Fernandino, C.M.; Nepomuceno, A.T.; Fonseca, H.C.; Bastos, R.A.; Lima, J.P.D. Physicochemical properties of tamarillo pulp (Solanum betaceum) and its applicability in the production of ice cream. Braz. J. Food Technol. 2021, 24, e2020090. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wadhwa, S.S.; Waterhouse, G.I.N. Spray-drying microencapsulation of polyphenol bioactives: A comparative study using different natural fibre polymers as encapsulants. Food Biopr. Technol. 2013, 6, 2376–2388. [Google Scholar] [CrossRef]
- Patel, R.P.; Patel, M.P.; Suthar, A.M. Spray drying technology: An overview. J. Indian Inst. Sci. 2009, 2, 44–47. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Bursal, E.; Köksal, E.; Gülçin, I.; Bilsel, G.; Gören, A.C. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food Res. Int. 2013, 51, 66–74. [Google Scholar] [CrossRef]
- Ávila, V.; Bertolotti, S.G.; Criado, S.; Pappano, N.; Debattista, N.; García, N.A. Antioxidant properties of natural flavonoids: Quenching and generation of singlet molecular oxygen. Int. J. Food Sci. Technol. 2001, 36, 25–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Yang, L.; Zu, Y.; Lu, Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct. 2015, 6, 927–931. [Google Scholar] [CrossRef]
- Markovic, S.; Tosovic, J. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids. Food Chem. 2016, 210, 585–592. [Google Scholar] [CrossRef]
- Adomako-Bonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. In Vitro 2017, 40, 248–255. [Google Scholar] [CrossRef]
- Salas, A.L.; Mercado, M.I.; Orqueda, M.E.; Correa Uriburu, F.M.; García, M.E.; Pérez, M.J.; Alvarez, M.A.; Ponessa, G.I.; Maldonado, L.M.; Zampini, I.C.; et al. Zuccagnia-type Propolis from Argentina: A potential functional ingredient in food to pathologies associated to metabolic syndrome and oxidative stress. J. Food. Sci. 2020, 85, 2578–2588. [Google Scholar] [CrossRef]
- De la Rocha, N.; María, A.O.M.; Gianello, J.C.; Pelzer, L. Cytoprotective effects of chalcones from Zuccagnia punctata and melatonin on gastroduodenal tract in rats. Pharmacol. Res. 2003, 48, 97–99. [Google Scholar] [CrossRef]
- Codigo alimentario Argentino Argentino, Capítulo XII. Bebidas Analcoholicas. Bebidas Hídricas, Agua y Agua Gasificada. 2010. Available online: https://alimentosargentinos.magyp.gob.ar/HomeAlimentos/Legislacion%20Alimentaria/ultimas%20modificaciones/Capitulo_XII.pdf (accessed on 16 January 2023).
- D’Angelo, M.; Zanor, M.I.; Sance, M.; Cortina, P.R.; Boggio, S.B.; Asprelli, P.; Carrari, F.; Santiago, A.N.; Asís, R.; Peralta, I.E.; et al. Contrasting metabolic profiles of tasty tomato fruit of the Andean varieties in comparison with commercial ones. J. Sci. Food Agric. 2018, 98, 4128–4134. [Google Scholar] [CrossRef] [Green Version]
- Can, Z.; Yildiz, O.; Sahin, H.; Turumtay, E.A.; Silici, S.; Kolayli, S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Isla, M.I.; Craig, A.; Ordoñez, R.; Zampini, I.C.; Sayago, J.; Bedascarrasbure, E.; Alvarez, A.; Salomón, V.; Maldonado, L.M. Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT Food Sci. Technol. 2011, 44, 1930. [Google Scholar] [CrossRef]
- Yildiz, R.; Maskan, M. Optimization of a green tea beverage enriched with honey and bee pollen. Int. J. Gastron. Food Sci. 2022, 30, 100597. [Google Scholar] [CrossRef]
- Leite, I.B.; Magalhães, C.D.; Monteiro, M.; Fialho, E. Addition of Honey to an Apple and Passion Fruit Mixed Beverage Improves Its Phenolic Compound Profile. Foods 2021, 10, 1525. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Nithyanandam, R.; Sarbatly, R. A critical review on the spray drying of fruit extract: Effect of additives on physicochemical properties. Crit. Rev. Food Sci. Nutr. 2014, 54, 449–473. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Sotiles, A.; Farias, F.; Oliveira, G.; Mitterer-Daltoa, M.; Masson, M. Full physicochemical characterization of malic acid: Emphasis in the potential as food ingredient and application in pectin gels. Arab. J. Chem. 2020, 13, 9118–9129. [Google Scholar] [CrossRef]
- Khan, N.; Abdulbaqi, I.; Darwis, Y.; Aminu, N.; Chan, S. A stability-indicating HPLC-UV method for the quantification of anthocyanin in Roselle (Hibiscus Sabdariffa L.) spray-dried extract, oral powder, and lozenges. Cell 2022, 8, e09177. [Google Scholar] [CrossRef] [PubMed]
- Righi da Rosa, J.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Cezimbra Weis, G.C.; Rychecki Hecktheuer, L.H.; Muller, E.I.; Ragagnin de Menezes, C.; Severo da Rosa, C. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2018, 89, 742–748. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Pallet, D.; Brat, P.; Hubinger, M.D. Physicochemical and morphological characterization of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. Int. J. Food Sci. Technol. 2009, 44, 1950–1958. [Google Scholar] [CrossRef]
- Gagneten, M.; Corfield, R.; Gomez Mattson, M.; Sozzi, A.; Leiva, G.; Salvatori, D.; Schebor, C. Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technol. 2019, 342, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Patel, K.C. Manufacturing better quality food powders from spray drying and subsequent treatments. Dry. Technol. 2008, 26, 1313–1318. [Google Scholar] [CrossRef]
- Franceschinis, L.; Salvatori, D.M.; Sosa, N.; Schebor, C. Physical and functional properties of blackberry freeze- and spray-dried powders. Dry. Technol. 2014, 32, 197–207. [Google Scholar] [CrossRef]
- Sette, P.; Garrido Makinistian, F.; Maturano, C.; Salvatori, D. Particulate systems from maqui (Aristotelia chilensis) wastes to be used as nutraceutics or high value-added ingredients. Dry. Technol. 2022, 40, 2669–2684. [Google Scholar] [CrossRef]
- Carabajal, A.M.P.; Piloto-Ferrer, J.; Nicollela, H.D.; Squarisi, I.S.; Prado Guissone, A.P.; Esperandim, T.R.; Crispim Tavares, D.; Isla, M.I.; Zampini, I.C. Antigenotoxic, antiproliferative and antimetastatic properties of a combination of native medicinal plants from Argentina. J. Ethnopharm. 2020, 267, 113479. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Api. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Somogyi, M. A new reagent for the determination of sugars. J. Biol. Chem. 1945, 160, 61–68. [Google Scholar] [CrossRef]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Chobot, V. Simultaneous detection of pro- and antioxidative effects in the variants of the deoxyribose degradation assay. J. Agric. Food Chem. 2010, 58, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Zampini, I.C.; Alberto, M.R.; Isla, M.I. Prosopis nigra mesocarp fine flour, a source of phytochemicals with potential effect on enzymes linked to metabolic syndrome, oxidative stress, and inflammatory process. J. Food Sci. 2018, 83, 1454–1462. [Google Scholar] [CrossRef]
- Gomez Mattson, M.; Sozzi1, A.; Corfield, R.; Gagneten, M.; Franceschinis, L.; Schebor, C.; Salvator, D. Colorant and antioxidant properties of freeze-dried extracts from wild berries: Use of ultrasound-assisted extraction method and drivers of liking of colored yogurts. J. Food Sci. Technol. 2022, 59, 944–955. [Google Scholar] [CrossRef]
- Gallo, L.; Ramırez-Rigo, M.; Pina, J.; Bucala, V. A Comparative Study of Spray-Dried Medicinal Plant Aqueous Extracts. Drying Performance and Product Quality. Chem. Eng. Res. Des. 2015, 104, 681–694. [Google Scholar] [CrossRef]
- Svensson, B.M.; Mathiasson, L.; Martensson, L.; Bergatröm, S. Artemia salina as test organism for assessment of acute toxicity of leachate water from landfills. Environ. Monit. Assess. 2005, 102, 309–321. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versión 2015. Grupo InfoStat. FCA, Universidad Nacional de Córdoba. Available online: https://www.infostat.com.ar/ (accessed on 12 December 2022).
Red Chilto Juice | Z. punctata Extract | Honey 12 °Brix | |
---|---|---|---|
Total sugars (mg GE/mL) | 79.43 ± 3.50 | 5.82 ± 0.10 | 151.52 ± 3.28 |
Reducing sugars (mg GE/mL) | 56.69 ± 2.06 | 5.88 ± 0.04 | 143.75 ± 1.45 |
Total phenolic compounds (mgGAE/mL) | 1.02 ± 0.01 | 6.68 ± 0.22 | 0.03 ± 0.01 |
Total Flavonoids (mg QE/mL) | 0.66 ± 0.02 | 12.10 ± 0.06 | ND |
Condensed tannins (mg PB2E/mL) | 1.79 ± 0.02 | 38.14 ± 1.60 | ND |
Hydrolysable tannins (ug/mL) | 4.67 ± 0.06 | 14.38 ± 0.05 | ND |
Anthocyanins (mg C-3GE/mL) | 0.17 ± 0.01 | ND | ND |
2′, 4′-dihydroxy-3′-methoxy chalcone (µg/mL) | - | 11.28 ± 0.04 | - |
2′, 4′-dihydroxychalcone (µg/mL) | - | 23.22 ± 0.04 | - |
3-caffeoylquinic acid (µg/mL) | 33.67 ± 0.03 | - | - |
Rosmarinic acid(µg/mL) | 73.62 ± 0.02 | - | - |
Spray-Dried Beverage | ||
---|---|---|
DE 15 | DE 10 | |
Total sugars (g GE/g powder) | 1.81 ± 0.01 b | 1.08 ± 0.03 a |
Reducing sugars (g GE/g powder) | 0.60 ± 0.03 a | 0.56 ± 0.02 a |
Glucose mg/g powder | 38.00± 0.20 b | 30.00 ± 1.00 a |
Fructose mg/g powder | 50.50 ± 0.80 b | 40.00 ± 2.00 a |
Sucrose mg/g powder | 80.00 ± 3.00 b | 65.00 ± 2.00 a |
Total proteins (mg ASB/g powder) | 2.02 ± 0.02 a | 2.26 ± 0.05 a |
Citric acid (mg/g powder) | 5.40 ± 0.03 b | 3.10 ± 0.05 a |
Malic acid (mg/g powder) | 1.10 ± 0.08 a | 0.90 ± 0.01 a |
Total phenolic (mgGAE/g powder) | 2.92 ± 0.05 a | 2.89 ± 0.07 a |
Flavonoids (mg QE/g powder) | 4.57 ± 0.19 b | 3.55 ± 0.14 a |
Condensed tannins (mg PB2E/g powder) | 0.84 ± 0.08 a | 0.96 ± 0.06 a |
Anthocyanins (mg C-3GE/g powder) | 0.07 ± 0.01 a | 0.09 ± 0.01 a |
Antioxidant Activity | ||||
---|---|---|---|---|
ABTS•+ | H2O2 | HO• | XOD | |
Spray-Dried Beverage | SC50 (µg GAE/mL) | SC50 (µg GAE/mL) | SC50 (µg GAE/mL) | IC50 (µg GAE/mL) |
DE 15 | 3.29 ± 0.08 b | 17.00 ± 0.85 a | 32.82 ± 1.64 a | 114.43 ± 0.92 b |
DE 10 | 3.59 ± 0.02 b | 29.00 ± 1.45 b | 41.05 ± 2.05 b | 91.35 ± 0.86 a |
Spray-Dried Beverage | ||
---|---|---|
Properties | DE 15 | DE 10 |
aw | 0.248 ± 0.001 a | 0.227 ± 0.002 a |
Moisture (%) | 6.030 ± 0.083 b | 5.070 ± 0.037 a |
pH | 4.20 a | 4.15 a |
Total soluble solid (°Brix at 25 °C) | 11 a | 11 a |
L* | 82.65 ± 0.48 a | 82.74 ± 0.62 a |
a* | 7.45 ± 0.28 a | 7.64 ± 0.22 a |
b* | 12.19 ± 0.27 b | 8.91 ± 0.21 a |
Chroma | 14.28 ± 0.36 b | 11.74 ± 0.29 a |
Hue angle | 58.55 ± 0.53 b | 49.39 ± 0.34 a |
Bulk density (g/mL) | 0.370 ± 0.005 a | 0.382 ± 0.008 a |
Compacted density (g/mL) | 0.505 ± 0.015 a | 0.509 ± 0.010 a |
Hausner ratio | 1.365 ± 0.055 a | 1.333 ± 0.010 a |
Carr Index | 26.667 ± 0.15 a | 25.000 ± 0.015 a |
Tg (°C) | 30.3 ± 1 a | 30.4 ± 1 a |
Hygroscopicity (g H2O/100 g DW) | 26.69 ± 0.70 a | 26.33 ± 0.41 a |
Solubility | 97.55 ± 0.49 b | 96.95 ± 0.21 a |
D10 (µm) | 5.62 ± 0.20 a | 6.25 ± 0.45 b |
D50 (µm) | 9.86 ± 0.26 a | 11.44 ± 0.94 b |
D90 (µm) | 25.55 ± 2.95 a | 86.26 ± 6.75 b |
Span | 2.02 | 6.99 |
Treatment | Vol/Concentration | n◦ Revertant TA98/Plate | n◦ Revertant TA100/Plate |
---|---|---|---|
Solvent control µL | 100 | 38 ± 2 a | 111 ± 4 a |
4-nitro-o-phenylendiamine µg/plate | 40 | 1488 ± 59 b | 960 ± 27 b |
Zuccagnia punctata extract µg/plate | 125 | 32 ± 3 a | 115 ± 3 a |
250 | 31 ± 3 a | 120 ± 3 a | |
500 | 33 ± 4 a | 111 ± 2 a | |
Red chilto juice µg/plate | 125 | 17 ± 2 a | 97 ± 5 a |
250 | 19 ± 5 a | 102 ± 5 a | |
500 | 18 ± 2 a | 126 ± 5 a | |
DE 15 µg/plate | 125 | 28 ± 4 a | 120 ± 5 a |
250 | 31 ± 4 a | 128 ± 3 a | |
500 | 41 ± 2 a | 124 ± 2 a | |
DE 10 µg/plate | 125 | 28 ± 4 a | 123 ± 4 a |
250 | 31 ± 4 a | 131 ± 4 a | |
500 | 50 ± 3 a | 123 ± 3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa Uriburu, F.M.; Zampini, I.C.; Maldonado, L.M.; Gómez Mattson, M.; Salvatori, D.; Isla, M.I. Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds. Plants 2023, 12, 1646. https://doi.org/10.3390/plants12081646
Correa Uriburu FM, Zampini IC, Maldonado LM, Gómez Mattson M, Salvatori D, Isla MI. Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds. Plants. 2023; 12(8):1646. https://doi.org/10.3390/plants12081646
Chicago/Turabian StyleCorrea Uriburu, Florencia María, Iris Catiana Zampini, Luis Maria Maldonado, Milagros Gómez Mattson, Daniela Salvatori, and María Inés Isla. 2023. "Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds" Plants 12, no. 8: 1646. https://doi.org/10.3390/plants12081646
APA StyleCorrea Uriburu, F. M., Zampini, I. C., Maldonado, L. M., Gómez Mattson, M., Salvatori, D., & Isla, M. I. (2023). Powdered Beverage from Native Plants from Argentina (Zuccagnia punctata and Solanum betaceum) Obtained by Spray-Drying: A Promising Source of Antioxidant Compounds. Plants, 12(8), 1646. https://doi.org/10.3390/plants12081646