Nitrogen Use Efficiency in an Agrisilviculture System with Gliricidia sepium in the Cerrado Region
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nitrogen Use by Corn in Agrisilvicultural System with G. sepium
2.2. Nitrogen Use by P. maximum cv. Massai Intercropped with Corn in an Agrisilvicultural System with G. sepium
2.3. Nitrogen Use by the Crop Components of the Agrisilvicultural System (SYS) with G. sepium, Corn and P. maximum
2.4. Return of N to the Soil from the Plant-Derived N from Fertilizer and Soil in an Agrisilvicultuiral System with G. sepium
2.5. Soil Total (STN) and Available Nitrogen (SAN) in Agrisilvicultural System with Different Population Densities of G. sepium
2.6. Corn and Grass Yields in Agrisilvicultural Systems with Different Densities of G. sepium
3. Materials and Methods
3.1. Experimental Area
3.2. History and Experimental Design
3.3. Soil and Plant Sampling and Sample Preparation
3.4. Determination of Total N in Soil
3.5. Analysis of Available N in Soil
3.6. Study with 15N-Enriched Fertilizer
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, G.S.; Oliveira, P.; Novaes, R.M.L.; Pereira, S.E.M.; Nicodemo, M.L.F.; Sena, A.L.; Belchior, E.B.; Almeida, M.R.M.; Santi, A.; Wruck, F.J. Avaliação de Impactos Ambientais de Sistemas de Integração Lavoura-Pecuária-Floresta Conforme Contexto de Adoção; Embrapa Informação Tecnológica: Brasilia, Brazil, 2017; p. 38. (In Portuguese) [Google Scholar]
- Barreto, A.C.; Chaer, G.M.; Fernandes, M.F. Hedgerow pruning frequency effects on soil quality and maize productivity in alley cropping with Gliricidia sepium in Northeastern Brazil. Soil Tillage Res. 2012, 120, 112–120. [Google Scholar] [CrossRef]
- Makumba, W.; Akinnifesi, F.K.; Janssen, B.H. Spatial rooting patterns of gliricidia, pigeon pea and maize intercrops and effect on profile soil N and P distribution in southern Malawi. Afr. J. Agric. Res. 2009, 4, 278–288. [Google Scholar]
- Wolz, K.J.; DeLucia, E.H. Alley cropping: Global patterns of species composition and function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- Marin, A.M.P.; Menezes, R.S.C.; Silva, E.D.; Sampaio, E.V.D.S.B. Effects of Gliricidia sepium on soil nutrients, microclimate and maize yield in an agroforestry system in semi-arid Paraiba, Brazil. Rev. Bras. Ciência Solo 2006, 30, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Beedy, T.L.; Snapp, S.S.; Akinnifesi, F.K.; Sileshi, G.W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 2010, 138, 139–146. [Google Scholar] [CrossRef]
- Siqueira, P.L.; Silva, P.S.; Silva, K.E.; Oliveira, V.R.D.; Dantas, I.M.; Oliveira, F.H. Soil fertility beneath the crown of tree species submitted to planting densities. Rev. Bras. Eng. Agric. Ambient. 2014, 18, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Akinnifesi, F.K.; Makumba, W.; Kwesiga, F.R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 2006, 42, 441–457. [Google Scholar] [CrossRef] [Green Version]
- Makumba, W.; Janssen, B.; Oenema, O.; Akinnifesi, F.K.; Mweta, D.; Kwesiga, F. The long-term effects of a gliricidia–maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties. Agric. Ecosyst. Environ. 2006, 116, 85–92. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Makumba, W.; Sileshi, G.; Ajayi, O.C.; Mweta, D. Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in Southern Malawi. Plant Soil 2007, 294, 203–217. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Ong, C.K.; Maghembe, J.; Black, C.R. Soil water dynamics in cropping systems containing Gliricidia sepium, pigeonpea and maize in southern Malawi. Agrofor. Syst. 2007, 69, 29–43. [Google Scholar] [CrossRef]
- Apolinário, V.X.O.; Dubeux, C.B., Jr.; Lira, M.D.A.; Ferreira, R.L.C.; Mello, A.C.; Coelho, D.L.; Muir, J.P.; Sampaio, E.V.S.B. Decomposition of arboreal legume fractions in a silvopastoral system. Crop Sci. 2016, 56, 1356–1363. [Google Scholar] [CrossRef]
- Apolinário, V.X.O.; Dubeux, J.C.B., Jr.; Lira, M.D.A.; Sampaio, E.V.S.B.; de Amorim, S.O.; Miranda e Silva, N.G.; Muir, J.P. Arboreal legume litter nutrient contribution to a tropical silvopasture. Agron. J. 2016, 108, 2478–2484. [Google Scholar] [CrossRef]
- Garrido, M.S.; Menezes, R.S.C.; Sampaio, E.V.D.S.B.; Marques, T.R.R.; Olszevski, N. Accumulation and apparent recovery of N, P and K after the incorporation of Gliricidia and manure in intercropping during the cultivation of corn–cowpea–cotton. Nut. Cycl. Agroecosyst. 2017, 107, 187–196. [Google Scholar] [CrossRef]
- Valani, G.; Fachin, M.A.; Silva, L.; Bovi, R.; Cooper, M. Soil quality assessments in integrated crop–livestock–forest systems: A review. Soil Use Manag. 2020, 37, 22–36. [Google Scholar] [CrossRef]
- Rowe, E.C.; van Noordwijk, M.; Suprayogo, D.; Hairiah, K.; Giller, K.E.; Cadisch, G. Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. Plant Soil 2001, 235, 167–179. [Google Scholar] [CrossRef]
- Chalk, P.M.; Peoples, M.B.; McNeill, A.M.; Boddey, R.M.; Unkovich, M.J.; Gardener, M.J.; Chen, D. Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: A review of 15N-enriched techniques. Soil Biol. Biochem. 2014, 73, 10–21. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Resck, D.V.S.; Gomes, A.C.; Urquiaga, S. Management systems on nitrogen absorption by corn in an Oxisol in the Cerrado. Pesq. Agropec. Bras. 2005, 40, 279–287. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Vivanco, J.M.; Manter, D.K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl. Soil Ecol. 2016, 107, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Poffenbarger, H.J.; Sawyer, J.E.; Barker, D.W.; Olk, D.C.; Six, J.; Castellano, M.J. Legacy effects of long-term nitrogen fertilizer application on the fate of nitrogen fertilizer inputs in continuous maize. Agric. Ecosyst. Environ. 2018, 265, 544–555. [Google Scholar] [CrossRef] [Green Version]
- Coser, T.R.; Ramos, M.L.G.; Figueiredo, C.C.; Urquiaga, S.; Carvalho, A.M.; Barros, F.V.; Mendonça, M.T. Nitrogen uptake efficiency of maize in monoculture and intercropped with Brachiaria humidicola and Panicum maximum in a dystrophic Red-Yellow Latosol of the Brazilian Cerrado. Crop Pasture Sci. 2016, 67, 47–54. [Google Scholar] [CrossRef]
- Haggar, J.P.; Beer, J.W. Effect on maize growth of the interaction between increased nitrogen availability and competition with trees in alley cropping. Agrofor. Syst. 1993, 21, 239–249. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Zotarelli, L.; Jantalia, C.P.; Boddey, R.M.; Urquiaga, S. Emprego de Isótopos Estáveis Para o Estudo do Carbono e do Nitrogênio no Sistema Solo-Planta. 2005. Available online: https://www.agencia.cnptia.embrapa.br/recursos/biotacap13ID-ClaXOEabVo.pdf (accessed on 12 December 2022). (In Portuguese).
- Rowe, E.C.; Van Noordwijk, M.; Suprayogo, D.; Cadisch, G. Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics. Plant Soil 2005, 268, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Jalonen, R.; Nygren, P.; Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 2009, 32, 1366–1376. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Black, C.R.; Ong, C.K.; Maghembe, J.A. Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agrofor. Syst. 2003, 59, 265–277. [Google Scholar] [CrossRef]
- Ikerra, S.T.; Maghembe, J.A.; Smithson, P.C.; Buresh, R.J. Soil nitrogen dynamics and relationships with maize yields in a gliricidia–maize intercrop in Malawi. Plant Soil 1999, 211, 155–164. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Kang, B.T.; Sanginga, N.; Tijani-Eniola, H. Nitrogen use efficiency and N-competition between Leucaena hedgerows and maize in an alley cropping system. Nut. Cycl. Agroecosyst. 1996, 47, 71–80. [Google Scholar] [CrossRef]
- Coser, T.R.; Figueiredo, C.C.; Jovanovic, B.; Moreira, T.N.; Leite, G.G.; Cabral Filho, S.L.S.; Kato, E.; Malaquias, J.V.; Marchão, R.L. Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agric. Syst. 2018, 166, 184–195. [Google Scholar] [CrossRef]
- Schroth, G.; Zech, W. Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-deciduous rainforest zone of West Africa. Plant Soil 1995, 170, 297–306. [Google Scholar] [CrossRef]
- Chirwa, P.W.; Black, C.R.; Ong, C.K.; Maghembe, J. Nitrogen dynamics in cropping systems in southern Malawi containing Gliricidia sepium, pigeonpea and maize. Agrofor. Syst. 2006, 67, 93–106. [Google Scholar] [CrossRef]
- Villanueva-López, G.; Martínez-Zurimendi, P.; Ramírez-Avilés, L.; Casanova-Lugo, F.; Jarquín-Sánchez, A. Influence of livestock systems with live fences of Gliricidia sepium on several soil properties in Tabasco, Mexico. Cienc. Investig. Agrar. 2014, 41, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.L.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T. Brazilian System of Soil Classification, 5th ed.; Embrapa: Brasília, Brazil, 2018; Available online: https://www.redeilpf.org.br/arquivos/SiBCS-2018-ISBN-9788570358219-english.pdf (accessed on 16 August 2022).
- IUSS Working Group WRB. World Reference Base for Soil Resources. In World Soil Resources Report 103; FAO: Rome, Italy, 2006. [Google Scholar] [CrossRef]
- Sousa, D.M.G.; Lobato, E. Cerrado—Correção do solo e Adubação [Cerrado—Soil Correction and Fertilization]; Embrapa Informação Tecnológica: Brasília, Brazil, 2004; p. 416. (In Portuguese) [Google Scholar]
- IAEA—International Atomic Energy Agency. Use of Isotope and Radiation Methods in Soil and Water Management and Crop Nutrition; International Atomic Energy Agency: Vienna, Austria, 2001. [Google Scholar]
- SAS—System for Windows. Release 9.3; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
Npdf (kg N ha−1) | ||||||
---|---|---|---|---|---|---|
Corn grains | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 30.46 | bA | 48.07 | aA | 44.39 | abA |
B | 10.23 | bB | 31.43 | aB | 18.60 | abB |
Corn Straw | ||||||
667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | ||||
A | 30.77 | aA | 39.93 | aA | 37.52 | aA |
B | 27.98 | aA | 35.26 | aA | 38.81 | aA |
NFRE (%) | ||||||
Corn grains | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 29.01 | bA | 45.78 | aA | 42.27 | abA |
B | 9.74 | bB | 29.93 | aB | 17.71 | abB |
Corn Straw | ||||||
667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | ||||
A | 29.30 | aA | 38.03 | aA | 35.74 | aA |
B | 33.44 | aA | 33.58 | aA | 36.96 | aA |
Npds (kg N ha−1) | ||||||
Corn grains | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 16.50 | bA | 27.03 | aA | 26.42 | abA |
B | 7.15 | bA | 19.18 | aA | 11.56 | abB |
Corn Straw | ||||||
667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | ||||
A | 27.00 | aA | 19.45 | aA | 21.52 | aA |
B | 18.07 | aA | 18.79 | aA | 22.67 | aA |
Npdf (kg N ha−1) | ||||||
---|---|---|---|---|---|---|
P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 2.14 | aA | 5.45 | aA | 1.74 | aA |
B | 3.10 | aA | 1.89 | aA | 1.69 | aA |
NFRE (%) | ||||||
P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 2.04 | aA | 5.19 | aA | 1.66 | aA |
B | 2.95 | aA | 1.80 | aA | 1.61 | aA |
Npds (kg N ha−1) | ||||||
P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 6.39 | bA | 16.22 | aA | 4.47 | bA |
B | 10.77 | aA | 12.91 | aA | 6.33 | aA |
Npdf-SYS (kg N ha−1) | ||||||
---|---|---|---|---|---|---|
Corn grains + straws + P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 63.37 | aA | 93.45 | bA | 83.66 | abA |
B | 41.30 | aA | 68.58 | aB | 59.09 | aA |
NFRE-SYS (%) | ||||||
Corn grains + straws + P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 60.35 | aA | 89.00 | bA | 79.67 | abA |
B | 39.33 | aA | 65.31 | aB | 56.28 | aA |
Npds-SYS (kg N ha−1) | ||||||
Corn grains + straws + P. maximum shoots | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 49.89 | aA | 62.69 | aA | 52,41 | aA |
B | 35.99 | aA | 50.88 | aA | 40.56 | aA |
STN (g kg −1) | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 1.82 | 1.85 | 1.75 | |||
B | 1.81 | 1.81 | 1.92 | |||
SAN (mg kg −1) | ||||||
Line | 667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | |||
A | 26.66 aA | 28.56 aA | 25.87 aB | |||
B | 19.80 bB | 18.53 bB | 34.90 aA |
Line | Density of G. sepium Plants | |||||
---|---|---|---|---|---|---|
667 plants ha−1 | 1000 plants ha−1 | 1333 plants ha−1 | ||||
Corn grain yield (kg ha−1) | ||||||
B | 5958 | ±800 a | 7465 | ±1372 a | 6167 | ±633 a |
A | 4221 | ±600 b | 4960 | ±1366 b | 4610 | ±700 b |
Corn above-ground biomass (kg ha−1) | ||||||
B | 4095 | ±377 a | 4475 | ±1331 a | 4443 | ±239 a |
A | 3398 | ±417 b | 3426 | ±697 b | 3505 | ±672 b |
P. maximum above-ground biomass (kg ha−1) | ||||||
B | 4590 | ±347 a | 4187 | ±1031 a | 3790 | ±439 a |
A | 3610 | ±457 a | 4000 | ±697 a | 4190 | ±972 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueiredo, C.C.d.; Moreira, T.N.; Coser, T.R.; Silva, L.P.d.; Leite, G.G.; de Carvalho, A.M.; Malaquias, J.V.; Marchão, R.L.; Urquiaga, S. Nitrogen Use Efficiency in an Agrisilviculture System with Gliricidia sepium in the Cerrado Region. Plants 2023, 12, 1647. https://doi.org/10.3390/plants12081647
Figueiredo CCd, Moreira TN, Coser TR, Silva LPd, Leite GG, de Carvalho AM, Malaquias JV, Marchão RL, Urquiaga S. Nitrogen Use Efficiency in an Agrisilviculture System with Gliricidia sepium in the Cerrado Region. Plants. 2023; 12(8):1647. https://doi.org/10.3390/plants12081647
Chicago/Turabian StyleFigueiredo, Cícero Célio de, Túlio Nascimento Moreira, Thais Rodrigues Coser, Letícia Pereira da Silva, Gilberto Gonçalves Leite, Arminda Moreira de Carvalho, Juaci Vitória Malaquias, Robélio Leandro Marchão, and Segundo Urquiaga. 2023. "Nitrogen Use Efficiency in an Agrisilviculture System with Gliricidia sepium in the Cerrado Region" Plants 12, no. 8: 1647. https://doi.org/10.3390/plants12081647
APA StyleFigueiredo, C. C. d., Moreira, T. N., Coser, T. R., Silva, L. P. d., Leite, G. G., de Carvalho, A. M., Malaquias, J. V., Marchão, R. L., & Urquiaga, S. (2023). Nitrogen Use Efficiency in an Agrisilviculture System with Gliricidia sepium in the Cerrado Region. Plants, 12(8), 1647. https://doi.org/10.3390/plants12081647