Review on Propolis Applications in Food Preservation and Active Packaging
Abstract
:1. Introduction
2. Actual Application of Propolis
2.1. Fruits and Vegetables
Foods | Geographical Origin | Used Extracts | References |
---|---|---|---|
Vegetables | |||
Lettuce | Portugal (Bragança, 41°48′ N; 06°45′ W) | 2% Metanol extract | [55] |
Cucumber and soybean | Brazil (Pato Branco) | PEE | [56] |
Celery, leek and butternut squash | Argentine (Juricich, Mendoza) | PEE | [48,58] |
Tomato, lettuce seeds, onion roots | Argentine (Tucumán, Santiago del Estero, Chaco) | PEE | [57] |
Tomato | Italy | Glycolic extract | [59] |
Tomato | Bandung | PEE diluted with propylene glycol | [60] |
Cherry tomato | China | PEE | [61] |
Cherry tomato | Poland Toruń County (53.03′ N, 18.62′ E) | PEE + pullulan | [62] |
Mashed potatoes | Jordan (naour region) | Nd | [63] |
Potatoes | Argentine (semi-arid regions of Salta, Santiago del Estero and Tucumán) | PEE | [64] |
Chili | Brazil | PEE | [65] |
Rice | Brazil (Minas Gerais) | Ethanol, methylene chloride and hexane extract | [66] |
Fruits | |||
Sweet cherry | Turkey (Hatay province (Eastern Mediterranean region of Turkey)) | WPE and PEE | [67] |
Sweet cherry | China | Propolis fresh liquid | [68] |
Citrus | China (Baoding County, Hebei Province) | PEAE (propolis ethyl acetate extract) | [69] |
Mandarins | China (Baoding County, Hebei Province) | PEAE | [69] |
Orange | Egypt | PEE | [71] |
Orange | Iraq (Baghdad) | Hydro-alcohol extract | [72] |
Orange | Brazil (southern state of Paraná) | PEE | [73] |
Citrus reticulata Blanco | Indonesia | PEE | [74] |
Star Ruby grapefruit | Turkey (Hatay province) | PEE | [75] |
Table grape, cv. Muscatel | Spain (Bonamel Organic S.L. (Alquería de Aznar, Spain)). | PEE | [76] |
Dragon fruit | China | PEE | [77] |
Apple | Iraq (Baghdad) | PEE | [78] |
Apple | Egypt | PEE | [79] |
Mango | Brazil | PEE | [80] |
Mango | Saudi Arabia | PEE | [81] |
Banana | Brazil (Bambuí, Minas Gerais) | Hydro-alcohol extract and aqueous extract | [82] |
Banana | Saudi Arabia (Hada Al-Sham 21°48′3′′ N, 39°43′25′′ E) | PEE | [83] |
Banana | Thailand (Ratchaburi province) | PEE | [84] |
Blueberry | Poland (Torun County) | PEE | [85] |
Strawberry | Mexico | - | [86] |
Fig | Mexico | - | [87] |
Pear | Portugal (central coast and the northern region) | PEE | [88] |
2.2. Beverages
2.3. Dairy
2.4. Meat
2.5. Chicken
2.6. Fish
Food Product | Propolis Type | Treated Microbe | Origin | Chemical Composition | Reference | |
---|---|---|---|---|---|---|
Dairy | Buffaloes’ milk | PE | Total bacterial count, coliforms, molds, and yeasts | Plant Protection Department at the Faculty of Agriculture, Mansoura University | Phenolic compounds (11.18 ± 0.511 mg/g) Flavonoids (7.716 ± 0.587 mg/g) Antioxidant activity (70.44 ± 0.327%) | [103] |
Milk | PEE | L. monocytogenes, S. aureus, B. cereus | Val di Cecina (Tuscany, 50–450 m above sea level) | Flavonoids (2.3%) | [101] | |
Yogurt | PE | B. animalis ssp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, S. thermophilus | Purchased from Sepe Natural Organic Products (Turkey) | 300 mg of Brazilian propolis (3.5 mg Gallic Acid and 2.1 mg Quercetin per mL product) | [104] | |
Gorgonzola type cheese | Brazilian green PEE | S. equorum, S. saprophyticus, C. parapsilosis, S. cerevisiae, C. flavescens | Campo das Vertentes (Latitude 21 140 S. Longitude 44 590) in the state of Minas Gerais, Brazil | ND | [109] | |
Kareish Cheese | PEE | S. thermophilus, B. bifidium, L. bulgaricus | Plant Protection Department at the Faculty of Agriculture, Mansoura University | Phenolic Compounds (13.64 ± 0.440 mg/g), Flavonids (10.57 ± 0.605 mg/g), Antioxidant activity (67.12 ± 0.288%) | [110] | |
Milk | PEE | L. monocytogenes | Collected in June from Megalopolis (MEG), in the region of Arcadia (central Peloponnese), Greece | Phenolic acids and derivatives (1.42 ± 0.04 mg/g), Flavones and flavonols (6.20 ± 0.32 mg/g), Flavanones and dihydroflavonols (3.56 ± 0.11 mg/g) | [37] | |
Kashkaval Cheese | PE | Lactic acid bacteria, yeast, and fungi | Purchased from producers from three different regions in the Western part of Bulgaria—town of Simitli, Blagoevgrad district (41°53′ N 23°7′ E), town of Bankya, Sofia district (42°42′ N 23°8′ E), and village of Vladimir, Pernik district (42°26′ N 23°5′ E). | ND | [108] | |
Pasteurized and raw milk | Crude organic propolis | Total microbial count | New Valley, Dakhla | ND | [100] | |
Meat | Dry meat sausage | Raw dark brown propolis | S. aureus, P. aeruginosa | Honey Mahvin Company | Phenolic content (27.08 ± 2.4 mg/g) | [112] |
Chicken breast meat | PE | Pseudomonas spp. | Natural propolis was gathered from four beehives. | Flavonoids (25.2%), Sesquiterpenes (9.5%), Aromatic acids (5.01%), Aliphatic hydrocarbons (4.87%), Aromatic hydrocarbons (5.80%), Fatty acids (2.24%), Alcohol (2.05%), Aldehydes (1.45%), Triterpenes (1.12%) | [113] | |
Beef patties | PE | Mesophilic and Psychrotrophic | Commercial propolis samples 1 and 2 Non-commercial propolis; Pueblo de Alamos, Sonora, Mexico (29°07′129′N) | Cinnamic acid, Rutin, Myricetin, Quercetin, Chrysin, Kaempferol, Apigenin, Pinocembrin, Luteolin, Acetin. | [51] | |
Minced beef | PE | L, monocytogenes, P. aeruginosa, F. oxysporum, S. cerevisiae | National Research Center in Cairo, Egypt | Pentacosane (0.36%), 5,5-D2-Trans-4,3-Dihydroxycylopentene (0.64%), Dodecane (1.04%), Trans-cyclohexanol,2-(methylaminomethyl) (7.30%), 4-aminocyclohepta[f]thieno[2,3-b]pyridine (66.02%), A-Neooleana-3(5), 12-diene (22.99%), 4-Methoxyamphetamine (1.66%) | [114] | |
Minced beef | PEE | S. aureus, B. subtilis, B. cereus, L. monocytogenes, S. typhimurium and E. coli O157:H7 | Purchased from an apiary located in the suburb of Kermanshah, in the west of Iran | Lindane (11.96%), caffeic acid (11.14%), 3-cyano-5, 6-dihydro-4-(methylthio)- 2-phenylbenzo[h] quinoline (10.31%), buxozine-c (9.01%), 3,4-bis (3-byano-2-methylphenyl)-2,5-dimethylfuran (8.45%), 12-azabicyclo [9.2.2] pentadeca-1(14), 11(15)-dien-13-one (8.43%), and naringenin (7.31%) | [115] | |
Beef Meatballs | WPE | S. epidermidis, E. faecalis, L. monocytogenes | ND | Antioxidant Activity (IC50 38.025 ± 0.135 µg/mL) FRAP (23.27 ± 0.26 µM of Fe + 2/g) | [116] | |
Chicken | Chicken breast fillet | PEE | Pseudomonas spp. | Natural propolis was gathered from four beehives | Flavonoids (25.2%), Sesquiterpenes (9.5%), Aromatic acids (5.01%), Aliphatic hydrocarbons (4.87%), Aromatic hydrocarbons (5.80%), Fatty acids (2.24%), Alcohol (2.05%), Aldehydes (1.45%) | [113] |
Chicken fillet | PEE | S. aureus | Collected from different locations of Tehran Province in May 2016 | ND | [121] | |
120-days old chicks | Egyptian propolis | E. coli | Dakahlia Governorate | ND | [120] | |
One day old chickens | PE | Salmonella spp. | ND | ND | [123] | |
Broiler chickens of hybrid combination Ross 308 | Propolis and bee pollen | E. faecalis | ND | ND | [124] | |
Chicken breast | PE | Yeasts and molds, S. aureus, E. coli | Supplied from the mountainous area west of Guilan province | Phenolic compounds (5.83 ± 0.505 g/ 100 g), Flavonoids (4.92 ± 0.562 g/mL), Antioxidant activity (15.83 ± 2.341%) | [125] | |
Fish | Nile tilapia (Oreochromis niloticus) | PEE and crude propolis | A. hydrophila | Collected in summer from Upper Egypt | ND | [128] |
Fish | PEE | A. hydrophila, Y. ruckeri and S. iniae | Adana region | Propolis antioxidant activity value (569.68 µmol trolox/g), phenolic substance content (593.31 mg GAE/g) | [130] | |
Rainbow trout (Oncorhynchus mykiss) | PE | Mesophilic, psychrophilic, yeast and mold, coliform | Adana region | Propolis antioxidant activity value (569.68 µmol trolox/g), phenolic substance content (593.31 mg GAE/g) | [130] | |
Fish | PE | L. plantarum, E. cloacae, P. luteola, P. mirabilis, and P. damselea | Propolis was produced by Apis mellifera in January 2020, Adana, Turkey. | ND | [131] | |
Rainbow trout (Oncorhynchus mykiss) | PE | Mesophilic and psychrotrophic bacteria | Propolis was collected from a farm at village Kocaavsar in Balikesir, Turkey. | ND | [133] | |
Nemipterus japonicus fillets | PEE | Mesophilic and psychrotrophic bacteria | ND | ND | [134] |
3. Propolis and Active Packaging
4. Other Applications of Propolis
Propolis Type | Applied Product | Chemical Properties | Physically Properties | Sensory Properties | Geographical Position | Chemical Composition | Reference |
---|---|---|---|---|---|---|---|
Red propolis | Tilapia salami (Oreochromis niloticus) | The pH value of salami decreased in the first 8 days but increased after the 8th day. Aw decreased until the end of ripening in salami. | No color change was observed. No significant differences were seen in the moisture, lipids, and weight loss tests. | No off-flavor sensory change was observed. | Purchased from the Cooperativa de Apicultores de Canavieiras Coaper located in the municipality of Canavieiras (15°40′30′′ S and 38°56′50′′ W), Bahia, Brazil. | Phenols (10.37 ± 0.15 g of gallic acid/100 g of propolis) and flavonoids (3.53 ± 0.14 g of rutin/100 g of propolis) | [117] |
Lactic acid-based propolis extract | Strawberry juice | The pH value was changed. Phenolic content was affected. | No adverse effects were observed at low concentrations (0.4–0.7%) but at high concentrations (1%). | A positive effect on the color was found to be directly dependent on the propolis amount. | Api10, Apipark Beekeeping Production, Türkiye | Total phenolic contents varied between 2896.19 GAE mg kg−1 and 512.8571 GAE mg kg−1. | [97] |
Propolis extract | Ground beef | The pH, DPPH, and phenolic values were changed. Aw remained the same, TBA value decreased. | No changes were determined in physical properties. | The taste and odor were adversely affected. | Tekirdag Namık Kemal University, Department of Food Engineering | Total phenolic substance values (639.9 ± 4.2 mg GAE/kg) | [118] |
Green propolis ethanolic dry extract | Jelly candies | There was an increase in ABTS and DPPH. | No physical changes were found. | No off-flavor sensory change was observed. | Pindamonhangaba, São Paulo, Brazil | Total polyphenols (8.71% w/w) | [152] |
Raw propolis | Gummy jelly | No changes were observed in tissue and Aw. | An evident physical change was found in comparison to the control group. | The color and adhesive properties were changed. | Gualeguaychú, Entre Rios, Argentina | ND | [153] |
Extrato De Própolis Milagres 30 mL (Mel Milagres Ind. Brazil) | Milk, yogurt, and kefir | Except for market milk, the pH value of yogurt and kefir did not differ between the experimental and control group. | Induced a marked difference in market milk, yogurt, and kefir color and texture. | Induced a distinct color and texture difference in market milk, yogurt, and kefir. | Purchased from Extrato De Própolis Milagres 30 ML (Mel Milagres Ind. Brazil) | ND | [105] |
Ethanolic extract of propolis | Cherry tomatoes | There was no change in pH. | A better color was obtained, and post-harvest life was extended without weight loss. | The overall quality of tomatoes with propolis was measured as very high. | Purchased from an apiary located in Toruń County (53.03 m an apiary located in To | Total phenolic acids (20,028.7 mg L−1), Total flavan-3-ols (113.2 mg L−1), Total flavanone (1738.8 mg L−1), Total flavanonols (21,704.7 mg L−1), Total flavones (26,267.2 mg L−1), Total flavonols (13,305.4 mg L−1) | [62] |
Raw propolis | Ice cream | No chemical changes were found. | There was little change in hardness and adhesive properties. | All sensory properties except the structure consistency were adversely affected. | Collected in August from the Apiculture Research Institute apiaries located in Dedeli Village of Ordu province in the summer season of 2018. | Total Phenolic Substance (1 g of propolis GAE mg/mL 136.19 ± 3.35) | [113] |
Fanus Organic Propolis (Water Based) | Yogurt | No change in pH. | No changes were observed. | No adverse change was found in taste and odor. | ND | ND | [106] |
Propolis extract | Fruit Yogurt | The pH, DPPH, and phenolic values were changed. | No changes. | No off-flavor sensory change was observed. | Collected from beekeepers in Ordu/Türkiye in September-October 2014. | Total phenolic substance (mg GAE/g 114.26 ± 2.64), Aliphatic Acids (8.17%), Aromatic Acids (4.42%), Esters (3.81%), Alcohol and terpenes (4.84%), Flavonoids (1.99%), Sugars (15.38%), Others (61.39%) | [107] |
Ethanolic extract of propolis | Fresh sausages | The pH showed a fluctuating course. TVB-N and TBA increased. | A decrease in red color was observed. | Improved the taste and smell of sausages. | Obtained in Boyacá-Colombia | ND | [120] |
Propolis extract | Beef Patties | The number of flora was found to be decreased. | The color was adversely affected. | No off-flavor sensory change was observed. | Obtained from an apiculture local market in Hermosillo, Sonora. | The total phenolic content in PE was 75.4 ± 0.02 and 36.8 ± 00. | [50] |
Green propolis | Italian-type salami | The pH and humidity changes remained normal. | No physical changes were found. | A slight change was found in smell and taste. | ND | ND | [119] |
5. Challenges and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bankova, V.; Galabov, A.S.; Antonova, D.; Vilhelmova, N.; Di Perri, B. Chemical composition of Propolis Extract ACF® and activity against herpes simplex virus. Phytomedicine 2014, 21, 1438. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Orlandini, G.; Pinetti, D.; Benvenuti, S. HPLC-DAD and HPLC-ESIMS/ MS methods for metabolite profiling of propolis extracts. J. Pharm. Biomed. Anal. 2011, 55, 934–948. [Google Scholar] [CrossRef]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73 (Suppl. S1), S1–S6. [Google Scholar] [CrossRef]
- Cuesta-Rubio, O.; Piccinelli, A.L.; Rastrelli, L. Tropical propolis: Recent advances in chemical components and botanical origin. In Medicinal Plants: Biodiversity and Drugs, 1st ed.; Rai, M.K., Geoffrey, R., Cordell, G.C., Martínez, J.L., Marinoff, M., Rastrelli, L., Eds.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2012; pp. 209–240. [Google Scholar] [CrossRef]
- De Francisco, L.; Pinto, D.; Rosseto, H.; Toledo, L.; Santos, R.; Tobaldini-Valério, F.; Svidzinski, T.; Bruschi, M.; Sarmento, B.; Oliveira, M.B.P.; et al. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res. Int. 2018, 105, 537–547. [Google Scholar] [CrossRef]
- Freires, I.A.; de Alencar, S.M.; Rosalen, P.L. A pharmacological perspective on the use of Brazilian Red Propolis and its isolated compounds against human diseases. Eur. J. Med. Chem. 2016, 110, 267–279. [Google Scholar] [CrossRef]
- Marcucci, M.C.; Ferreres, F.; Garca-Viguera, C.; Bankova, V.S.; De Castro, S.L.; Dantas, A.P.; Valente, P.H.M.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Simone, M.; Evans, J.D.; Spivak, M. Resin collection and social immunity in honey bees. Evolution 2009, 63, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Belloto de Francisco, L.M.; Costa, C.; Thamiris, Y.; Outuki, P.M.; Souza, R.P.; de Souza Bonfim Mendonca, P.; Novello, C.R.; Lopes Consolaro, M.E.; Bruschi, M.L. Nanoparticles of waste material of propolis and gelatin as a novel system for delivery ofL-ascorbic acid. Curr. Drug Deliv. 2017, 14, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; De Castro, S.; Marcucci, M. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V. Recent trends and important developments in propolis research. Evid.-Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Ghisalberti, E.L. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Banskota, A.H.; Tezuka, Y.; Prasain, J.K.; Matsushige, K.; Saiki, I.; Kadota, S. Chemical constituents of Brazilian propolis and their cytotoxic activities. J. Nat. Prod. 1998, 61, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef]
- Lotti, C.; Campo Fernandez, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Márquez Hernández, I.; Rastrelli, L. Chemical constituents of red Mexican propolis. J. Agric. Food Chem. 2010, 58, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, A.C.H.F.; Barbosa da Silva Cunha, I.; Marcucci, M.C. Analytical methods applied to diverse types of Brazilian propolis. Chem. Cent. J. 2011, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogosan, C.; Iaru, I. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A complex natural product with a plethora of biological activities that can be explored for drug development. Evid.-Based Complement. Altern. Med. 2015, 2015, 206439. [Google Scholar] [CrossRef]
- Alday, E.; Navarro-Navarro, M.; Garibay-Escobar, A.; Robles-Zepeda, R.; Hernandez, J.; Velazquez, C. Advances in pharmacological activities and chemical composition of propolis produced in Americas. In Beekeeping and Bee Conservation—Advances in Research; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Boukraâ, L.; Sulaiman, S.A. Rediscovering the antibiotics of the hive. Recent Pat. Antiinfect. Drug Discov. 2009, 4, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, F.; D’Auria, F.D.; Alessandrini, D.; Pantanella, F. Multifactorial aspects of antimicrobial activity of propolis. Microbiol. Res. 2006, 161, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviralactivity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Corrêa, F.R.S.; Schanuel, F.S.; Moura-Nunes, N.; Monte-Alto-Costa, A.; Daleprane, J.B. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFkB. Biomed. Pharmacother. 2017, 86, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M. Biological properties and therapeutic applications of propolis. Phytother. Res. 2016, 30, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid.-Based Complement. Altern. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef] [Green Version]
- Conti, B.J.; Santiago, K.B.; Búfalo, M.C.; Herrera, Y.F.; Alday, E.; Velazquez, C.; Hernandez, J.; Sforcin, J.M. Modulatory effects of propolis samples from Latin America (Brazil, Cuba and Mexico) on cytokine production by human monocytes. J. Pharm. Pharmacol. 2015, 67, 1431–1438. [Google Scholar] [CrossRef]
- Nassar, S.A.; Mohamed, A.H.; Soufy, H.; Nasr, S.M.; Mahran, K.M. Immunostimulant effect of Egyptian propolis in rabbits. Sci. World J. 2012, 2012, 901516. [Google Scholar] [CrossRef] [Green Version]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid.-Based Complement. Altern. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef]
- Silva, M.V.D.; Moura, N.G.D., Jr.; Motoyama, A.B.; Ferreira, V.M. A review of the potential therapeutic and cosmetic use of propolis in topical formulations. J. Appl. Pharmacol. Sci. 2019, 10, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Bhutani, R.C. Fruit and Vegetable Preservation; Biotech Books: Delhi, India, 2003. [Google Scholar]
- Tzima, K.; Makris, D.; Nikiforidis, C.V.; Mourtzinos, I. Potential use of Rosemary, Propolis and Thyme as Natural Food Preservatives. J. Nutr. Health 2015, 1, 6. [Google Scholar]
- Skandamis, P.; Koutsoumanis, K.; Fasseas, K.; Nychas, G.J.E. Inhibition of oregano essential oil and EDTA on Escherichia coli O157: H7. Ital. J. Food Sci. 2001, 13, 55–65. [Google Scholar]
- Negi, P. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef]
- Soliman, K.M.; Badeea, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002, 40, 1669–1675. [Google Scholar] [CrossRef]
- Thamnopoulos, I.A.I.; Michailidis, G.F.; Fletouris, D.J.; Badeka, A.; Kontominas, M.G.; Angelidis, A.S. Inhibitory activity of propolis against Listeria monocytogenes in milk stored under refrigeration. Food Microbiol. 2018, 73, 168–176. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. New emerging fields of application of propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Santos, M.S.; Estevinho, M.L.M.F.; de Carvalho, C.A.L.; Magalhães-Guedes, K.T.; Schwan, R.F.; de Castro Almeida, R.C. Propolis as natural additive: A systematic review. Afr. J. Biotechnol. 2018, 17, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- Burdock, G.A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef]
- Ôzcan, M. Antifungal properties of propolis. Grasas Aceites 1999, 50, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food Process Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Moura, S.A.L.; Negri, G.; Salatino, A.; Lima, L.D.C.; Dourado, L.P.A.; Mendes, J.B. Aqueous extract Brazilian propolis: Primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid.-Based Complement. Altern. Med. 2011, 2011, 748283. [Google Scholar] [CrossRef] [Green Version]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complement. Altern. Med. 2015, 15, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Kahramanoğlu, İ.; Okatan, V.; Wan, C. Biochemical composition of propolis and its efficacy in maintaining postharvest storability of fresh fruits and vegetables. J. Food Qual. 2020, 2020, 8869624. [Google Scholar] [CrossRef]
- Özer, E.D. Propolis and Potential Use in Food Products. Turk. J. Agric. Food Sci. Technol. 2020, 8, 1139–1144. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Ponce, A.G.; Goyeneche, R.; Moreira, M.R. Physical treatments and propolis extract to enhance quality attributes of fresh-cut mixed vegetables. J. Food Process. Preserv. 2017, 41, e13127. [Google Scholar] [CrossRef] [Green Version]
- Casquete, R.; Castro, S.M.; Teixeira, P. Antimicrobial activity of ethanolic extract of propolis in “Alheira”, a fermented meat sausage. Cogent Food Agric. 2016, 2, 1125774. [Google Scholar] [CrossRef]
- Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Acedo-Félix, E.; Carvajal-Millán, E.; González-Córdova, A.F.; Vallejo-Galland, B.; Torres-Llanze, M.J.; Sanchez-Escalante, A. Antioxidant and antimicrobial activity of commercial propolis extract in beef patties. J. Food Sci. 2014, 79, C1499–C1504. [Google Scholar] [CrossRef] [PubMed]
- Mahecha, H.S.; Toquica, Á.J.; Moreno, A.C.D. Physico-chemical evaluation of Cachama fillets (Piaractus brachypomus) preserved with propolis during storage. Rev. Fac. Nac. Agron. 2014, 67, 7229–7236. [Google Scholar] [CrossRef]
- Silici, S.; Karaman, K. Inhibitory effect of propolis on patulin production of Penicillium expansum in apple juice. J. Food Process. Preserv. 2014, 38, 1129–1134. [Google Scholar] [CrossRef]
- Ozcan, M. Use of propolis extract as a natural antioxidant for plant oils. Grasas Aceites 2002, 51, 251–253. [Google Scholar]
- Yang, W.; Wu, Z.; Huang, Z.Y.; Miao, X. Preservation of orange juice using propolis. J. Food Sci. Technol. 2017, 54, 3375–3383. [Google Scholar] [CrossRef]
- Feás, X.; Pacheco, L.; Iglesias, A.; Estevinho, L.M. Use of propolis in the sanitization of lettuce. Int. J. Mol. Sci. 2014, 15, 12243–12257. [Google Scholar] [CrossRef] [Green Version]
- Guginski-Piva, C.A.; dos Santos, I.; Wagner Júnior, A.; Heck, D.W.; Flores, M.F.; Pazolini, K. Propolis for the control of powdery mildew and the induction of phytoa-lexins in cucumber [El propóleo para el control de oídio y la inducción de fitoalexinas en pepino]. Idesia 2015, 33, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, R.M.; Zampini, I.C.; Moreno, M.N.; Isla, M.I. Potential application of Northern Argentine propolis to control some phytopathogenic bacteria. Microbiol. Res. 2011, 166, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ponce, A.G.; Moreira, M.R. Combined effect of bioactive compounds and storage temperature on sensory quality and safety of minimally processed celery, leek and butternut squash. J. Food Saf. 2015, 35, 560–574. [Google Scholar] [CrossRef]
- Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Scalzo, R.L.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hortic. 2017, 222, 193–202. [Google Scholar] [CrossRef]
- Putra, R.E.; Khairannisa, S.; Kinasih, I. Effect of Application Propolis as Biocoating on the Physical and Chemical Properties of Tomatoes Stored at Room Temperature. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012026. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; An, X.; Li, Y.; Niu, Y.; Yun, J. Study on the preservation effect of propolis and beeswax composite coating agent on cherry tomatoes. Food Ferment. Technol. 2019, 55, 38–43. [Google Scholar] [CrossRef]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the shelf life of cherry tomatoes by pullulan coating with ethanol extract of propolis during refrigerated storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Bahtiti, N.H. Study of preservative effect of “propolis” on the storage quality of mashed potatoes. Food Sci. Technol. 2013, 1, 17–20. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Bertini Sampietro, M.S.; Vattuone, M.A. Efficacy of Argentinean propolis extracts on control of potato soft rot caused by Erwinia carotovora subsp. J. Sci. Food Agric. 2020, 100, 4575–4582. [Google Scholar] [CrossRef]
- Ali, A.; Chow, W.L.; Zahid, N.; Ong, M.K. Efficacy of propolis and cinnamon oil coating in controlling post-harvest anthracnose and quality of chilli (Capsicum annuum L.) during cold storage. Food Bioprocess Technol. 2014, 7, 2742–2748. [Google Scholar] [CrossRef]
- Griffiths, G.A.; Toshitaka, U.; Fumihiko, T.; Daisuke, H. Effect of vapors from fractionated samples of propolis on microbial and oxidation damage of rice during storage. J. Food Eng. 2008, 88, 341–352. [Google Scholar] [CrossRef]
- Candir, E.E.; Ozdemir, A.E.; Soylu, E.M.; Sahinler, N.; Gul, A. Effects of propolis on storage of sweet cherry cultivar Aksehir Napolyon. Asian J. Chem. 2009, 21, 2659–2666. [Google Scholar]
- Yang, Y.; Gong, Y.; Gao, Y.; Huang, J.; Xu, M.; Xiong, B. Study on the preservation effect of propolis on sweet cherry. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 032029. [Google Scholar] [CrossRef]
- Yang, S.; Peng, L.; Cheng, Y.; Chen, F.; Pan, S. Control of citrus green and blue molds by Chinese propolis. Food Sci. Biotechnol. 2010, 19, 1303–1308. [Google Scholar] [CrossRef]
- Abo-Elyousr, K.A.; Al-Qurashi, A.D.; Almasoudi, N.M. Evaluation of the synergy between Schwanniomyces vanrijiae and propolis in the control of Penicillium digitatum on lemons. Egypt. J. Biol. Pest Control 2021, 31, 66. [Google Scholar] [CrossRef]
- El-Badawy, H.E.M.; Baiea, M.H.M.; Abd El-Moneim, E.A.A. Efficacy of propolis and wax coatings in improving fruit quality of ‘Washington’ navel orange under cold storage. Res. J. Agric. Biol. Sci. 2012, 8, 420–428. [Google Scholar]
- Matny, O.N. Efficacy evaluation of Iraqi propolis against gray mold of stored orange caused by Penicillium digitatum. Plant Pathol. J. 2015, 14, 153. [Google Scholar] [CrossRef] [Green Version]
- Passos, F.A.R.; Mendes, F.I.Q.; da Cunha, M.C.; da Cunha, M.I.C.; de Carvalho, A.E.M.X. Propolis extract coated in Pera orange fruits: An alternative to cold storage. Afr. J. Agric. Res. 2016, 11, 2043–2049. [Google Scholar] [CrossRef] [Green Version]
- Putra, R.E.; Reizandy, F.; Faizal, A.; Kinasih, I. Effication of local propolis as edible coating of tangerine cultivar garut (citrus reticulata blanco). IOP Conf. Ser. Earth Environ. Sci. 2018, 187, 012025. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, A.E.; Candir, E.E.; Kaplankiran, M.; Soylu, E.M.; Şahinler, N.; Gül, A. The effects of ethanol-dissolved propolis on the storage of grapefruit cv. Star Ruby. Turk. J. Agric. For. 2010, 34, 155–162. [Google Scholar] [CrossRef]
- Pastor, C.; Sanchez-Gonzalez, L.; Marcilla, A.; Chiralt, A.; Chafer, M.; Gonzalez-Martinez, C. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest Biol. Technol. 2011, 60, 64–70. [Google Scholar] [CrossRef]
- Zahid, N.; Ali, A.; Siddiqui, Y.; Maqbool, M. Efficacy of ethanolic extract of propolis in maintaining postharvest quality of dragon fruit during storage. Postharvest Biol. Technol. 2013, 79, 69–72. [Google Scholar] [CrossRef]
- Matny, O.N.; Al-Warshan, S.H.; Ali, A.M. Antifungal evaluation of Iraqi propolis against Penicillium expansum and mycotoxin production in apple. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 399–405. [Google Scholar]
- Embaby, E.M.; Hazaa, M.M.; Kh, E.D.; Mo, A.M.; Abd-Elgalil, M.M.; Elwan, E.E. Control Apple Fruit Decay by Using ‘Ethanol Extract of Propolis’(EEP). Int. J. Adv. Med. Sci. 2020, 4, 1–11. [Google Scholar]
- Mattiuz, B.H.; Ducamp-Collin, M.N.; Mattiuz, C.F.M.; Vigneault, C.; Marques, K.M.; Sagoua, W.; Montet, D. Effect of propolis on postharvest control of anthracnose and quality parameters of ‘Kent’ mango. Sci. Hortic. 2015, 184, 160–168. [Google Scholar] [CrossRef]
- Al-Qurashi, A.D.; Awad, M.A. Postharvest ethanolic extract of propolis treatment affects quality and biochemical changes of ‘Hindi-Besennara’ mangos during shelf life. Sci. Hortic. 2018, 233, 520–525. [Google Scholar] [CrossRef]
- Passos, F.R.; Mendes, F.Q.; Cunha, M.C.D.; Pigozzi, M.T.; Carvalho, A.M.X.D. Propolis extract in postharvest conservation banana ‘Prata’. Rev. Bras. Frutic. 2016, 38, e931. [Google Scholar] [CrossRef] [Green Version]
- Awad, M.A.; Al-Qurashi, A.D. Quality and biochemical changes of ‘Sukkari’ bananas during shelf life as affected by postharvest dipping in ethanolic extract of propolis. Philipp. Agric. Sci. 2019, 102, 132–140. [Google Scholar]
- Sripong, K.; Srinon, T.; Ketkaew, K.; Uthairatakij, A.; Jitareerat, P. Impacts of paraffin wax and propolis on controlling crown rot disease and maintaining postharvest quality of banana. IOP Conf. Ser. Earth Environ. Sci. 2020, 515, 012036. [Google Scholar] [CrossRef]
- Pobiega, K.; Igielska, M.; Włodarczyk, P.; Gniewosz, M. The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Int. J. Food Sci. Technol. 2021, 56, 1013–1020. [Google Scholar] [CrossRef]
- Martínez-González, M.D.C.; Bautista-Baños, S.; Correa-Pacheco, Z.N.; Corona-Rangel, M.L.; Ventura-Aguilar, R.I.; Río-García, D.; Ramos-García, M.D.L. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-García, P.F.; Ventura-Aguilar, R.I.; del Río-García, J.C.; Hernández-López, M.; Guillén-Sánchez, D.; Salazar-Piña, D.A.; Bautista-Baños, S. Edible chitosan/propolis coatings and their effect on ripening, development of Aspergillus flavus, and sensory quality in fig fruit, during controlled storage. Plants 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Loebler, M.; Sánchez, C.; Muchagato Maurício, E.; Diogo, E.; Santos, M.; Vasilenko, P.; Cruz, A.S.; Mendes, B.; Gonçalves, M.; Duarte, M.P. Potential Application of Propolis Extracts to Control the Growth of Stemphylium vesicarium in “Rocha” Pear. Appl. Sci. 2020, 10, 1990. [Google Scholar] [CrossRef] [Green Version]
- Aguayo, E.; Martínez-Sánchez, A.; Silveira, A.C.; Tarazona, M.P. Effects of pasteurization and storage time on watermelon juice quality enriched with L-citrulline. Acta Hortic. 2017, 1151, 267–272. [Google Scholar] [CrossRef]
- Chang, Z.Q.; Leong, W.; Chua, L.S. Statistical approach to reveal propolis as a potential bio preservative for fruit juices. Future Foods 2021, 4, 100051. [Google Scholar] [CrossRef]
- Silici, S.; Koc, N.; Sariguzel, F.M.; Sagdic, O. Mould inhibition in different fruit juices by propolis. Arch. Lebensm. 2005, 56, 87–90. [Google Scholar]
- Koc, A.N.; Silici, S.; Mutlu-Sariguzel, F.; Sagdic, O. Antifungal activity of propolis in four different fruit juices. Food Technol. Biotechnol. 2007, 45, 57–61. [Google Scholar]
- Sagdic, O.; Silici, S.; Yetim, H. Fate of Escherichia coli and E. coli O157: H7 in apple juice treated with propolis extract. Ann. Microbiol. 2007, 57, 345–348. [Google Scholar] [CrossRef]
- Luis-Villaroya, A.; Espina, L.; García-Gonzalo, D.; Bayarri, S.; Pérez, C.; Pagán, R. Bioactive properties of a propolis-based dietary supplement and its use in combination with mild heat for apple juice preservation. Int. J. Food Microbiol. 2015, 205, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahramanoglu, I.; Usanmaz, S. Effects of propolis and black seed oil on the shelf life of freshly squeezed pomegranate juice. Food Sci. Nutr. Stud. 2017, 1, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Lopes, G.A.; Fidelis, P.C.; Almeida, B.M.D.; Almeida, J.J.; Ientz, G.D.A.S.; Binda, N.S.; Teixeira, A.F.; Vira-Filho, S.A.; Caligiorne, R.B.; Saude-Guimaraes, D.A.; et al. Antioxidant activity, sensory analysis and acceptability of red fruit juice supplemented with Brazilian green propolis. Food Sci. Technol. 2021, 42, e13521. [Google Scholar] [CrossRef]
- Albaş, M.G.; Gürbüz, B.; Bölük, E.; Sözeri Atik, D.; Velioglu, M.; Palabiyik, İ. Laktik Asit Bazlı Propolis İlavesinin Taze Çilek Suyunun Raf Ömrüne Etkisi. Tekirdağ Ziraat Fakültesi Derg. 2022, 19, 788–797. [Google Scholar] [CrossRef]
- Knight, C.H.; Dewhurst, R.J. Once daliy milking of dairy cows: Relationship between yield loss and cisternal milk storage. J. Dairy Res. 1994, 61, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, I.; Mollé, D.; Gagnaire, V.; Gaucheron, F. Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocoll. 2008, 22, 130–143. [Google Scholar] [CrossRef]
- Shaban, M.; Abdel-Aleem, W.; Galal, S. Organic Propolis Extract as a Natural Fortifier and Preservative for Milk. J. Food Dairy Sci. 2021, 12, 325–329. [Google Scholar] [CrossRef]
- Pedonese, F.; Verani, G.; Torracca, B.; Turchi, B.; Felicioli, A.; Nuvoloni, R. Effect of an Italian propolis on the growth of Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus in milk and whey cheese. Ital. J. Food Saf. 2019, 8, 8036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michailidis, G.F.; Thamnopoulos, I.-A.I.; Fletouris, D.J.; Angelidis, A.S.J.F.S. Synergistic, bacteriostatic effect of propolis and glycerol against Listeria monocytogenes in chocolate milk under refrigerated storage. Food Sci. Technol. Int. 2021, 27, 46–55. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, A. Utilization of Propolis Extract as A Natural Preservative in Raw Milk. J. Food Dairy Sci. 2017, 8, 315–321. [Google Scholar] [CrossRef]
- Gunes-Bayir, A.; Bilgin, M.G.; Guclu, D.; Pogda, S.; Dadak, A. Preparation and evaluation of novel functional fermented dairy products containing propolis and cinnamon. J. Food Sci. Technol. 2022, 59, 2392–2401. [Google Scholar] [CrossRef]
- Chon, J.-W.; Seo, K.-H.; Oh, H.; Jeong, D.; Song, K.-Y. Chemical and Organoleptic Properties of Some Dairy Products Supplemented with Various Concentration of Propolis: A Preliminary Study. J. Dairy Sci. Biotechnol. 2020, 38, 59–69. [Google Scholar] [CrossRef]
- Bilici, C. Lepidium Meyenii Tozu ve Propolis Ekstraktı Ilave Edilerek Fonksiyonel Özellikleri Geliştirilmiş Yoğurt Üretilmesi. Master’s Thesis, Marmara Universitesi, Istanbul, Turkey, 2017. [Google Scholar]
- Güney, F. Bazı Propolis Özütlerinin Meyveli Yoğurtların Biyokimyasal, Fizikokimyasal ve Raf Ömrü Üzerine Etkilerinin Araştırılması. Master’s Thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü, Ordu, Turkey, 2016. [Google Scholar]
- Tumbarski, Y.D.; Todorova, M.M.; Topuzova, M.G.; Georgieva, P.I.; Ganeva, Z.A.; Mihov, R.B.; Yanakieva, V.B. Antifungal activity of carboxymethyl cellulose edible films enriched with propolis extracts and their role in improvement of the storage life of Kashkaval cheese. Curr. Res. Nutr. Food Sci. 2021, 9, 487. [Google Scholar] [CrossRef]
- Correa, F.T.; De Souza, A.C.; De Souza Júnior, E.A.; Isidoro, S.R.; Piccoli, R.H.; Dias, D.R.; De Abreu, L.R. Effect of Brazilian green propolis on microorganism contaminants of surface of Gorgonzola-type cheese. J. Food Sci. Technol. 2019, 56, 1978–1987. [Google Scholar] [CrossRef] [PubMed]
- El-Deeb, A.; Omar, S. Effect of Propolis Extract as a Natural Preservative on the Microbial Content of Kareish Cheese. J. Food Dairy Sci. 2017, 8, 295–302. [Google Scholar] [CrossRef]
- Mehmetoğlu, S. Propolis Katkılı Dondurmaların Depolama Süresince Fizikokimyasal Yapısınınin Celenmesi. Master’s Thesis, Fen Bilimleri Enstitüsü, Ordu, Turkey, 2019. [Google Scholar]
- Safaei, M.; Roosta Azad, R. Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging. J. Food Sci. Technol. 2020, 57, 1242–1250. [Google Scholar] [CrossRef]
- Mehdizadeh, T.; Mojaddar Langroodi, A. Chitosan coatings incorporated with propolis extract and Zataria multiflora Boiss oil for active packaging of chicken breast meat. Int. J. Biol. Macromol. 2019, 141, 401–409. [Google Scholar] [CrossRef]
- El-Demery, M.; Elsebaie, E.; Zidan, N.; Essa, R. Efficiency of Propolis and Turmeric Powders as Natural Preservatives in Minced Beef. J. Food Dairy Sci. 2016, 7, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, Y.; Shavisi, N. A novel active food packaging film for shelf-life extension of minced beef meat. J. Food Saf. 2018, 38, e12569. [Google Scholar] [CrossRef]
- Gedikoğlu, A. Antimicrobial and Antioxidant Activities of Commercialized Turkish Propolis Extract, and Application to Beef Meatballs. Turk. J. Agric.—Food Sci. Technol. 2022, 10, 2021–2029. [Google Scholar] [CrossRef]
- Mafra, J.F.; de Santana, T.S.; Cruz, A.I.C.; Ferreira, M.A.; Miranda, F.M.; Araújo, F.M.; Ribeiro, P.R.; Evangelista-Barreto, N.S. Influence of red propolis on the physicochemical, microbiological and sensory characteristics of tilapia (Oreochromis niloticus) salami. Food Chem. 2022, 394, 133502. [Google Scholar] [CrossRef]
- Özkır, A.Ç. Doğal bir Antimikrobiyel ve Antioksidan Olan Propolisin Köfte Üretiminde Kullanımı. Master’s Thesis, Tekirdağ Namık Kemal Üniversitesi, Tekirdağ, Turkey, 2021. [Google Scholar]
- Bernardi, S.; Favaro-Trindade, C.; Trindade, M.; Balieiro, J.; Cavenaghi, A.D.; Contreras-Castilo, C.J. Italian-type salami with propolis as antioxidant. Ital. J. Food Sci. 2013, 25, 433–440. [Google Scholar]
- Gutiérrez-Cortés, C.; Suarez-Mahecha, H. Antimicrobial Activity of Propolis and Its Effect on the Physicochemical and Sensorial Characteristics in Sausages. Vitae 2014, 21, 90–96. [Google Scholar] [CrossRef]
- Jonaidi Jafari, N.; Kargozari, M.; Ranjbar, R.; Rostami, H.; Hamedi, H. The effect of chitosan coating incorporated with ethanolic extract of propolis on the quality of refrigerated chicken fillet. J. Food Process. Preserv. 2018, 42, e13336. [Google Scholar] [CrossRef]
- Mona, S.I.; Naglaa, A.A.; Ismail, H.M. Effect of propolis on the immune response and meat quality in experimentally Escherichia coli infected broilers. Assiut Vet. Med. J. 2021, 67, 101–135. [Google Scholar] [CrossRef]
- Pochop, J.; KaÄániová, M.; Hleba, L.Å. Effects of propolis extrcats in chicken diet against Salmonella typhirium detected by real-time PCR. J. Microbiol. Biotechnol. Food Sci. 2021, 1, 113–125. [Google Scholar]
- Kročko, M.; Lavová, M.; Bezeková, J.; Čanigová, M.; Gábor, M.; Ducková, V.; Trakovická, A. Antibiotic resistance of Enterococcus faecalis isolated from gastrointestinal tract of broiler chickens after propolis and bee pollen addition. Anim. Sci. Biotechnol. 2012, 45, 58–62. [Google Scholar]
- Mahdavi-Roshan, M.; Gheibi, S.; Pourfarzad, A. Effect of propolis extract as a natural preservative on quality and shelf life of marinated chicken breast (chicken Kebab). LWT 2022, 155, 112942. [Google Scholar] [CrossRef]
- Hatha, M.; Vivekanandhan, A.; Joice, G.J. Antibiotic resistance pattern of motile aeromonads from farm raised fresh water fish. Int. J. Food Microbiol. 2005, 98, 131–134. [Google Scholar] [CrossRef]
- Petersen, A.; Andersen, J.S.; Kaewmak, T.; Somsiri, T.; Dalsgaard, A. Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl. Environ. Microbiol. 2002, 68, 6036–6042. [Google Scholar] [CrossRef] [Green Version]
- Abd-El-Rhman, A.M.M. Antagonism of Aeromonas hydrophila by propolis and its effect on the performance of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2009, 27, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Tukmechi, A.; Ownagh, A.; Mohebbat, A. In vitro antibacterial activities of ethanol extract of iranian propolis (EEIP) against fish pathogenic bacteria (Aeromonas hydrophila, Yersinia ruckeri & Streptococcus iniae). Braz. J. Microbiol. 2010, 41, 1086–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukmechi, R. Propolis Ekstraktı ile Zenginleştirilmiş Yenilebilir Filmlerin Alabalık Filetosu Kalitesi Üzerine Etkileri. Master’s Thesis, Niğde Ömer Halisdemir Üniversitesi/Fen Bilimleri Enstitüsü, Niğde, Turkey, 2019. [Google Scholar]
- Kuley, E.; Kuscu, M.M.; Durmus, M.; Ucar, Y. Inhibitory activity of Co-microencapsulation of cell free supernatant from Lactobacillus plantarum with propolis extracts towards fish spoilage bacteria. LWT 2021, 146, 111433. [Google Scholar] [CrossRef]
- Ebadi, Z.; Khodanazary, A.; Hosseini, S.; Zanguei, N. The shelf life extension of refrigerated Nemipterus japonicas fillets by chitosan coating incorporated with propolis extract. Int. J. Aquat. Res. Environ. Stud. 2021, 2, 23–42. [Google Scholar]
- Fuat Gulhan, M.; Duran, A.; Selamoglu Talas, Z.; Kakoolaki, S.; Mansouri, S.M. Effects of Propolis on microbiologic and biochemical parameters of Rainbow trout (Oncorhynchus mykiss) after exposure to the pesticide. Iran. J. Fish. Sci. 2012, 11, 490–503. [Google Scholar]
- Ebadi, Z.; Khodanazary, A.; Hosseini, S.M.; Zanguee, N. The shelf life extension of refrigerated Nemipterus japonicus fillets by chitosan coating incorporated with propolis extract. Int. J. Biol. Macromol. 2019, 139, 94–102. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Agar-based edible films for food packaging applications—A review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef]
- Cazóna, P.; Velazqueza, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Farooqui, T.; Farooqui, A.A. Beneficial effects of propolis on human health and neurological diseases. Front. Biosci. 2012, 4, 779–793. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Antioxidant and antimicrobial poly (vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J. Environ. Chem. Eng. 2021, 9, 104694. [Google Scholar] [CrossRef]
- Azemin, A.; Md-Zin, N.B.; Mohd-Rodi, M.M.; Kim-Chee, A.S.; Zakaria, A.J.; Mohd, K.S. Application of metabolite profiling and antioxidant activity in assessing the quality of processed and unprocessed stingless bee’ propolis. J. Fundam. Appl. Sci. 2017, 9, 637–666. [Google Scholar] [CrossRef] [Green Version]
- Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.S.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm. 2021, 592, 120028. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, M.C.; Passos, F.R.; Mendes, F.Q.; Pigozzi, M.T.; De Carvalho, A.M.X. Propolis extract from different botanical sources in postharvest conservation of papaya. Acta Sci. Technol. 2018, 40, 31074. [Google Scholar] [CrossRef] [Green Version]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film formation and deposition methods of edible coating on food products: A review. Int. Food Res. J. 2020, 136, 109582. [Google Scholar] [CrossRef] [PubMed]
- Correa-Pacheco, Z.N.; Bautista-Baños, S.; De Lorena Ramos-García, M.; Del Carmen Martínez-González, M.; Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Prog. Org. Coat. 2019, 137, 105326. [Google Scholar] [CrossRef]
- Costa, S.S.; Druzian, J.I.; Machado, B.A.S.; de Souza, C.O.; Guimarães, A.G. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis. PLoS ONE 2014, 9, e112554. [Google Scholar] [CrossRef] [Green Version]
- Mironescu, M.; Fratila, L.; Hupert, A.; Mironescu, I.D. Obtaining and characterisation of starch-based edible films incorporating honey, propolis and bee bread. Acta Univ. Cibiniensis Ser. E Food Technol. 2019, 23, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, P.; Niazi, M.B.; Jahan, Z.; Samin, G.; Hussain, A.; Ahmed, T.; Naqvi, S.R. PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. J. Food Saf. 2020, 40, e12725. [Google Scholar] [CrossRef]
- Chang-Bravo, L.; López-Córdoba, A.; Martino, M. Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. React. Funct. Polym. 2014, 85, 11–19. [Google Scholar] [CrossRef]
- Bodini, R.B.; Sobral, P.J.A.; Favaro-Trindade, C.S.; Carvalho, R.A. Properties of gelatin-based films with added ethanol propolis extract. LWT Food Sci. Technol. 2013, 51, 104–110. [Google Scholar] [CrossRef]
- Moreno, M.A.; Vallejo, A.M.; Ballester, A.R.; Zampini, C.; Isla, M.I.; López-Rubio, A.; Fabra, M.J. Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll. 2020, 107, 105973. [Google Scholar] [CrossRef]
- Juliano, C.; Pala, C.L.; Cossu, M. Preparation and characterisation of polymeric films containing propolis. J. Drug Deliv. Sci. Technol. 2007, 17, 177–182. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef] [PubMed]
- Cedeño-Pinos, C.; Marcucci, M.C.; Bañón, S. Contribution of Green Propolis to the Antioxidant, Physical, and Sensory Proper ties of Fruity Jelly Candies Made with Sugars or Fructans. Foods 2021, 10, 2586. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.; Archaina, D.; Sosa, N.; Leiva, G.; Baldi Coronel, B.; Schebor, C. Development of healthy gummy jellies containing honey and propolis. J. Sci. Food Agric. 2020, 100, 1030–1037. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; De Jong, D.; Berretta, A.A.; dos Santos Galvão, E.B.; Ribeiro, J.C.; Cerqueira-Silva, T.; Amorim, T.C.; Rebelo de Conceicao, L.F.M.; Dantas Gomes, M.M.; Teixeira, M.B.; et al. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed. Pharmacother. 2021, 138, 111526. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.; Garzarella, E.U.; Bocchino, B.; D’Avino, M.; Caruso, G.; Buonomo, A.R.; Sacchi, R.; Galeotti, F.; Tenore, G.C.; Zaccaria, V.; et al. A standardized polyphenol mixture extracted from poplar-type propolis for remission of symptoms of uncomplicated upper respiratory tract infection (URTI): A monocentric, randomized, double-blind, placebo-controlled clinical trial. Phytomedicine 2021, 80, 153368. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.P.; Lorencini, D.A.; Berretta, A.A.; Cintra, M.A.; Lia, E.N.; Jordão, A.A.; Coelho, E.B. Antioxidant effect of standardized extract of propolis (EPP-AF®) in healthy volunteers: A “before and after” clinical study. Evid.-Based Complement. Altern. Med. 2020, 2020, 7538232. [Google Scholar] [CrossRef]
- Zulhendri, F.; Perera, C.O.; Chandrasekaran, K.; Ghosh, A.; Tandean, S.; Abdulah, R.; Herman, H.; Lesmana, R. Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J. Funct. Foods 2022, 88, 104902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segueni, N.; Boutaghane, N.; Asma, S.T.; Tas, N.; Acaroz, U.; Arslan-Acaroz, D.; Shah, S.R.A.; Abdellatieff, H.A.; Akkal, S.; Peñalver, R.; et al. Review on Propolis Applications in Food Preservation and Active Packaging. Plants 2023, 12, 1654. https://doi.org/10.3390/plants12081654
Segueni N, Boutaghane N, Asma ST, Tas N, Acaroz U, Arslan-Acaroz D, Shah SRA, Abdellatieff HA, Akkal S, Peñalver R, et al. Review on Propolis Applications in Food Preservation and Active Packaging. Plants. 2023; 12(8):1654. https://doi.org/10.3390/plants12081654
Chicago/Turabian StyleSegueni, Narimane, Naima Boutaghane, Syeda Tasmia Asma, Nuri Tas, Ulas Acaroz, Damla Arslan-Acaroz, Syed Rizwan Ali Shah, Hoda A. Abdellatieff, Salah Akkal, Rocío Peñalver, and et al. 2023. "Review on Propolis Applications in Food Preservation and Active Packaging" Plants 12, no. 8: 1654. https://doi.org/10.3390/plants12081654
APA StyleSegueni, N., Boutaghane, N., Asma, S. T., Tas, N., Acaroz, U., Arslan-Acaroz, D., Shah, S. R. A., Abdellatieff, H. A., Akkal, S., Peñalver, R., & Nieto, G. (2023). Review on Propolis Applications in Food Preservation and Active Packaging. Plants, 12(8), 1654. https://doi.org/10.3390/plants12081654