Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems
Abstract
:1. Introduction
2. The Essence of the Process of Phytoremediation
2.1. Rhizofiltration
2.2. Phytoextraction
2.3. Phytoevaporation
2.4. Phytostabilization
3. Benefits and Limitations of Phytoremediation
- the reduction of organic and inorganic pollution,
- the reduction of the amount of landfilled waste,
- the preservation and even improvement of the soil structure (compounds secreted into the rhizosphere by plant roots increase the population of microbiota in the soil, the pool of humic substance and soil fertility),
- the reduction of wind erosion by vegetation,
- no need for expensive, specialized equipment and personnel,
- the possibility of in situ application, which does not disturb the soil environment and prevents the spread of contaminants,
- lower cost than conventional remediation methods,
- the ease of implementation and maintenance (plants are a cheap, readily available and renewable source of energy),
- environmental friendliness and social acceptability,
- a lower noise level than that generated by other remediation methods (tree lagging reduces noise from industrial activities).
- the depth of root penetration, the solubility and availability of contaminants,
- the longevity of the process—up to several decades,
- the scope of its application limited to areas with low and medium levels of pollution,
- special treatment of the biomass obtained by phytoextraction as a hazardous material,
- dependence on the climate and seasonality (the effectiveness of the process may be reduced due to damage to plants during the growing season, diseases, pests, and extreme weather conditions),
- avoiding the introduction of invasive and unsuitable plant species (foreign species disrupt biodiversity),
- the risk of transfer of metals to other environmental matrices such as water or air and inclusion in the food chain,
- the introduction of cultivation methods which can affect the mobility of TEs.
Perceptions of Phytoremediation on Different Continents and New International Perspectives
4. Supporting the Processes of Bioremediation of Contaminated Soils
5. Plant Endophytes Resistant to TEs
6. Bacterial and Fungal Influence on Growth of Metallophytes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Leso, M.; Buti, M.; Bellini, E.; Bertoldi, D.; Saba, A.; Larcher, R.; Sanità di Toppi, L.; Varotto, C. Phytochelatin Synthase De-Regulation in Marchantia Polymorpha Indicates Cadmium Detoxification as Its Primary Ancestral Function in Land Plants and Provides a Novel Visual Bioindicator for Detection of This Metal. J. Hazard. Mater. 2022, 440, 129844. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Mocek, A.; Magdziak, Z.; Gąsecka, M.; Mocek-Płóciniak, A. Impact of Metal/Metalloid-Contaminated Areas on Plant Growth. In Plant-Based Remediation Processes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 79–100. [Google Scholar]
- Karczewska, A. Protection of Soils and Reclamation of Degraded Areas, 2nd ed.; Publishing House of the University of Life Sciences: Wrocław, Poland, 2012; ISBN 978-83-7717-113-4. [Google Scholar]
- Ociepa-Kubicka, A.; Ociepa, E. Toxic Effects of Heavy Metals on Plants, Animals and Humans. Eng. Prot. Environ. 2012, 15, 169–180. [Google Scholar]
- Sudhakaran, M.; Ramamoorthy, D.; Savitha, V.; Balamurugan, S. Assessment of Trace Elements and Its Influence on Physico-Chemical and Biological Properties in Coastal Agroecosystem Soil, Puducherry Region. Geol. Ecol. Landsc. 2018, 2, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Garbisu, C.; Alkorta, I. Phytoextraction: A Cost-Efective Plant-Based Technology for the Removal of Metals from the Environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Borymski, S.; Piotrowska-Seget, Z. Rhizosphere of metallophytes and its role in bioremediation of heavy metals. Chemik 2014, 68, 554–559. [Google Scholar]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally Sustainable Way for Reclamation of Heavy Metal Polluted Soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.K.; Pathak, C.; Prasad, G. Scenario of Heavy Metal Contamination in Agricultural Soil and Its Management. JANS 2009, 1, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Laskowski, R.; Migula, P. Ecotoxicology—From the Cell to the Ecosystem, 1st ed.; Powszechne Wydawnictwo Rolnicze i Leśne: Warsaw, Poland, 2004; ISBN 83-09-01773-1. [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, R.; Ahmad, A.; Iqbal, M. Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms. Bot. Rev. 2009, 75, 339–364. [Google Scholar] [CrossRef]
- Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R. Phytoremediation Technologies and Their Mechanism for Removal of Heavy Metal from Contaminated Soil: An Approach for a Sustainable Environment. Front. Plant Sci. 2023, 14, 1076876. [Google Scholar] [CrossRef]
- Berglund, M.; Larsson, K.; Grandér, M.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Castaño, A.; Esteban, M.; Angerer, J.; Koch, H.M.; et al. Exposure Determinants of Cadmium in European Mothers and Their Children. Environ. Res. 2015, 141, 69–76. [Google Scholar] [CrossRef]
- Doumett, S.; Lamperi, L.; Checchini, L.; Azzarello, E.; Mugnai, S.; Mancuso, S.; Petruzzelli, G.; Del Bubba, M. Heavy Metal Distribution between Contaminated Soil and Paulownia Tomentosa, in a Pilot-Scale Assisted Phytoremediation Study: Influence of Different Complexing Agents. Chemosphere 2008, 72, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Gouder de Beauregard, A.-C.; Mahy, G. Phytoremediation of Heavy Metals: The Role of Macrophytes in a Stormwater Basin. Int. J. Ecohydrol. Hydrobiol. 2002, 2, 1–4. [Google Scholar]
- Alkorta, I.; Hernández-Allica, J.; Becerril, J.M.; Amezaga, I.; Albizu, I.; Garbisu, C. Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic. Rev. Environ. Sci. Bio/Technol. 2004, 3, 71–90. [Google Scholar] [CrossRef]
- Ociepa, A.; Pruszek, K.; Lach, J.; Ociepa, E. Influence of Long-Term Cultivation of Soils by Means of Manure and Sludge on the Increase of Heavy Metals Content in Soils. Ecol. Chem. Eng. 2008, 15, 103–109. [Google Scholar]
- Farahat, E.; Linderholm, H.W. The Effect of Long-Term Wastewater Irrigation on Accumulation and Transfer of Heavy Metals in Cupressus Sempervirens Leaves and Adjacent Soils. Sci. Total Environ. 2015, 512–513, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Iqbal, N.; Bhatti, I.A.; Ahmad, N.; Zahid, M. Response Surface Methodology Application in Optimization of Cadmium Adsorption by Shoe Waste: A Good Option of Waste Mitigation by Waste. Ecol. Eng. 2016, 88, 265–275. [Google Scholar] [CrossRef]
- Hamzah, A.; Hapsari, R.I.; Wisnubroto, E.I. Phytoremediation of Cadmium-Contaminated Agricultural Land Using Indigenous Plants. Int. J. Environ. Agric. Res. 2016, 2, 8–14. [Google Scholar]
- Rafique, N.; Tariq, S.R. Distribution and Source Apportionment Studies of Heavy Metals in Soil of Cotton/Wheat Fields. Environ. Monit Assess 2016, 188, 309. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Murrieta, M.S.; Migules-Garduno, I.; Franco-Hernandez, O.; Govaerts, B.; Dendooven, L. C and N Mineralization and Microbial Biomass in Heavy-Metal Contaminated Soil. Eur. J. Soil Biol. 2006, 42, 89–98. [Google Scholar] [CrossRef]
- Chen, W.L.; LI, J.; Zhu, H.H. Advances in Rhizosphere Microbial Regulation of Plant Root Architecture. Acta Ecol. Sin. 2016, 36, 5285–5297. [Google Scholar]
- FAO. Global Assessment of Soil Pollution: Report; FAO and UNEP: Rome, Italy, 2021; ISBN 978-92-5-134469-9. [Google Scholar]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef]
- Kim, S.; Baek, K.; Lee, I. Phytoremediation and Microbial Community Structure of Soil from a Metal-Contaminated Military Shooting Range: Comparisons of Field and Pot Experiments. J. Environ. Sci. Health Part A 2010, 45, 389–394. [Google Scholar] [CrossRef]
- Bandara, T.; Vithanage, M. Phytoremediation of Shooting Range Soils. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 469–488. ISBN 978-3-319-40146-1. [Google Scholar]
- Lee, I.; Baek, K.; Kim, H.; Kim, S.; Kim, J.; Kwon, Y.; Chang, Y.; Bae, B. Phytoremediation of Soil Co-Contaminated with Heavy Metals and TNT Using Four Plant Species. J. Environ. Sci. Health Part A 2007, 42, 2039–2045. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Moon, D.H.; Yang, J.E.; Ok, Y.S. A Review of Environmental Contamination and Remediation Strategies for Heavy Metals at Shooting Range Soils. In Environmental Protection Strategies for Sustainable Development; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 437–451. ISBN 978-94-007-1590-5. [Google Scholar]
- Sharma, P.; Pratap Singhc, P.; Pratap Singhc, S.; Wah Tong, Y. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, F.; Tang, M.; Wang, Y.; Dong, J.; Ying, J.; Chen, Y.; Hu, B.; Li, C.; Liu, L. Melatonin Confers Cadmium Tolerance by Modulating Critical Heavy Metal Chelators and Transporters in Radish Plants. J. Pineal. Res. 2020, 69, 12659. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The Essential Metals for Humans: A Brief Overview. J. Inorg. Biochem. 2019, 195, 120–129. [Google Scholar] [CrossRef]
- Ghori, N.-H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy Metal Stress and Responses in Plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Franić, M.; Galić, V. As, Cd, Cr, Cu, Hg: Physiological Implications and Toxicity in Plants. In Plant Metallomics and Functional Omics; Sablok, G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–251. ISBN 978-3-030-19102-3. [Google Scholar]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Physiological Role of Nickel and Its Toxic Effects on Higher Plants. Russ. J. Plant Physiol. 2006, 53, 257–277. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; Whether Toxic or Essential for Plants and Environment—A Review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.; Khan, M.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Ernst, W.H.O.; Krauss, G.-J.; Verkleij, J.A.C.; Wesenberg, D. Interaction of Heavy Metals with the Sulphur Metabolism in Angiosperms from an Ecological Point of View. Plant Cell Environ. 2008, 31, 123–143. [Google Scholar] [CrossRef]
- Janicka-Russak, M.; Kabala, K.; Burzynski, M.; Klobus, G. Response of Plasma Membrane H+-ATPase to Heavy Metal Stress in Cucumis Sativus Roots. J. Exp. Bot. 2008, 59, 3721–3728. [Google Scholar] [CrossRef] [Green Version]
- Garzón, T.; Gunsé, B.; Moreno, A.R.; Tomos, A.D.; Barceló, J.; Poschenrieder, C. Aluminium-Induced Alteration of Ion Homeostasis in Root Tip Vacuoles of Two Maize Varieties Differing in Al Tolerance. Plant Sci. 2011, 180, 709–715. [Google Scholar] [CrossRef]
- Hayat, S.; Khalique, G.; Irfan, M.; Wani, A.S.; Tripathi, B.N.; Ahmad, A. Physiological Changes Induced by Chromium Stress in Plants: An Overview. Protoplasma 2012, 249, 599–611. [Google Scholar] [CrossRef]
- Shahid, M.; Pinelli, E.; Dumat, C. Review of Pb Availability and Toxicity to Plants in Relation with Metal Speciation; Role of Synthetic and Natural Organic Ligands. J. Hazard. Mater. 2012, 219–220, 1–12. [Google Scholar] [CrossRef]
- Gill, S.S.; Hasanuzzaman, M.; Nahar, K.; Macovei, A.; Tuteja, N. Importance of Nitric Oxide in Cadmium Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2013, 63, 254–261. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Mu, P.; Li, Z.; Yang, L. Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings. Rice Sci. 2013, 20, 238–242. [Google Scholar] [CrossRef]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 01143. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Hernández, M.; López-Delacalle, M.; Martí-Guillen, J.M.; Martínez-Lorente, S.E.; Rivero, R.M. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants 2021, 10, 775. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Gautam, S.; Landi, M.; Kandhol, N.; Araniti, F.; Ramakrishnan, M.; Satish, L.; Pratap Singh, V.; Sharma, P.; et al. Heavy Metal Induced Regulation of Plant Biology: Recent Insights. Physiol. Plant. 2022, 174, e13688. [Google Scholar] [CrossRef]
- Vats, P.; Kaur, U.J.; Rishi, P. Heavy Metal-Induced Selection and Proliferation of Antibiotic Resistance: A Review. J. Appl. Microbiol. 2022, 132, 4058–4076. [Google Scholar] [CrossRef]
- Kosakivska, I.V.; Babenko, L.M.; Romanenko, K.O.; Korotka, I.Y.; Potters, G. Molecular Mechanisms of Plant Adaptive Responses to Heavy Metals Stress. Cell Biol. Int. 2021, 45, 258–272. [Google Scholar] [CrossRef]
- Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2023, 42, 539–553. [Google Scholar] [CrossRef]
- Chander, K.; Dyckmans, J.; Joergensen, R.; Meyer, B.; Raubuch, M. Different Sources of Heavy Metals and Their Long-Term Effects on Soil Microbial Properties. Biol. Fertil. Soils 2001, 34, 241–247. [Google Scholar] [CrossRef]
- Becker, J.M.; Parkin, T.; Nakatsu, C.H.; Wilbur, J.D.; Konopka, A. Bacterial Activity, Community Structure, and Centimeter-Scale Spatial Heterogeneity in Contaminated Soil. Microb. Ecol. 2006, 51, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Naseer, M.; Sajad, M.A. Hazrat Ali Phytoremediation of Heavy Metals by Trifolium Alexandrinum. IJES 2012, 2, 1459–1469. [Google Scholar] [CrossRef] [Green Version]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [Green Version]
- Danh, L.T.; Truong, P.; Mammucari, R.; Tran, T.; Foster, N. Vetiver Grass, Vetiveria Zizanioides: A Choice Plant for Phytoremediation of Heavy Metals and Organic Wastes. Int. J. Phytoremed. 2009, 11, 664–691. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S. A Review of Phytoremediation of Heavy Metals and Utilization of Its Byproducts. Appl. Ecol. Environ. Res. 2005, 3, 214–231. [Google Scholar] [CrossRef]
- Muhammad, I.; Puschenreiter, M.; Wenzel, W.W. Cadmium and Zn Availability as Affected by PH Manipulation and Its Assessment by Soil Extraction, DGT and Indicator Plants. Sci. Total Environ. 2012, 416, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Wątły, J.; Łuczkowski, M.; Padjasek, M.; Krężel, A. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range. Inorg. Chem. 2021, 60, 4657–4675. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Phytochelatins: Sulfur-Containing Metal(Loid)-Chelating Ligands in Plants. Int. J. Mol. Sci. 2023, 24, 2430. [Google Scholar] [CrossRef] [PubMed]
- Merlos Rodrigo, M.A.; Anjum, N.A.; Heger, Z.; Zitka, O.; Vojtech, A.; Pereira, E.; Kizek, R. Role of Phytochelatins in Redox Caused Stress in Plants and Animals. In Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives; Shanker, A.K., Shanker, C., Eds.; InTech: London, UK, 2016; pp. 395–410. ISBN 978-953-51-2250-0. [Google Scholar]
- Gao, Y.; Li, H.; Song, Y.; Zhang, F.; Yang, Z. The Response of Thiols to Cadmium Stress in Spinach (Spinacia oleracea L.). Toxics 2022, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Raskin, I.; Kumar, P.N.; Dushenkov, S.; Salt, D.E. Bioconcentration of Heavy Metals by Plants. Curr. Opin. Biotechnol. 1994, 5, 285–290. [Google Scholar] [CrossRef]
- Meagher, R.B.; Heaton, A.C.P. Strategies for the Engineered Phytoremediation of Toxic Element Pollution: Mercury and Arsenic. J. Ind. Microbiol. Biotechnol. 2005, 32, 502–513. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, S.C.; Rock, S.A. Phytoremediation: State of the Science Conference and Other Developments. Int. J. Phytoremediation 2001, 3, 1–11. [Google Scholar] [CrossRef]
- Susarla, S.; Medina, V.F.; McCutcheon, S.C. Phytoremediation: An Ecological Solution to Organic Chemical Contamination. Ecol. Eng. 2002, 18, 647–658. [Google Scholar] [CrossRef]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia Pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar] [CrossRef]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Preliminary Investigations Regarding the Potential of Robinia pseudoacacia L. (Leguminosae) in the Phytoremediation of Sterile Dumps. J. Environ. Prot. Ecol. 2020, 21, 46–55. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; Ent, A. A Global Database for Plants That Hyperaccumulate Metal and Metalloid Trace Elements. New Phytol. 2017, 218, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Brooks, R.R. Terrestrial Higher Plants Which Hyper- Accumulate Metallic Elements—A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
- Sulaiman, F.R.; Hamzah, H.A. Heavy Metals Accumulation in Suburban Roadside Plants of a Tropical Area (Jengka, Malaysia). Ecol Process 2018, 7, 28. [Google Scholar] [CrossRef]
- Liu, W.-X.; Liu, J.-W.; Wu, M.-Z.; Li, Y.; Zhao, Y.; Li, S.-R. Accumulation and Translocation of Toxic Heavy Metals in Winter Wheat (Triticum aestivum L.) Growing in Agricultural Soil of Zhengzhou, China. Bull Environ. Contam Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The Assessment of Cadmium, Chromium, Copper, and Nickel Tolerance and Bioaccumulation by Shrub Plant Tetraena Qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szarek-Łukaszewska, G. Plants That Hyperaccumulate Metals. Kosmos 2014, 63, 443–453. [Google Scholar]
- Li, C.; Yang, G.; Liu, Z.; Cai, J. Overview of Phytoremediation Technology for Heavy Metal Contaminated Soil. In Proceedings of the E3S Web Conference, Online, China, 22–24 April 2022; Volume 350, p. 5. [Google Scholar]
- Mazumdar, K.; Das, S. Phytoremediation of Pb, Zn, Fe, and Mg with 25 Wetland Plant Species from a Paper Mill Contaminated Site in North East India. Environ. Sci. Pollut. Res. 2015, 22, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Dahlawi, S.; Sadiq, M.; Sabir, M.; Farooqi, Z.U.R.; Saifullah; Qadir, A.A.; Faraj, T.K. Differential Response of Brassica Cultivars to Potentially Toxic Elements and Their Distribution in Different Plant Parts Irrigated with Metal-Contaminated Water. Sustainability 2023, 15, 1966. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Murtaza, G.; Bibi, S.; Sabir, M.; Owens, G.; Saifullah; Ahmad, I.; Zeeshan, N. Immobilization of Cadmium in Soil-Plant System through Soil and Foliar Applied Silicon. Int. J. Phytoremed. 2022, 24, 1193–1204. [Google Scholar] [CrossRef]
- Pang, Y.L.; Quek, Y.Y.; Lim, S.; Shuit, S.H. Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach. Sustainability 2023, 15, 1290. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.-J. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Cheraghi, M.; Lorestani, B.; Khorasani, N.; Yousefi, N.; Karami, M. Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Metals. Biol Trace Elem Res 2011, 144, 1133–1141. [Google Scholar] [CrossRef]
- Roccotiello, E.; Manfredi, A.; Drava, G.; Minganti, V.; Giorgio Mariotti, M.; Berta, G.; Cornara, L. Zinc Tolerance and Accumulation in the Ferns Polypodium cambricum L. and Pteris vittata L. Ecotoxicol. Environ. Saf. 2010, 73, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Bani, A.; Pavlova, D.; Benizri, E.; Shallari, S.; Miho, L.; Meco, M.; Shahu, E.; Reeves, R.; Echevarria, G. Relationship between the Ni Hyperaccumulator Alyssum Murale and the Parasitic Plant Orobanche Nowackiana from Serpentines in Albania. Ecol. Res. 2018, 33, 549–559. [Google Scholar] [CrossRef]
- Bani, A.; Pavlova, D.; Echevarria, G.; Mullaj, A.; Reeves, R.D.; Morel, J.L.; Sulçe, S. Nickel Hyperaccumulation by the Species of Alyssum and Thlaspi (Brassicaceae) from the Ultramafic Soils of the Balkans. Bot. Serbica 2010, 34, 3–14. [Google Scholar]
- Skuza, L.; Szućko-Kociuba, I.; Filip, E.; Bożek, I. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Int. J. Mol. Sci. 2022, 23, 9335. [Google Scholar] [CrossRef] [PubMed]
- García-Lestón, M.; Kidd, P.S.; Becerra-Castro, C.; Monterroso, C. Changes in Metal Fractionation in the Rhizosphere of the Ni Hyperaccumulator. Alyssum Serpyllifolium subsp. Lusitanicum. In Biogeochemistry of Trace Elements: Environmental Protection, Remediation and Human Health; Tsinghua University Press: Beijing, China, 2007; pp. 192–193. [Google Scholar]
- Kidd, P.; Barceló, J.; Bernal, M.P.; Navari-Izzo, F.; Poschenrieder, C.; Shilev, S.; Clemente, R.; Monterroso, C. Trace Element Behaviour at the Root–Soil Interface: Implications in Phytoremediation. Environ. Exp. Bot. 2009, 67, 243–259. [Google Scholar] [CrossRef]
- Corso, M.; An, X.; Jones, C.Y.; Gonzalez-Doblas, V.; Schvartzman, M.S.; Malkowski, E.; Willats, W.G.T.; Hanikenne, M.; Verbruggen, N. Adaptation of Arabidopsis halleri to Extreme Metal Pollution through Limited Metal Accumulation Involves Changes in Cell Wall Composition and Metal Homeostasis. New Phytol. 2021, 230, 669–682. [Google Scholar] [CrossRef]
- Huang, H.; Yu, N.; Wang, L.; Gupta, D.K.; He, Z.; Wang, K.; Zhu, Z.; Yan, X.; Li, T.; Yang, X. The Phytoremediation Potential of Bioenergy Crop Ricinus Communis for DDTs and Cadmium Co-Contaminated Soil. Bioresour. Technol. 2011, 102, 11034–11038. [Google Scholar] [CrossRef]
- Rai, P.K. Technical Note: Phytoremediation of Hg and Cd from Industrial Effluents Using an Aquatic Free Floating Macrophyte Azolla Pinnata. Int. J. Phytoremediation 2008, 10, 430–439. [Google Scholar] [CrossRef]
- Talebi, M.; Tabatabaei, B.E.S.; Akbarzadeh, H. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla Species Inducing Expression of Methallothionein and Phytochelatin Synthase Genes. Chemosphere 2019, 230, 488–497. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, P.; Singh, J.; Kumar, P. Potential of Water Fern (Azolla pinnata R.Br.) in Phytoremediation of Integrated Industrial Effluent of SIIDCUL, Haridwar, India: Removal of Physicochemical and Heavy Metal Pollutants. Int. J. Phytoremediation 2020, 22, 392–403. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation Technology: Hyper-Accumulation Metals in Plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, S.; Kumar, A.; Singh, A.N. Phytoremediation: A Wonderful Cost-Effective Tool. In Cost Effective Technologies for Solid Waste and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 179–208. [Google Scholar]
- Al-Najar, H.; Schulz, R.; Römheld, V. Plant Availability of Thallium in the Rhizosphere of Hyperaccumulator Plants: A Key Factor for Assessment of Phytoextraction. Plant Soil 2003, 249, 97–105. [Google Scholar] [CrossRef]
- Koptsik, G.N. Problems and Prospects Concerning the Phytoremediation of Heavy Metal Polluted Soils: A Review. Eurasian Soil Sc. 2014, 47, 923–939. [Google Scholar] [CrossRef]
- Bansal, R.; Gauba, P. Efficacy of Cicer arietinum L. & Vigna mungo L. in Remediation of Hexavalent Chromium. IOP Conf. Ser. Earth Environ. Sci. 2021, 939, 012069. [Google Scholar] [CrossRef]
- Mohajel Kazemi, E.; Kolahi, M.; Yazdi, M.; Goldson-Barnaby, A. Anatomic Features, Tolerance Index, Secondary Metabolites and Protein Content of Chickpea (Cicer arietinum) Seedlings under Cadmium Induction and Identification of PCS and FC Genes. Physiol. Mol. Biol. Plants 2020, 26, 1551–1568. [Google Scholar] [CrossRef]
- Adelodun, A.A.; Afolabi, N.O.; Chaúque, E.F.C.; Akinwumiju, A.S. The Potentials of Eichhornia Crassipes for Pb, Cu, and Fe Removal from Polluted Waters. SN Appl. Sci. 2020, 2, 1646. [Google Scholar] [CrossRef]
- Ernst, W.H.O. Phytoextraction of Mine Wastes—Options and Impossibilities. Geochemistry 2005, 65, 29–42. [Google Scholar] [CrossRef]
- Nurfitri, A.G.; Masayuki, S.; Koichiro, S. Phytoremediation of Heavy Metal-Polluted Mine Drainage by Eleocharis Acicularis. Environ. Sci. Indian J. 2017, 13, 11. [Google Scholar]
- Conesa, H.M.; Faz, Á.; Arnaldos, R. Heavy Metal Accumulation and Tolerance in Plants from Mine Tailings of the Semiarid Cartagena–La Unión Mining District (SE Spain). Sci. Total Environ. 2006, 366, 1–11. [Google Scholar] [CrossRef]
- Silva Gonzaga, M.I.; Santos, J.A.G.; Ma, L.Q. Arsenic Chemistry in the Rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ. Pollut. 2006, 143, 254–260. [Google Scholar] [CrossRef]
- van der Ent, A.; Malaisse, F.; Erskine, P.D.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W.J.; Barnabas, A.D.; Sośnicka, M.; Harris, H.H. Abnormal Concentrations of Cu–Co in Haumaniastrum katangense, Haumaniastrum robertii and Aeolanthus biformifolius: Contamination or Hyperaccumulation? Metallomics 2019, 11, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd Contaminated Soils by Using Sunflower (Helianthus annuus) Plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Forte, J.; Mutiti, S. Phytoremediation Potential of Helianthus Annuus and Hydrangea Paniculata in Copper and Lead-Contaminated Soil. Water Air Soil Pollut. 2017, 228, 77. [Google Scholar] [CrossRef]
- Sikanna, R.; Sutriono, D.; Prismawiryanti, P. The Phytostabilization of Mercury (Hg) in Ipomoea Reptans Poir Plants from Polluted Soil. In Proceedings of the 1st International Conference on Science and Technology, ICOST 2019, Makassar, Indonesia, 2–3 May 2019; EAI: Makassar, Indonesia, 2019. [Google Scholar]
- Pytlik, E.; Kalinichenko, A. Soil Contamination by Heavy Metals and Bioremediation as an Opportunity to Improve Soil Condition in the Opole Voivodeship; Wydawnictwo i Drukarnia Świętego Krzyża: Opole, Poland, 2016; ISBN 978-83-7342-549-1. [Google Scholar]
- García Martín, J.F.; González Caro, M.d.C.; López Barrera, M.d.C.; Torres García, M.; Barbin, D.; Álvarez Mateos, P. Metal Accumulation by Jatropha Curcas L. Adult Plants Grown on Heavy Metal-Contaminated Soil. Plants 2020, 9, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunduz, S.; Uygur, F.N.; Kahramanoğlu, I. Heavy Metal Phytoremediation Potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L. Her. J. Agric. Food Sci. Res. 2012, 1, 1–5. [Google Scholar]
- Jelecevic, A.; Sager, M.; Jelecevic, A.; Vollprecht, D.; Liebhard, P. Heavy Metal Content of Lactuca sativa L. Grown on Soils from Historic Mining and Smelting Sites in Styria (Austria) Described by the Electro-Ultrafiltration (EUF) Method and Kinetic Models. J. Elem. 2021, 26, 553–571. [Google Scholar] [CrossRef]
- Yazdi, M.; Kolahi, M.; Mohajel Kazemi, E.; Goldson Barnaby, A. Study of the Contamination Rate and Change in Growth Features of Lettuce (Lactuca sativa Linn.) in Response to Cadmium and a Survey of Its Phytochelatin Synthase Gene. Ecotoxicol. Environ. Saf. 2019, 180, 295–308. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Bhat, S.A.; Singh, J. Aquatic Plants as Effective Phytoremediators of Heavy Metals. In Contaminants and Clean Technologies; CRC Press: Boca Raton, FL, USA, 2020; p. 11. ISBN 978-0-429-27585-2. [Google Scholar]
- Mahmood, T. Phytoextraction of Heavy Metals—The Process and Scope for Remediation of Contaminated Soils. Soil Environ. 2010, 29, 91–109. [Google Scholar]
- Kabała, C.; Karczewska, A.; Kozak, M. Energetic plants in reclamation and management of degraded soils. Zesz. Nauk. Uniw. Przyr. We Wrocławiu 2010, 96, 97–118. [Google Scholar]
- Kocoń, A.; Jurga, B. The Evaluation of Growth and Phytoextraction Potential of Miscanthus × Giganteus and Sida hermaphrodita on Soil Contaminated Simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ. Sci. Pollut. Res. 2017, 24, 4990–5000. [Google Scholar] [CrossRef] [Green Version]
- Pidlisnyuk, V.; Mamirova, A.; Pranaw, K.; Stadnik, V.; Kuráň, P.; Trögl, J.; Shapoval, P. Miscanthus × Giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy 2022, 12, 771. [Google Scholar] [CrossRef]
- Kozak, K.; Antosiewicz, D.M. Tobacco as an Efficient Metal Accumulator. Biometals 2022, 36, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Loosemore, ¡.; Straczek, A.; Hinsinger, P.; Jaillard, B. Zinc Mobilisation from a Contaminated Soil by Three Genotypes of Tobacco as Affected by Soil and Rhizosphere PH. Plant Soil 2004, 260, 19–32. [Google Scholar] [CrossRef]
- Vera-Estrella, R.; Gómez-Méndez, M.F.; Amezcua-Romero, J.C.; Barkla, B.J.; Rosas-Santiago, P.; Pantoja, O. Cadmium and Zinc Activate Adaptive Mechanisms in Nicotiana Tabacum Similar to Those Observed in Metal Tolerant Plants. Planta 2017, 246, 433–451. [Google Scholar] [CrossRef]
- Srivastava, N. Phytomicrobiome: Synergistic Relationship in Bioremediation of Soil for Sustainable Agriculture. In Phytomicrobiome Interactions and Sustainable Agriculture; Verma, A., Saini, J.K., Hesham, A.E., Singh, H.B., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 150–163. ISBN 978-1-119-64462-0. [Google Scholar]
- Tariq, S.R.; Ashraf, A. Comparative Evaluation of Phytoremediation of Metal Contaminated Soil of Firing Range by Four Different Plant Species. Arab. J. Chem. 2013, 9, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M. Lead Phytoextraction by Scented Pelargonium Cultivars: Soil-Plant Interactions and Tool Development for Understanding Lead Hyperaccumulation. Ph.D. Thesis, Institute National Polytechnique de Toulouse, Toulouse, France, 2009. [Google Scholar]
- Manzoor, M.; Gul, I.; Manzoor, A.; Kamboh, U.R.; Hina, K.; Kallerhoff, J.; Arshad, M. Lead Availability and Phytoextraction in the Rhizosphere of Pelargonium Species. Environ. Sci. Pollut. Res. 2020, 27, 39753–39762. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.-W.; Liu, X.; Han, Y.-H.; Mei, H.; Cao, Y.; de Oliveira, L.M.; Liu, Y.; Rathinasabapathi, B.; Chen, Y.; Ma, L.Q. Arsenic-Hyperaccumulator Pteris Vittata Efficiently Solubilized Phosphate Rock to Sustain Plant Growth and As Uptake. J. Hazard. Mater. 2017, 330, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kohda, Y.H.-T.; Qian, Z.; Chien, M.-F.; Miyauchi, K.; Endo, G.; Suzui, N.; Yin, Y.-G.; Kawachi, N.; Ikeda, H.; Watabe, H.; et al. New Evidence of Arsenic Translocation and Accumulation in Pteris Vittata from Real-Time Imaging Using Positron-Emitting 74As Tracer. Sci. Rep. 2021, 11, 12149. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Gąsecka, M.; Waliszewska, B.; Magdziak, Z.; Szostek, M.; Rutkowski, P.; Kaniuczak, J.; Zborowska, M.; Budzyńska, S.; Mleczek, P.; et al. Salix viminalis L.—A Highly Effective Plant in Phytoextraction of Elements. Chemosphere 2018, 212, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Ruttens, A.; Boulet, J.; Weyens, N.; Smeets, K.; Adriaensen, K.; Meers, E.; Van Slycken, S.; Tack, F.; Meiresonne, L.; Thewys, T.; et al. Short Rotation Coppice Culture of Willows and Poplars as Energy Crops on Metal Contaminated Agricultural Soils. Int. J. Phytoremediation 2011, 13, 194–207. [Google Scholar] [CrossRef]
- Angelova, V.R.; Ivanova, R.V.; Todorov, G.M.; Ivanov, K.I. Potential of Salvia sclarea L. for Phytoremediation of Soils Contaminated with Heavy Metals. Int. J. Agric. Biosyst. Eng. 2016, 10, 780–790. [Google Scholar]
- Dobrikova, A.; Apostolova, E.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, I.-D.S.; Moustakas, M. Tolerance Mechanisms of the Aromatic and Medicinal Plant Salvia sclarea L. to Excess Zinc. Plants 2021, 10, 194. [Google Scholar] [CrossRef]
- Tschan, M.; Robinson, B.H.; Nodari, M.; Schulin, R. Antimony Uptake by Different Plant Species from Nutrient Solution, Agar and Soil. Environ. Chem. 2009, 6, 144. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.K.; Jena, R.K.; Hota, S.; Kumar, A.; Ray, P.; Fagodiya, R.K.; Malav, L.C.; Yadav, K.K.; Gupta, D.K.; Khan, S.A.; et al. Recent Development in Bioremediation of Soil Pollutants Through Biochar for Environmental Sustainability. In Biochar Applications in Agriculture and Environment Management; Singh, J.S., Singh, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–140. ISBN 978-3-030-40996-8. [Google Scholar]
- Miranda Pazcel, E.M.; Wannaz, E.D.; Pignata, M.L.; Salazar, M.J. Tagetes minuta L. Variability in Terms of Lead Phytoextraction from Polluted Soils: Is Historical Exposure a Determining Factor? Environ. Process. 2018, 5, 243–259. [Google Scholar] [CrossRef]
- Salazar, M.J.; Pignata, M.L. Lead Accumulation in Plants Grown in Polluted Soils. Screening of Native Species for Phytoremediation. J. Geochem. Explor. 2014, 137, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Uptake and Distribution of Metals by Water Lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res. 2011, 18, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-M.; Chaney, R.; Brewer, E.; Roseberg, R.; Angle, J.S.; Baker, A.; Reeves, R.; Nelkin, J. Development of a Technology for Commercial Phytoextraction of Nickel: Economic and Technical Considerations. Plant Soil 2003, 249, 107–115. [Google Scholar] [CrossRef]
- Küpper, H.; Kochian, L.V. Transcriptional Regulation of Metal Transport Genes and Mineral Nutrition during Acclimatization to Cadmium and Zinc in the Cd/Zn Hyperaccumulator, Thlaspi caerulescens (Ganges Population). New Phytol. 2010, 185, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Fulekar, M.H. Phytoremediation of Heavy Metals by Brassica juncea in Aquatic and Terrestrial Environment. In The Plant Family Brassicaceae; Anjum, N.A., Ahmad, I., Pereira, M.E., Duarte, A.C., Umar, S., Khan, N.A., Eds.; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2012; Volume 21, pp. 153–169. ISBN 978-94-007-3912-3. [Google Scholar]
- Szczygłowska, M.; Piekarska, A.; Konieczka, P.; Namieśnik, J. Use of Brassica Plants in the Phytoremediation and Biofumigation Processes. Int. J. Mol. Sci. 2011, 12, 7760–7771. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, M.; Ohmori, Y.; Ha, N.T.H.; Sano, S.; Sera, K. Phytoremediation of Heavy Metal-Contaminated Water and Sediment by Eleocharis Acicularis. Clean Soil Air Water 2011, 39, 735–741. [Google Scholar] [CrossRef]
- Chehregani, A.; Malayeri, B.E. Removal of Heavy Metals by Native Accumulator Plants. Int. J. Agric. Biol. 2007, 9, 462–465. [Google Scholar]
- Kalve, S.; Sarangi, B.K.; Pandey, R.A.; Chakrabarti, T. Arsenic and Chromium Hyperaccumulation by an Ecotype of Pteris Vittata—Prospective for Phytoextraction from Contaminated Water and Soil. Curr. Sci. 2011, 100, 888–894. [Google Scholar]
- Yang, X.E.; Long, X.X.; Ye, H.B.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Cadmium Tolerance and Hyperaccumulation in a New Zn-Hyperaccumulating Plant Species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Reeves, R.D.; Hajar, A.S.M. Heavy Metal Accumulation and Tolerance in British Populations of the Metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 1994, 127, 61–68. [Google Scholar] [CrossRef]
- Banasova, V.; Horak, O.; Nadubinska, M.; Ciamporova, M.; Lichtscheidl, I. Heavy Metal Content in Thlaspi Caerulescens J. et C. Presl Growing on Metalliferous and Non-Metalliferous Soils in Central Slovakia. IJEP 2008, 33, 133. [Google Scholar] [CrossRef]
- Astel, A.; Czyżyk, A.; Parzych, A. Phytoremediation as a method of reducing the toxicity of heavy metal contaminated soils. LAB 2019, 4, 7. [Google Scholar]
- Pandey, V.C.; Souza-Alonso, P. Market Opportunities: In Sustainable Phytoremediation. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherland, 2019; pp. 51–82. ISBN 978-0-12-813912-7. [Google Scholar]
- Wong, M.H. Ecological Restoration of Mine Degraded Soils, with Emphasis on Metal Contaminated Soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Doty, S.L.; James, C.A.; Moore, A.L.; Vajzovic, A.; Singleton, G.L.; Ma, C.; Khan, Z.; Xin, G.; Kang, J.W.; Park, J.Y.; et al. Enhanced Phytoremediation of Volatile Environmental Pollutants with Transgenic Trees. Proc. Natl. Acad. Sci. USA 2007, 104, 16816–16821. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Reddy, D.H.K.; Yun, Y.-S. Improving the Quality of Runoff from Green Roofs through Synergistic Biosorption and Phytoremediation Techniques: A Review. Sustain. Cities Soc. 2019, 46, 101381. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, K.; Joshi, U.M. Can Green Roof Act as a Sink for Contaminants? A Methodological Study to Evaluate Runoff Quality from Green Roofs. Environ. Pollut. 2014, 194, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Beecham, S.; Razzaghmanesh, M. Water Quality and Quantity Investigation of Green Roofs in a Dry Climate. Water Res. 2015, 70, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Mesjasz-Przybyłowicz, J.; Nakonieczny, M.; Migula, P.; Augustyniak, M.; Tarnawska, M.; Reimold, W.U.; Koeberl, C.; Przybyłowicz, W.; Głowacka, B. Available Uptake of Cadmium, Lead, Nickel and Zinc from Soil and Water Solutions by the Nickel Hyperaccumulator Berkheya Coddii. Acta Biol. Crac. 2004, 46, 75–85. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Ingle, R.A.; Smith, J.A.C.; Sweetlove, L.J. Responses to Nickel in the Proteome of the Hyperaccumulator Plant Alyssum Lesbiacum. Biometals 2005, 18, 627–641. [Google Scholar] [CrossRef]
- Javed, M.T.; Tanwir, K.; Akram, M.S.; Shahid, M.; Niazi, N.K.; Lindberg, S. Phytoremediation of Cadmium-Polluted Water/Sediment by Aquatic Macrophytes: Role of Plant-Induced PH Changes. In Cadmium Toxicity and Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 495–529. ISBN 978-0-12-814864-8. [Google Scholar]
- Islam, S.; Ueno, Y.; Sikder, T.; Kurasaki, M. Phytofiltration of Arsenic and Cadmium From the Water Environment Using Micranthemum umbrosum (J.F. Gmel) S.F. Blake As A Hyperaccumulator. Int. J. Phytoremediation 2013, 15, 1010–1021. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Yang, M. Rhizofiltration Using Sunflower (Helianthus annuus L.) and Bean (Phaseolus vulgaris L. Var. Vulgaris) to Remediate Uranium Contaminated Groundwater. J. Hazard. Mater. 2010, 173, 589–596. [Google Scholar] [CrossRef]
- Piotrowska-Niczyporuk, A.; Bajguz, A. Phytoremediation—An Alternative for a Clean Environment. In Biodiversity—From cell to Ecosystem. Plants and Fungi in Changing Environmental Conditions; Polish Botanical Society: Białystok, Poland, 2013; ISBN 978-83-62069-37-8. [Google Scholar]
- Fine, P.; Rathod, P.H.; Beriozkin, A.; Mingelgrin, U. Uptake of Cadmium by Hydroponically Grown, Mature Eucalyptus camaldulensis Saplings and the Effect of Organic Ligands. Int. J. Phytoremed. 2013, 15, 585–601. [Google Scholar] [CrossRef]
- Hooda, V. Phytoremediation of Toxic Metals from Soil and Waste Water. J. Environ. Biol. 2007, 28, 367–376. [Google Scholar]
- Rezania, S.; Taib, S.M.; Md Din, M.F.; Dahalan, F.A.; Kamyab, H. Comprehensive Review on Phytotechnology: Heavy Metals Removal by Diverse Aquatic Plants Species from Wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef]
- Dhanwal, P.; Kumar, A.; Dudeja, S.; Chhokar, V.; Beniwal, V. Recent Advances in Phytoremediation Technology. In Advances in Environmental Biotechnology; Kumar, R., Sharma, A.K., Ahluwalia, S.S., Eds.; Springer: Singapore, 2017; pp. 227–241. ISBN 978-981-10-4040-5. [Google Scholar]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological Approaches to Tackle Heavy Metal Pollution: A Survey of Literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.K. Role of Amino Acids in Plant Responses to Stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Phytomining: A Review. Miner. Eng. 2009, 22, 1007–1019. [Google Scholar] [CrossRef]
- Tlustoš, P.; Száková, J.; Hrubý, J.; Hartman, I.; Najmanová, J.; Nedělník, J.; Pavlíková, D.; Batysta, M. Removal of As, Cd, Pb, and Zn from Contaminated Soil by High Biomass Producing Plants. Plant Soil Environ. 2011, 52, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of Contaminated Soils and Groundwater: Lessons from the Field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Herzig, R.; Nehnevajova, E.; Pfistner, C.; Schwitzguebel, J.-P.; Ricci, A.; Keller, C. Feasibility of Labile Zn Phytoextraction Using Enhanced Tobacco and Sunflower: Results of Five- and One-Year Field-Scale Experiments in Switzerland. Int. J. Phytoremediation 2014, 16, 735–754. [Google Scholar] [CrossRef]
- Malik, R.N.; Husain, S.Z.; Nazir, I. Heavy Metal Contamination and Accumulation in Soil and Wild Plant Species from Industrial Area of Islamabad, Pakistan. Pak. J. Bot. 2010, 42, 291–301. [Google Scholar]
- Pantola, R.C.; Alam, A. Potential of Brassicaceae Burnett (Mustard Family; Angiosperms) in Phytoremediation of Heavy Metals. IJSRES 2014, 2, 120–138. [Google Scholar] [CrossRef]
- Hunt, A.J.; Anderson, C.W.N.; Bruce, N.; García, A.M.; Graedel, T.E.; Hodson, M.; Meech, J.A.; Nassar, N.T.; Parker, H.L.; Rylott, E.L.; et al. Phytoextraction as a Tool for Green Chemistry. Green Process. Synth. 2014, 3, 3–22. [Google Scholar] [CrossRef]
- do Nascimento, C.W.A.; Amarasiriwardena, D.; Xing, B. Comparison of Natural Organic Acids and Synthetic Chelates at Enhancing Phytoextraction of Metals from a Multi-Metal Contaminated Soil. Environ. Pollut. 2006, 140, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Turan, M.; Esringü, A. Phytoremediation Based on Canola (Brassica napus L.) and Indian Mustard (Brassica juncea L.) Planted on Spiked Soil by Aliquot Amount of Cd, Cu, Pb, and Zn. Plant Soil Environ. 2007, 53, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Quartacci, M.F.; Baker, A.J.M.; Navari-Izzo, F. Nitrilotriacetate- and Citric Acid-Assisted Phytoextraction of Cadmium by Indian Mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 2005, 59, 1249–1255. [Google Scholar] [CrossRef]
- Hsiao, K.-H.; Kao, P.-H.; Hseu, Z.-Y. Effects of Chelators on Chromium and Nickel Uptake by Brassica Juncea on Serpentine-Mine Tailings for Phytoextraction. J. Hazard. Mater. 2007, 148, 366–376. [Google Scholar] [CrossRef]
- Anderson, C.W.N.; Bhatti, S.M.; Gardea-Torresdey, J.; Parsons, J. In Vivo Effect of Copper and Silver on Synthesis of Gold Nanoparticles inside Living Plants. ACS Sustain. Chem. Eng. 2013, 1, 640–648. [Google Scholar] [CrossRef]
- Wilson-Corral, V.; Anderson, C.W.N.; Rodriguez-Lopez, M. Gold Phytomining. A Review of the Relevance of This Technology to Mineral Extraction in the 21st Century. J. Environ. Manag. 2012, 111, 249–257. [Google Scholar] [CrossRef]
- Tandy, S.; Schulin, R.; Nowack, B. Uptake of Metals during Chelant-Assisted Phytoextraction with EDDS Related to the Solubilized Metal Concentration. Environ. Sci. Technol. 2006, 40, 2753–2758. [Google Scholar] [CrossRef]
- Duo, L.-A.; Gao, Y.-B.; Zhao, S.-L. Heavy Metal Accumulation and Ecological Responses of Turfgrass to Rubbish Compost with EDTA Addition. J. Integr. Plant Biol. 2005, 47, 1047–1054. [Google Scholar] [CrossRef]
- Munn, J.; January, M.; Cutright, T.J. Greenhouse Evaluation of EDTA Effectiveness at Enhancing Cd, Cr, and Ni Uptake in Helianthus Annuus and Thlaspi Caerulescens. J. Soils Sediments 2008, 8, 116–122. [Google Scholar] [CrossRef]
- Finžgar, N.; Kos, B.; Lestan, D. Heap Leaching of Lead Contaminated Soil Using Biodegradable Chelator [S,S]-Ethylenediamine Disuccinate. Environ. Technol. 2005, 26, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Finžgar, N.; Kos, B.; Leštan, D. Bioavailability and Mobility of Pb after Soil Treatment with Different Remediation Methods. Plant Soil Environ. 2006, 52, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Chiu, K.K.; Ye, Z.H.; Wong, M.H. Enhanced Uptake of As, Zn, and Cu by Vetiveria Zizanioides and Zea Mays Using Chelating Agents. Chemosphere 2005, 60, 1365–1375. [Google Scholar] [CrossRef]
- Agnello, A.C.; Huguenot, D.; Van Hullebusch, E.D.; Esposito, G. Enhanced Phytoremediation: A Review of Low Molecular Weight Organic Acids and Surfactants Used as Amendments. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2531–2576. [Google Scholar] [CrossRef] [Green Version]
- LeDuc, D.L.; Terry, N. Phytoremediation of Toxic Trace Elements in Soil and Water. J. Ind. Microbiol. Biotechnol. 2005, 32, 514–520. [Google Scholar] [CrossRef]
- Marecik, R.; Króliczak, P.; Cyplik, P. Phytoremediation—An alternative method for environmental cleanup. Biotechnologia 2006, 3, 88–97. [Google Scholar]
- Pilon-Smits, E.A.; LeDuc, D.L. Phytoremediation of Selenium Using Transgenic Plants. Curr. Opin. Biotechnol. 2009, 20, 207–212. [Google Scholar] [CrossRef]
- El Mehdawi, A.F.; Pilon-Smits, E.A.H. Ecological Aspects of Plant Selenium Hyperaccumulation: Ecology of Selenium Hyperaccumulation. Plant Biol. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Ginn, B.R.; Szymanowski, J.S.; Fein, J.B. Metal and Proton Binding onto the Roots of Fescue Rubra. Chem. Geol. 2008, 253, 130–135. [Google Scholar] [CrossRef]
- Kumpiene, J.; Fitts, J.P.; Mench, M. Arsenic Fractionation in Mine Spoils 10 Years after Aided Phytostabilization. Environ. Pollut. 2012, 166, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, K.E.; Gerwing, P.D.; Greenberg, B.M. Opinion: Taking Phytoremediation from Proven Technology to Accepted Practice. Plant Sci. 2017, 256, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Mench, M.; Lepp, N.; Bert, V.; Schwitzguébel, J.-P.; Gawronski, S.W.; Schröder, P.; Vangronsveld, J. Successes and Limitations of Phytotechnologies at Field Scale: Outcomes, Assessment and Outlook from COST Action 859. J. Soils Sediments 2010, 10, 1039–1070. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic Residues as Immobilizing Agents in Aided Phytostabilization: (I) Effects on Soil Chemical Characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epelde, L.; Becerril, J.M.; Mijangos, I.; Garbisu, C. Evaluation of the Efficiency of a Phytostabilization Process with Biological Indicators of Soil Health. J. Environ. Qual. 2009, 38, 2041–2049. [Google Scholar] [CrossRef]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From Phytoremediation of Soil Contaminants to Phytomanagement of Ecosystem Services in Metal Contaminated Sites. Int. J. Phytoremediation 2018, 20, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Berti, W.R.; Cunningham, S.D. Phytostabilization of Metals. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; JohnWiley & Sons, Inc.: New York, NY, USA, 2000; pp. 71–88. ISBN 978-0-471-19254-1. [Google Scholar]
- Göhre, V.; Paszkowski, U. Contribution of the Arbuscular Mycorrhizal Symbiosis to Heavy Metal Phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastretta, C.; Taghavi, S.; van der Lelie, D.; Mengoni, A.; Galardi, F.; Gonnelli, C.; Barac, T.; Boulet, J.; Weyens, N.; Vangronsveld, J. Endophytic Bacteria from Seeds of Nicotiana Tabacum Can Reduce Cadmium Phytotoxicity. Int. J. Phytoremediation 2009, 11, 251–267. [Google Scholar] [CrossRef]
- Ma, Y.; Prasad, M.N.V.; Rajkumar, M.; Freitas, H. Plant Growth Promoting Rhizobacteria and Endophytes Accelerate Phytoremediation of Metalliferous Soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Grobelak, A.; Kacprzak, M.; Fijałkowski, K. Phytoremediation—The Underestimated Potential of Plants in Cleaning up the Environment. J. Ecol. Health 2010, 14, 276–280. [Google Scholar]
- Adeoye, A.O.; Adebayo, I.A.; Afodun, A.M.; Ajijolakewu, K.A. Benefits and Limitations of Phytoremediation: Heavy Metal Remediation Review. In Phytoremediation; Academic Press: Cambridge, MA, USA, 2022; pp. 227–238. [Google Scholar]
- Behera, B.K.; Prasad, R. Environmental Technology and Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-819103-3. [Google Scholar]
- Huang, L.; Liu, C.; Liu, X.; Chen, Z. Retraction Note to: Immobilization of Heavy Metals in e-Waste Contaminated Soils by Combined Application of Biochar and Phosphate Fertilizer. Water Air Soil Pollut. 2019, 230, 129. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling Bioaccumulation of Heavy Metals in Soil-Crop Ecosystems and Identifying Its Controlling Factors Using Machine Learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef] [PubMed]
- Dinake, P.; Kelebemang, R.; Sehube, N. A Comprehensive Approach to Speciation of Lead and Its Contamination of Firing Range Soils: A Review. Soil Sediment Contam. Int. J. 2019, 28, 431–459. [Google Scholar] [CrossRef]
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Laureysens, I.; Blust, R.; De Temmerman, L.; Lemmens, C.; Ceulemans, R. Clonal Variation in Heavy Metal Accumulation and Biomass Production in a Poplar Coppice Culture: I. Seasonal Variation in Leaf, Wood and Bark Concentrations. Environ. Pollut. 2004, 131, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S. Phytoremediation of Mixed Contaminated Soil Enhanced with Electric Current. J. Hazard. Mater. 2019, 361, 95–102. [Google Scholar] [CrossRef]
- Fijałkowski, K.; Kacprzak, M. Fitoremediacja. Potencjał Roślin Do Oczyszczania Środowiska; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2020. [Google Scholar]
- Wójcik, M. They Grow and Cleanse. Dr. Wojcik of the UMCS Explains What Plants Can Do 2021. Available online: https://www.dziennikwschodni.pl/magazyn/rosna-i-oczyszczaja-co-potrafia-rosliny,n,1000281977.html (accessed on 2 April 2023).
- Centre for Renewable Energy Sources and Saving Fondation Project Gold: Bridging the Gap between Phytoremediation Solutions on Growing Energy Crops on Contaminated Lands and Clean Biofuel Production. 2021. CORDIS EU Research Results. Available online: https://cordis.europa.eu/project/id/101006873 (accessed on 2 April 2023). [CrossRef]
- Amin, H.; Ahmed Arain, B.; Jahangir, T.M.; Abbasi, A.R.; Abbasi, M.S.; Amin, F. Comparative Zinc Tolerance and Phytoremediation Potential of Four Biofuel Plant Species. Int. J. Phytoremediation 2022, 3, 1–15. [Google Scholar] [CrossRef]
- Kumar Yadav, K.; Gupta, N.; Kumar, A.; Reece, L.M.; Singh, N.; Rezania, S.; Ahmad Khan, S. Mechanistic Understanding and Holistic Approach of Phytoremediation: A Review on Application and Future Prospects. Ecol. Eng. 2018, 120, 274–298. [Google Scholar] [CrossRef]
- Shrinkhal, R. Coupling Phytoremediation Appositeness with Bioenergy Plants: A Sociolegal Perspective. In Phytoremediation Potential of Bioenergy Plants; Bauddh, K., Singh, B., Korstad, J., Eds.; Springer: Singapore, 2017; pp. 457–472. ISBN 978-981-10-3083-3. [Google Scholar]
- Petruzzelli, G.; Grifoni, M.; Barbafieri, M.; Rosellini, I.; Pedron, F. Sorption: Release Processes in Soil—The Basis of Phytoremediation Efficiency. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 91–112. ISBN 978-3-319-99650-9. [Google Scholar]
- Petruzzelli, G.; Pedron, F.; Barbafieri, M.; Rosellini, I.; Grifoni, M.; Franchi, E. Remediation Technologies, from Incineration to Phytoremediation: The Rediscovery of the Essential Role of Soil Quality. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer Nature: Singapore, 2021; pp. 113–149. ISBN 978-981-16-5621-7. [Google Scholar]
- Karczewska, A.; Mocek, A.; Goliński, P.; Mleczek, M. Phytoremediation of Copper-Contaminated Soil. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G.R., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 143–170. ISBN 978-3-319-10968-8. [Google Scholar]
- Misra, S.; Misra, K.G. Phytoremediation: An Alternative Tool Towards Clean and Green Environment. In Sustainable Green Technologies for Environmental Management; Shah, S., Venkatramanan, V., Prasad, R., Eds.; Springer: Singapore, 2019; pp. 87–109. ISBN 9789811327711. [Google Scholar]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Prasad, R. Phytoremediation for Environmental Sustainability; Springer: Singapore, 2021; ISBN 978-981-16-5620-0. [Google Scholar]
- Bauduceau, N.; Berry, P.; Cecchi, C.; Elmqvist, T.; Fernandez, M.; Hartig, T.; Krull, W.; Mayerhofer, E.; N, S.; Noring, L.; et al. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities”; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- IUCN Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016.
- Rayu, S.; Karpouzas, D.G.; Singh, B.K. Emerging Technologies in Bioremediation: Constraints and Opportunities. Biodegradation 2012, 23, 917–926. [Google Scholar] [CrossRef]
- Mukherjee, K.; Saha, R.; Ghosh, A.; Ghosh, S.K.; Maji, P.K.; Saha, B. Surfactant-Assisted Bioremediation of Hexavalent Chromium by Use of an Aqueous Extract of Sugarcane Bagasse. Res. Chem. Intermed. 2014, 40, 1727–1734. [Google Scholar] [CrossRef]
- Wydro, U.; Łapiński, D.; Ofman, P.; Struk-Sokołowska, J. Supporting the processes of bioremediation of contaminated soils. In Interdisciplinary Issues in Engineering and Environmental Protection; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2015; Volume 5, pp. 504–515. [Google Scholar]
- Miller, U.; Sówka, I.; Skrętowicz, M. The application of surfactants in environment biotechnology. In Interdyscyplinarne Zagadnienia w Inżynierii i Ochronie Środowiska: Praca zbiorowa. 4; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2014; ISBN 978-83-7493-836-5. [Google Scholar]
- Marchut-Mikołajczyk, O.; Kwapisz, E.; Antczak, T. Enzymatic Bioremediation of Xenobiotics. Inżynieria I Ochr. Środowiska 2013, 16, 39–55. [Google Scholar]
- Macé, C.; Desrocher, S.; Gheorghiu, F.; Kane, A.; Pupeza, M.; Cernik, M.; Kvapil, P.; Venkatakrishnan, R.; Zhang, W. Nanotechnology and Groundwater Remediation: A Step Forward in Technology Understanding. Remediation 2006, 16, 23–33. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A. Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., R. Lanza, G., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 135–149. ISBN 978-3-319-99650-9. [Google Scholar]
- Adejumo, A.L.; Azeez, L.; Kolawole, T.O.; Aremu, H.K.; Adedotun, I.S.; Oladeji, R.D.; Adeleke, A.E.; Abdullah, M. Silver Nanoparticles Strengthen Zea Mays against Toxic Metal-Related Phytotoxicity via Enhanced Metal Phytostabilization and Improved Antioxidant Responses. Int. J. Phytoremediation 2023, 21, 2187224. [Google Scholar] [CrossRef] [PubMed]
- Cameotra, S.S.; Dhanjal, S. Environmental Nanotechnology: Nanoparticles for Bioremediation of Toxic Pollutants. In Bioremediation Technology; Fulekar, M.H., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 348–374. ISBN 978-90-481-3677-3. [Google Scholar]
- Biziewska, I.; Talarek, M.; Bajguz, A. The Role of Brassinosteroids in Plant Response to Heavy Metal Stress. In Biodiversity—From cell to ecosystem Functioning of plants and fungi. Environment—Experiment—Education; Polskie Towarzystwo Botaniczne: Białystok, Poland, 2015; pp. 253–263. [Google Scholar]
- Bajguz, A.; Hayat, S. Effects of Brassinosteroids on the Plant Responses to Environmental Stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Vázquez, M.N.; Guerrero, Y.R.; González, L.M.; Noval, W.T. de la Brassinosteroids and Plant Responses to Heavy Metal Stress. An Overview. OJMetal 2013, 3, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Gisbert, C.; Ros, R.; De Haro, A.; Walker, D.J.; Pilar Bernal, M.; Serrano, R.; Navarro-Aviñó, J. A Plant Genetically Modified That Accumulates Pb Is Especially Promising for Phytoremediation. Biochem. Biophys. Res. Commun. 2003, 303, 440–445. [Google Scholar] [CrossRef]
- Bennett, L.E.; Burkhead, J.L.; Hale, K.L.; Terry, N.; Pilon, M.; Pilon-Smits, E.A.H. Bioremediation and Biodegradation. J. Environ. Qual. 2003, 32, 432–440. [Google Scholar] [CrossRef]
- Shim, D.; Kim, S.; Choi, Y.-I.; Song, W.-Y.; Park, J.; Youk, E.S.; Jeong, S.-C.; Martinoia, E.; Noh, E.-W.; Lee, Y. Transgenic Poplar Trees Expressing Yeast Cadmium Factor 1 Exhibit the Characteristics Necessary for the Phytoremediation of Mine Tailing Soil. Chemosphere 2013, 90, 1478–1486. [Google Scholar] [CrossRef]
- Martínez, M.; Bernal, P.; Almela, C.; Vélez, D.; García-Agustín, P.; Serrano, R.; Navarro-Aviñó, J. An Engineered Plant That Accumulates Higher Levels of Heavy Metals than Thlaspi Caerulescens, with Yields of 100 Times More Biomass in Mine Soils. Chemosphere 2006, 64, 478–485. [Google Scholar] [CrossRef]
- Radwańska, K.; Zadrożniak, B.; Mystkowska, I.; Baranowska, A. Possibilities Of Using Perennial Energy Crops In Reclamation Of Degraded Land. Econ. Reg. Stud. 2016, 9, 70–85. [Google Scholar]
- Boyter, M.J.; Brummer, J.E.; Brummer, W.C. Growth and Metal Accumulation of Geyer and Mountain Willow Grown in Topsoil versus Amanded Mine Tailings. Water Air Soil Pollut. 2009, 198, 17–29. [Google Scholar] [CrossRef]
- Máthé-Gáspár, G.; Anton, A. Study of Phytoremediation by Use of Willow and Rape. Acta Biol. Szeged. 2005, 49, 73–74. [Google Scholar]
- Borkowska, H.; Lipiński, W. Comparison of content of selected elements in biomass of Sida hermaphrodita grown under various soil conditions. Acta Agrophysica 2008, 11, 589–595. [Google Scholar]
- Bhatt, A.; Agrawal, K.; Verma, P. Phycoremediation: Treatment of Pollutants and an Initiative Towards Sustainable Environment. In Phytoremediation for Environmental Sustainability; Springer: Singapore, 2021. [Google Scholar]
- Lavrinovičs, A.; Juhna, T. Review on Challenges and Limitations for Algae-Based Wastewater Treatment. Constr. Sci. 2017, 20, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Mariano, C.; Mello, I.S.; Barros, B.M.; da Silva, G.F.; Terezo, A.J.; Soares, M.A. Mercury Alters the Rhizobacterial Community in Brazilian Wetlands and It Can Be Bioremediated by the Plant-Bacteria Association. Environ. Sci. Pollut. Res. 2020, 27, 13550–13564. [Google Scholar] [CrossRef]
- Mello, I.S.; Targanski, S.; Pietro-Souza, W.; Frutuoso Stachack, F.F.; Terezo, A.J.; Soares, M.A. Endophytic Bacteria Stimulate Mercury Phytoremediation by Modulating Its Bioaccumulation and Volatilization. Ecotoxicol. Environ. Saf. 2020, 202, 110818. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Elsas, J.D. van Properties of Bacterial Endophytes and Their Proposed Role in Plant Growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef]
- Goryluk-Salmonowicz, A.; Piórek, M.; Rekosz-Burlaga, H.; Studnicki, M.; Błaszczyk, M. Endophytic Detection in Selected European Herbal Plants. Pol. J. Microbiol. 2016, 65, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Goryluk-Salmonowicz, A.; Orzeszko-Rywka, A.; Piorek, M.; Rekosz-Burlaga, H.; Otlowska, A.; Gozdowski, D.; Blaszczyk, M. Plant Growth Promoting Bacterial Endophytes Isolated from Polish Herbal Plants. Acta Sci. Polonorum. Hortorum Cultus 2018, 17, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Goryluk-Salmonowicz, A.; Popowska, M. Occurrence Of The Co-Selection Phenomenon In Non-Clinical Environments. Adv. Microbiol. 2019, 58, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Idris, R.; Trifonova, R.; Puschenreiter, M.; Wenzel, W.W.; Sessitsch, A. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi Goesingense. Appl. Environ. Microbiol. 2004, 70, 2667–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Deeb, B. Plasmid Mediated Tolerance and Removal of Heavy Metals by Enterobacter sp. Am. J. Biochem. Biotechnol. 2009, 5, 47–53. [Google Scholar] [CrossRef]
- Sun, L.-N.; Zhang, Y.-F.; He, L.-Y.; Chen, Z.-J.; Wang, Q.-Y.; Qian, M.; Sheng, X.-F. Genetic Diversity and Characterization of Heavy Metal-Resistant-Endophytic Bacteria from Two Copper-Tolerant Plant Species on Copper Mine Wasteland. Bioresour. Technol. 2010, 101, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Huang, H.G.; Corpas, F.J. Lead Tolerance in Plants: Strategies for Phytoremediation. Environ. Sci. Pollut. Res. 2013, 20, 2150–2161. [Google Scholar] [CrossRef]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The Potential of Genetic Engineering of Plants for the Remediation of Soils Contaminated with Heavy Metals: Transgenic Plants for Phytoremediation. Plant Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The Hyperaccumulator Sedum Plumbizincicola Harbors Metal-Resistant Endophytic Bacteria That Improve Its Phytoextraction Capacity in Multi-Metal Contaminated Soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, B.A.; El-Sharouny, H.M.; Fahmy, N. Plasmids Incidence, Antibiotic and Heavy Metal Resistance Patterns of Endophytic Bacteria Isolated from Aquatic Plant, Eichhornia Crassipes. J. Bot. 2006, 33, 151–171. [Google Scholar]
- Sheng, X.-F.; Xia, J.-J.; Jiang, C.-Y.; He, L.-Y.; Qian, M. Characterization of Heavy Metal-Resistant Endophytic Bacteria from Rape (Brassica napus) Roots and Their Potential in Promoting the Growth and Lead Accumulation of Rape. Environ. Pollut. 2008, 156, 1164–1170. [Google Scholar] [CrossRef]
- Wang, L.; Lin, H.; Dong, Y.; He, Y.; Liu, C. Isolation of Vanadium-Resistance Endophytic Bacterium PRE01 from Pteris Vittata in Stone Coal Smelting District and Characterization for Potential Use in Phytoremediation. J. Hazard. Mater. 2018, 341, 1–9. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B.R. Mechanisms Used by Plant Growth-Promoting Bacteria. In Bacteria in Agrobiology: Plant Nutrient Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 17–46. ISBN 978-3-642-21060-0. [Google Scholar]
- Gadd, G.M. Microbial Influence on Metal Mobility and Application for Bioremediation. Geoderma 2004, 122, 109–119. [Google Scholar] [CrossRef]
- Abou-Shanab, R.; Angle, J.; Delorme, T.; Chaney, R.; Van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H. Rhizobacterial Effects on Nickel Extraction from Soil and Uptake by Alyssum Murale. New Phytol. 2003, 158, 219–224. [Google Scholar] [CrossRef]
- Whiting, S.N.; de Souza, M.P.; Terry, N. Rhizosphere Bacteria Mobilize Zn for Hyperaccumulation by Thlaspi Caerulescens. Environ. Sci. Technol. 2001, 35, 3144–3150. [Google Scholar] [CrossRef] [PubMed]
- Alford, É.R.; Pilon-Smits, E.A.H.; Fakra, S.C.; Paschke, M.W. Selenium Hyperaccumulation by Astragalus (Fabaceae) Does Not Inhibit Root Nodule Symbiosis. Am. J. Bot. 2012, 99, 1930–1941. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, M.; Sandhya, S.; Prasad, M.N.V.; Freitas, H. Perspectives of Plant-Associated Microbes in Heavy Metal Phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Prieto-Fernández, Á.; Kidd, P.S.; Weyens, N.; Rodríguez-Garrido, B.; Touceda-González, M.; Acea, M.J.; Vangronsveld, J. Improving Performance of Cytisus Striatus on Substrates Contaminated with Hexachlorocyclohexane (HCH) Isomers Using Bacterial Inoculants: Developing a Phytoremediation Strategy. Plant Soil 2013, 362, 247–260. [Google Scholar] [CrossRef]
- Syranidou, E.; Christofilopoulos, S.; Gkavrou, G.; Thijs, S.; Weyens, N.; Vangronsveld, J.; Kalogerakis, N. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus Acutus. Front. Microbiol. 2016, 7, 01016. [Google Scholar] [CrossRef] [Green Version]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front. Plant Sci. 2016, 7, 00303. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Joia, J. Microbes as Potential Tool for Remediation of Heavy Metals: A Review. J. Microb. Biochem. Technol. 2016, 8, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.X.; Guo, J.L.; Liu, R.X. Biosorption of Heavy Metals by Bacteria Isolated from Activated Sludge. Appl. Biochem. Biotechnol. 2001, 91–93, 171–184. [Google Scholar]
- Zhou, G.Q.; Ren, Z.Y.; Yang, H.Z.; Li, R.J.; Xing, Y.J.; Zhao, Y.Q. Adsorption of Cd2+ and Other Heavy Metal Ions by Microorganism. Biotechnol. Bull. 2013, 6, 155–159. [Google Scholar]
- Alford, É.R.; Pilon-Smits, E.A.H.; Paschke, M.W. Metallophytes—A View from the Rhizosphere. Plant Soil 2010, 337, 33–50. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, J.; Shim, H.; Bai, Z. New Advances in Plant Growth-Promoting Rhizobacteria for Bioremediation. Environ. Int. 2007, 33, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Heng, S.; Munis, M.F.H.; Fahad, S.; Yang, X. Phytoremediation of Heavy Metals Assisted by Plant Growth Promoting (PGP) Bacteria: A Review. Environ. Exp. Bot. 2015, 117, 28–40. [Google Scholar] [CrossRef]
- Huang, X.-D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R.; Greenberg, B.M. Responses of Three Grass Species to Creosote during Phytoremediation. Environ. Pollut. 2004, 130, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Saleem, M.; Hussain, S. Perspectives of Bacterial ACC Deaminase in Phytoremediation. Trends Biotechnol. 2007, 25, 356–362. [Google Scholar] [CrossRef]
- Glick, B.R. Using Soil Bacteria to Facilitate Phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef]
- Kong, Z.; Deng, Z.; Glick, B.R.; Wei, G.; Chou, M. A Nodule Endophytic Plant Growth-Promoting Pseudomonas and Its Effects on Growth, Nodulation and Metal Uptake in Medicago Lupulina under Copper Stress. Ann. Microbiol. 2017, 67, 49–58. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Ijah; Abioye, O.P.; Bala, J.D. Microbial-Aided Phytoremediation of Heavy Metals Contaminated Soil: A Review. Environ. Chem. Lett. 2019, 9, 104–125. [Google Scholar] [CrossRef]
- Matsukawa, E.; Nakagawa, Y.; Iimura, Y.; Hayakawa, M. Stimulatory Effect of Indole-3-Acetic Acid on Aerial Mycelium Formation and Antibiotic Production in Streptomyces spp. Actinomycetologica 2007, 21, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, S.; Vanderleyden, J. Auxin and Plant-Microbe Interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [Green Version]
- Duca, D.; Rose, D.R.; Glick, B.R. Characterization of a Nitrilase and a Nitrile Hydratase from Pseudomonas Sp. Strain UW4 That Converts Indole-3-Acetonitrile to Indole-3-Acetic Acid. Appl Environ. Microbiol. 2014, 80, 4640–4649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.C.; Greenhut, I.V.; Leveau, J.H.J. Functional Characterization of the Bacterial Iac Genes for Degradation of the Plant Hormone Indole-3-Acetic Acid. J Chem Ecol 2013, 39, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field Crops for Phytoremediation of Metal-Contaminated Land. A Review. Environ. Chem Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Javaid, A. Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils. In Biomanagement of Metal-Contaminated Soils; Khan, M.S., Zaidi, A., Goel, R., Musarrat, J., Eds.; Environmental Pollution; Springer: Dordrecht, The Netherland, 2011; Volume 20, pp. 125–141. ISBN 978-94-007-1913-2. [Google Scholar]
- Bonfante, P.; Anca, I.-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef] [Green Version]
- Orłowska, E.; Przybyłowicz, W.; Orlowski, D.; Turnau, K.; Mesjasz-Przybyłowicz, J. The Effect of Mycorrhiza on the Growth and Elemental Composition of Ni-Hyperaccumulating Plant Berkheya Coddii Roessler. Environ. Pollut. 2011, 159, 3730–3738. [Google Scholar] [CrossRef]
- Han, M.; Yang, H.; Ding, N.; You, S.; Yu, G. The Role of Plant-Associated Bacteria in the Phytoremediation of Heavy Metal Contaminated Soils. E3S Web Conf. 2021, 261, 04006. [Google Scholar] [CrossRef]
- Peuke, A.D.; Rennenberg, H. Phytoremediation: Molecular Biology, Requirements for Application, Environmental Protection, Public Attention and Feasibility. EMBO Rep. 2005, 6, 497–501. [Google Scholar] [CrossRef]
- Tong, Y.-P.; Kneer, R.; Zhu, Y.-G. Vacuolar Compartmentalization: A Second-Generation Approach to Engineering Plants for Phytoremediation. Trends Plant Sci. 2004, 9, 7–9. [Google Scholar] [CrossRef]
- Dhingra, N.; Sharma, R.; Singh, N.S. Phytoremediation of Heavy Metal Contaminated Soil and Water. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer Nature: Singapore, 2021; pp. 47–70. ISBN 978-981-16-5621-7. [Google Scholar]
Plant Species | TEs | Method | References |
---|---|---|---|
Alyssum murale | Ni | phytoextraction | [91,92,93] |
Alyssum pintodasilvae | Ni | phytoextraction | [94,95] |
Arabidopsis halleri | Cd, Zn | phytoextraction | [93,96,97] |
Azolla pinnata | Cd, Zn, Ni | phytoextraction | [98,99] |
Cu | rhizofiltration | [100,101] | |
Berkheya coddii | Ni | phytoextraction | [92,93] |
Brassica juncea | Pb, Cd, Cu, Ni, Zn, Cr | rhizofiltration | [93,102] |
Brassica oleracea | Tl | phytoextraction | [95,103] |
Betula occidentalis | Pb | rhizofiltration | [104] |
Cicer aeritinum L. | Cr, Cu, Cd, Pb | phytoextraction | [105,106] |
Eichhornia crassipes | Cu, Pb | rhizofiltration | [93,107] |
Eleocharis acicularis | Cu, Cd, Zn, As, Pb | phytoextraction | [108,109] |
Euphorbia sp. | Cu, As, Cd, Pb, Zn | phytostabilization | [93,110,111] |
Haumaniastrum robertii | Co | phytoextraction | [101,112] |
Helianthus annuus | Cd, Pb, Cr, Ni | phytostabilization | [32,113,114] |
Iberis intermedia | Tl | phytoextraction | [95,103] |
Ipomoea alpina | Cu, Hg | phytostabilization | [115,116] |
Jatropha curcas L. | Cd, Cu, Ni, Pb, Hg, As | phytoextraction | [93,117] |
Lactuca sativa L. | Cd, Pb | phytoextraction | [118,119,120] |
Lepidium sativum L. | Cd, Pb, As | phytoextraction | [118,121] |
Macadamia neurophylla | Mn | phytoextraction | [122] |
Miscanthus × giganteus | Cu, Zn, Cd, Pb, Ni | phytoextraction | [123,124,125] |
Nicotiana tabacum | Cd, Zn | phytoextraction | [95,126,127,128] |
Pisum sativum L. | Cd, Cu, Cr, Co, Ni, Pb | phytoextraction | [129,130] |
Pelargonium sp. | Pb | phytoextraction | [131,132] |
Pteris vittata | As | phytoextraction | [95,133,134] |
Salix viminalis | Cu, Zn, Pb, Cd | phytoextraction | [93,123,135,136] |
Salvia sclarea L. | Cd, Zn, Pb | phytoextraction | [137,138] |
Spinacia oleracea L. | Cd, Pb, As, Sb | phytoextraction | [118,139] |
Cd, Al | phytostabilization | [140] | |
Thlaspi caerulescens | Cd | phytoextraction | [93] |
Zn | rhizofiltration | [93,102] | |
Thlaspi goesingense | Ni | phytoextraction | [92,93] |
Tagetes minuta | As, Pb | phytoextraction | [141,142] |
Plant Species | TEs | TEs Accumulation (mg kg−1) | TEs Accumulated Part of Plant | References |
---|---|---|---|---|
Alyssum bertolonii | Ni | 10,900 | Shoots | [145] |
Alyssum murale | Ni | 4730–20,100 | Leaves | [92] |
Arabidopsis halleri | Zn | 5722 | Shoots | [146] |
Azolla pinnata | Cd | 740 | Roots | [98] |
Brassica juncea | Zn | 30,550 | Roots | [147] |
Cd | 25,000 | Roots | [148] | |
Eleocharis acicularis | Cu | 20,200 | Shoots | [149] |
Zn | 11,200 | |||
As | 1470 | |||
Euphorbia cheiradenia | Pb | 1138 | Shoots | [150] |
Pteris vittata | As | 8331 | Frond and root | [151] |
Sedum alfredii | Zn | 9000 | Leaves | [152] |
Thlaspi caerulescens | Ni | 6100 | Rosette | [153] |
Zn | 19,410 | Leaves | [154] |
Plant Species | TEs | TEs Accumulation [mg kg−1] |
---|---|---|
Ficus microcarpa | Cd | 419 |
Cu | 1260 | |
Pb | 1050 | |
Zn | 561 | |
Helichrysum italicum | Zn | 646 (root), 1176 (stem) |
Pb | 346 (root), 484 (stem) | |
Melastoma malabathricum | Cd | 426 |
Cu | 1820 | |
Pb | 2390 | |
Zn | 1380 | |
Pennisetum purpureum | Cd | 1.30–7.05 (stem) |
Portulaca grandiflora | Pb | 9.77 |
Portulaca oleracea | Cr (VI) | 4600 (root), 1400 (stem) |
Sedum alfredii | Cd | 4512 (stem), 3317 (leaf) |
Sedum plumbizincicola | Cd | 35 (root), 93 (stem) |
Zn | 889 (root), 1072 (stem) | |
Pb | 99 (root), 101 (stem) | |
Solanum nigrum | Cd | 35.9 (root), 77.0 (stem), 117.2 (leaf) |
Zn | 167.9 (root), 95.4 (stem), 85.5 (leaf) | |
Cu | 64.0 (root), 12.3 (stem), 32.2 (leaf) |
Plant Species | TEs | Chelator | References |
---|---|---|---|
Arabidopsis halleri | As, Hg | Thiol-rich chelators | [71] |
Brassica juncea | Cd, Cu, Ni, Pb, Zn | Gallic and citric acid | [184] |
Cd, Cu, Pb, Zn | EDTA | [185] | |
Cd | Citric acid and NTA | [186] | |
Cr, Ni | EDTA, DTPA Oxalic acid, citric acid | [187] | |
Au, Ag | NH4SCN | [188] | |
Helianthus annuus | Cu, Zn | EDDS | [189,190] |
Lolium perenne | Cr, Ni, Zn | EDTA | [191] |
Phalaris arundincacea | Cr | EDTA | [191] |
Thlaspi caerulascens | Cd, Cr, Ni | EDTA | [192] |
Thlaspi goesingense | Pb | [S,S]-ethylene diamine disuccinate | [193,194] |
Zea mays | Zn | NTA | [195] |
Bioenergy Crop | Soil Pollutants | Sustainable Bioenergy Production |
---|---|---|
Jatropha curcas | Heavy metals | Biodiesel (seed oil) |
Populus spp. | Organics, heavy metals | Bioethanol (biomass) |
Salix spp. | Organics, heavy metals | Bioethanol (biomass) |
Arundo donax | Organics, heavy metals | Bioenergy, bioethanol (biomass) |
Miscanhtus | Organics, heavy metals | Bioethanol (biomass) |
Ricinus communis | Organics, heavy metals | Biodiesel (biomass and seed oil) |
Zea mays | Heavy metals | Bioenergy (biomass) |
Halianthus annuus | Heavy metals | Bioenergy, bioethanol (biomass and seed oil) |
Brassica spp. | Heavy metals | Biofuel, biodiesel (seed oil) |
Canabis sativa | Heavy metals | Bioenergy (biomass) |
Type/Species Endophytic Bacterium | Source of Bacteria Isolation | Resistance of Bacteria to TEs | References |
---|---|---|---|
Achromobacter sp. | Sedum plumbizincicola | Zn, Cd, Pb | [269] |
Acinetobacter sp. | Elsholtzia splendens | Cu | [266] |
Bacillus sp. | Alnus firma Sedum plumbizincicola | Zn, Cd, Pb | [269] |
Enterobacter sp. | Eichhornia crassipes | Zn, Cd, Pb | [265,270] |
Methylobacterium mesophilicum | Thlaspi goesingense Halácsy | Ni | [264] |
Microbacterium sp. | Brassica napus | Zn, Cd, Cu, Ni, Pb | [271] |
Plantibacter sp. | Thlaspi goesingense Halácsy | Ni | [264] |
Pseudomonas sp. | Alyssum serpyllifolium | Ni | [269] |
Rhodococcus sp. | Thlaspi goesingense Halácsy | Ni | [264] |
Serratia marcescens | Pteris vittata | V | [272] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocek-Płóciniak, A.; Mencel, J.; Zakrzewski, W.; Roszkowski, S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants 2023, 12, 1653. https://doi.org/10.3390/plants12081653
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants. 2023; 12(8):1653. https://doi.org/10.3390/plants12081653
Chicago/Turabian StyleMocek-Płóciniak, Agnieszka, Justyna Mencel, Wiktor Zakrzewski, and Szymon Roszkowski. 2023. "Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems" Plants 12, no. 8: 1653. https://doi.org/10.3390/plants12081653
APA StyleMocek-Płóciniak, A., Mencel, J., Zakrzewski, W., & Roszkowski, S. (2023). Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants, 12(8), 1653. https://doi.org/10.3390/plants12081653