Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na+ Includer) and V. nakashimae (Na+ Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean (V. angularis) Cultivars
Abstract
:1. Introduction
2. Results
2.1. Map Construction and Linkage Analysis of Population A and B Using SSR Markers
2.2. Map Construction and Linkage Analysis of Population C Using RAD Markers
2.3. Measurement of Na+ Content in Leaves, Stems and Roots of Parental Materials
2.4. QTL Analysis
2.4.1. Positive and Negative Effects of “Tojinbaka” Alleles on Salt Tolerance in QTLs Detected from Population A (V. angularis “Kyoto Dainagon” × V. riukiuensis “Tojinbaka”)
2.4.2. “Ukushima” Allele Increases Salt Tolerance at QTLs Detected from Population B (V. angularis “Kyoto Dainagon” × V. nakashimae “Ukushima”)
2.4.3. “Tojinbaka” Allele Increases Salt Tolerance at QTLs Detected from Population C (V. nakashimae “Ukushima” × V. riukiuensis “Tojinbaka”)
2.4.4. Transgressive Segregation for Na+ Contents in Leaves in Population C (V. nakashimae “Ukushima” × V. riukiuensis “Tojinbaka”)
3. Discussion
4. Materials and Methods
4.1. Parental Materials
4.2. Three Interspecific Hybrid Populations
4.3. Growth Conditions and Salt Stress Treatments
4.4. Measurement of Na+ Concentration in Parental Lines
4.5. Evaluation of Salt Tolerance
4.6. SSR Marker Analysis and Construction of Linkage Maps of Populations A and B
4.7. Construction of V. nakashimae “Ukushima” Pseudo-Reference Genome for RADseq
4.8. RADseq Analysis and Construction of Linkage Map for Population C
4.9. QTL Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lumpkin, T.A.; McClary, D.C. Azuki Bean: Botany, Production, and Uses; CAB International: Wallingford, UK, 1994; ISBN 978-0-85198-765-1. [Google Scholar]
- Iseki, K.; Takahashi, Y.; Muto, C.; Naito, K.; Tomooka, N. Diversity and Evolution of Salt Tolerance in the Genus Vigna. PLoS ONE 2016, 11, e0164711. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Marubodee, R.; Ogiso-Tanaka, E.; Iseki, K.; Isemura, T.; Takahashi, Y.; Muto, C.; Naito, K.; Kaga, A.; Okuno, K.; et al. Salt Tolerance in Wild Relatives of Adzuki Bean, Vigna angularis (Willd.) Ohwi et Ohashi. Genet. Resour. Crop Evol. 2016, 63, 627–637. [Google Scholar] [CrossRef]
- Noda, Y.; Sugita, R.; Hirose, A.; Kawachi, N.; Tanoi, K.; Furukawa, J.; Naito, K. Diversity of Na+ Allocation in Salt-Tolerant Species of the Genus Vigna. Breed. Sci. 2022, 72, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Somta, P.; Muto, C.; Iseki, K.; Naito, K.; Pandiyan, M.; Natesan, S.; Tomooka, N. Novel Genetic Resources in the Genus Vigna Unveiled from Gene Bank Accessions. PLoS ONE 2016, 11, e0147568. [Google Scholar] [CrossRef] [PubMed]
- Tomooka, N.; Vaughan, D.; Moss, H.; Maxted, N. The Asian Vigna: Vigna Subgenus Ceratotropis Genetic Resources; Kluwer: Dordrecht, Netherlands, 2003; ISBN 978-94-010-3934-5. [Google Scholar]
- Bisht, I.S.; Dutta, M.; Singh, M. (Eds.) Broadening the Genetic Base of Grain Legumes, 1st ed.; Springer: New Delhi, India, 2014; ISBN 978-81-322-2023-7. [Google Scholar]
- Begna, T.; Yesuf, H. Genetic Mapping in Crop Plants. Open J. Plant Sci. 2021, 6, 19–26. [Google Scholar]
- Chen, H.; Liu, L.; Wang, L.; Wang, S.; Somta, P.; Cheng, X. Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis). PLoS ONE 2015, 10, e0131939. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Bansal, R.; Gopalakrishna, T. Development and Characterization of Genic SSR Markers for Mungbean (Vigna radiata (L.) Wilczek). Euphytica 2014, 195, 245–258. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Wang, S.; Liu, C.; Blair, M.W.; Cheng, X. Transcriptome Sequencing of Mung Bean (Vigna radiate L.) Genes and the Identification of EST-SSR Markers. PLoS ONE 2015, 10, e0120273. [Google Scholar] [CrossRef]
- Souframanien, J.; Reddy, K.S. De Novo Assembly, Characterization of Immature Seed Transcriptome and Development of Genic-SSR Markers in Black Gram [Vigna mungo (L.) Hepper]. PLoS ONE 2015, 10, e0128748. [Google Scholar] [CrossRef]
- Jasrotia, R.S.; Yadav, P.K.; Iquebal, M.A.; Bhatt, S.B.; Arora, V.; Angadi, U.B.; Tomar, R.S.; Jaiswal, S.; Rai, A.; Kumar, D. VigSatDB: Genome-Wide Microsatellite DNA Marker Database of Three Species of Vigna for Germplasm Characterization and Improvement. Database 2019, 2019, baz055. [Google Scholar]
- Horiuchi, Y.; Yamamoto, H.; Ogura, R.; Shimoda, N.; Sato, H.; Kato, K. Genetic Analysis and Molecular Mapping of Genes Controlling Seed Coat Colour in Adzuki Bean (Vigna angularis). Euphytica 2015, 206, 609–617. [Google Scholar] [CrossRef]
- Han, O.K.; Kaga, A.; Isemura, T.; Wang, X.W.; Tomooka, N.; Vaughan, D.A. A Genetic Linkage Map for Azuki Bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor. Appl. Genet. 2005, 111, 1278–1287. [Google Scholar] [PubMed]
- Liu, C.; Fan, B.; Cao, Z.; Su, Q.; Wang, Y.; Zhang, Z.; Tian, J. Development of a High-Density Genetic Linkage Map and Identification of Flowering Time QTLs in Adzuki Bean (Vigna angularis). Sci. Rep. 2016, 6, 39523. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Kim, S.K.; Kim, M.Y.; Lestari, P.; Kim, K.H.; Ha, B.-K.; Jun, T.H.; Hwang, W.J.; Lee, T.; Lee, J.; et al. Genome Sequence of Mungbean and Insights into Evolution within Vigna Species. Nat. Commun. 2014, 5, 5443. [Google Scholar] [CrossRef]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.; et al. The Genome of Cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef]
- Pootakham, W.; Nawae, W.; Naktang, C.; Sonthirod, C.; Yoocha, T.; Kongkachana, W.; Sangsrakru, D.; Jomchai, N.; U-thoomporn, S.; Somta, P.; et al. A Chromosome-scale Assembly of the Black Gram (Vigna mungo) Genome. Mol. Ecol. Resour. 2021, 21, 238–250. [Google Scholar] [CrossRef]
- Kaul, T.; Easwaran, M.; Thangaraj, A.; Meyyazhagan, A.; Nehra, M.; Raman, N.M.; Verma, R.; Sony, S.K.; Abdel, K.F.; Bharti, J.; et al. De Novo Genome Assembly of Rice Bean (Vigna umbellata)—A Nominated Nutritionally Rich Future Crop Reveals Novel Insights into Flowering Potential, Habit, and Palatability Centric—Traits for Efficient Domestication. Front. Plant Sci. 2022, 13, 739654. [Google Scholar] [CrossRef]
- Yang, K.; Tian, Z.; Chen, C.; Luo, L.; Zhao, B.; Wang, Z.; Yu, L.; Li, Y.; Sun, Y.; Li, W.; et al. Genome Sequencing of Adzuki Bean (Vigna angularis) Provides Insight into High Starch and Low Fat Accumulation and Domestication. Proc. Natl. Acad. Sci. USA 2015, 112, 13213–13218. [Google Scholar] [CrossRef]
- Sakai, H.; Naito, K.; Ogiso-Tanaka, E.; Takahashi, Y.; Iseki, K.; Muto, C.; Satou, K.; Teruya, K.; Shiroma, A.; Shimoji, M.; et al. The Power of Single Molecule Real-Time Sequencing Technology in the de Novo Assembly of a Eukaryotic Genome. Sci. Rep. 2015, 5, 16780. [Google Scholar] [CrossRef]
- Naito, K.; Wakatake, T.; Shibata, T.F.; Iseki, K.; Shigenobu, S.; Takahashi, Y.; Ogiso-Tanaka, E.; Muto, C.; Teruya, K.; Shiroma, A.; et al. Genome Sequence of 12 Vigna Species as a Knowledge Base of Stress Tolerance and Resistance. bioRxiv 2022. [Google Scholar] [CrossRef]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed]
- Marubodee, R.; Ogiso-Tanaka, E.; Isemura, T.; Chankaew, S.; Kaga, A.; Naito, K.; Ehara, H.; Tomooka, N. Construction of an SSR and RAD-Marker Based Molecular Linkage Map of Vigna vexillata (L.) A. Rich. PLoS ONE 2015, 10, e0138942. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, N.; Wu, Z.; Guo, R.; Yu, X.; Zheng, Y.; Xia, Q.; Gui, S.; Chen, C. A High Density Genetic Map Derived from RAD Sequencing and Its Application in QTL Analysis of Yield-Related Traits in Vigna unguiculata. Front. Plant Sci. 2017, 8, 1544. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Naito, K.; Takahashi, Y.; Sato, T.; Yamamoto, T.; Muto, I.; Itoh, T.; Tomooka, N. The Vigna Genome Server, ‘Vig GS’: A Genomic Knowledge Base of the Genus Vigna Based on High-Quality, Annotated Genome Sequence of the Azuki Bean, Vigna angularis (Willd.) Ohwi & Ohashi. Plant Cell Physiol. 2016, 57, e2. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.; Raina, S.N.; Narayan, R.K.J. Quantitative DNA Variation between and within Chromosome Complements of Vigna Species (Fabaceae). Genetica 1990, 82, 125–133. [Google Scholar] [CrossRef]
- Mori, M.; Maki, K.; Kawahata, T.; Kawahara, D.; Kato, Y.; Yoshida, T.; Nagasawa, H.; Sato, H.; Nagano, A.J.; Bethke, P.C.; et al. Mapping of QTLs Controlling Epicotyl Length in Adzuki Bean (Vigna angularis). Breed. Sci. 2021, 71, 208–216. [Google Scholar] [CrossRef]
- Apse, M.P.; Aharon, G.S.; Snedden, W.A.; Blumwald, E. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science 1999, 285, 1256–1258. [Google Scholar] [CrossRef]
- Hauser, F.; Horie, T. A Conserved Primary Salt Tolerance Mechanism Mediated by HKT Transporters: A Mechanism for Sodium Exclusion and Maintenance of High K+/Na+ Ratio in Leaves during Salinity Stress. Plant Cell Environ. 2010, 33, 552–565. [Google Scholar] [CrossRef]
- Kumari, P.H.; Kumar, S.A.; Sivan, P.; Katam, R.; Suravajhala, P.; Rao, K.S.; Varshney, R.K.; Kishor, P.B.K. Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis. Front. Plant Sci. 2017, 7, 2027. [Google Scholar] [CrossRef]
- Xue, Z.-Y.; Zhi, D.-Y.; Xue, G.-P.; Zhang, H.; Zhao, Y.-X.; Xia, G.-M. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 2004, 167, 849–859. [Google Scholar] [CrossRef]
- HanumanthaRao, B.; Nair, R.M.; Nayyar, H. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front. Plant Sci. 2016, 7, 957. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Alavilli, H.; Lee, B.; Panda, S.K.; Sahoo, L. Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis Thaliana. PLoS ONE 2014, 9, e106678. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Jha, A.; Mishra, A.; Jha, B. Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS ONE 2013, 8, e71136. [Google Scholar]
- Hasegawa, P.M. Sodium (Na+) Homeostasis and Salt Tolerance of Plants. Environ. Exp. Bot. 2013, 92, 19–31. [Google Scholar] [CrossRef]
- Fan, W.; Deng, G.; Wang, H.; Zhang, H.; Zhang, P. Elevated Compartmentalization of Na+ into Vacuoles Improves Salt and Cold Stress Tolerance in Sweet Potato (Ipomoea batatas). Physiol. Plant. 2015, 154, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.M.F. Role of Vacuolar Membrane Transport Systems in Plant Salinity Tolerance. J. Plant Growth Regul. 2022, 42, 1364–1401. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bhuiyan, F.H.; Hoque, H.; Jewel, N.A.; Ashrafuzzaman, M.; Prodhan, S.H. Ectopic Expression of Vigna radiata’s Vacuolar Na+/H+ Antiporter Gene (VrNHX1) in Indica Rice (Oryza sativa L.). Biotechnol. Rep. 2022, 35, e00740. [Google Scholar] [CrossRef]
- Noda, Y.; Hirose, A.; Wakazaki, M.; Sato, M.; Toyooka, K.; Kawachi, N.; Furukawa, J.; Tanoi, K.; Naito, K. Starch-Dependent Sodium Accumulation in the Leaves of Vigna riukiuensis. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Kanai, M.; Higuchi, K.; Hagihara, T.; Konishi, T.; Ishii, T.; Fujita, N.; Nakamura, Y.; Maeda, Y.; Yoshiba, M.; Tadano, T. Common Reed Produces Starch Granules at the Shoot Base in Response to Salt Stress. New Phytol. 2007, 176, 572–580. [Google Scholar] [CrossRef]
- Wang, X.W.; Kaga, A.; Tomooka, N.; Vaughan, D.A. The Development of SSR Markers by a New Method in Plants and Their Application to Gene Flow Studies in Azuki Bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor. Appl. Genet. 2004, 109, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Gaitán-Solís, E.; Duque, M.C.; Edwards, K.J.; Tohme, J. Microsatellite Repeats in Common Bean (Phaseolus vulgaris): Isolation, Characterization, and Cross-Species Amplification in Phaseolus ssp. Crop Sci. 2002, 42, 2128–2136. [Google Scholar] [CrossRef]
- Blair, M.W.; Pedraza, F.; Buendia, H.F.; Gaitán-Solís, E.; Beebe, S.E.; Gepts, P.; Tohme, J. Development of a Genome-Wide Anchored Microsatellite Map for Common Bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2003, 107, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fatokun, C.A.; Ubi, B.; Singh, B.B.; Scoles, G.J. Determining Genetic Similarities and Relationships among Cowpea Breeding Lines and Cultivars by Microsatellite Markers. Crop Sci. 2001, 41, 189–197. [Google Scholar] [CrossRef]
- Iwata, H.; Ninomiya, S. AntMap: Constructing Genetic Linkage Maps Using an Ant Colony Optimization Algorithm. Breed. Sci. 2006, 56, 371–377. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Chankaew, S.; Isemura, T.; Naito, K.; Ogiso-Tanaka, E.; Tomooka, N.; Somta, P.; Kaga, A.; Vaughan, D.A.; Srinives, P. QTL Mapping for Salt Tolerance and Domestication-Related Traits in Vigna marina Subsp. Oblonga, a Halophytic Species. Theor. Appl. Genet. 2014, 127, 691–702. [Google Scholar] [CrossRef]
- Broman, K.W.; Sen, S. A Guide to QTL Mapping with R/Qtl; Statistics for Biology and Health; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-0-387-92124-2. [Google Scholar]
- Cartwright, D.A.; Troggio, M.; Velasco, R.; Gutin, A. Genetic Mapping in the Presence of Genotyping Errors. Genetics 2007, 176, 2521–2527. [Google Scholar] [CrossRef]
Population. | Marker Sources | Number of SSR Markers | ||
---|---|---|---|---|
Screened | Amplified (%) | Polymorphic (%) | ||
Population A (V. angularis × V. riukiuensis) | Azuki bean | 330 | 326 (98.8) | 218 (66.1) |
Common bean | 40 | 38 (95.0) | 16 (40) | |
Cowpea | 7 | 6 (85.7) | 3 (42.9) | |
Total | 377 | 370 (98.1) | 237 (62.9) | |
Population B (V. angularis × V. nakashimae) | Azuki bean | 330 | 329 (99.7) | 267 (80.9) |
Common bean | 40 | 40 (100) | 15 (37.5) | |
Cowpea | 7 | 5 (71.4) | 3 (42.9) | |
Total | 377 | 374 (99.2) | 285 (75.6) |
Chr * 1 | Population A | Population B | Population C | ||||||
---|---|---|---|---|---|---|---|---|---|
V. angularis × V. riukiuensis “Kyoto Dainagon” × “Tojinbaka” | V. angularis × V. nakashimae “Kyoto Dainagon” × “Ukushima” | V. nakashimae × V. riukiuensis “Ukushima” × “Tojinbaka” | |||||||
SSR | SSR | RAD | |||||||
Number of SSRs | Length (cM) | Average Marker Interval (cM) | Number of SSRs | Length (cM) | Average Marker Interval (cM) | Number of RAD-Tags | Length (cM) | Average Marker Interval (cM) | |
1 | 41 | 108.8 | 2.7 | 59 | 82.3 | 1.4 | 175 | 67.8 | 0.6 |
2 | 18 | 74.3 | 4.4 | 28 | 78.6 | 2.9 | 101 | 57.6 | 0.9 |
3 | 12 | 60.11 | 5.5 | 23 | 62.9 | 2.9 | 77 | 29.8 | 0.6 |
4 | 22 | 54.5 | 2.6 | 31 | 66.0 | 2.2 | 101 | 45.4 | 0.8 |
5 | 13 | 38.5 | 3.2 | 24 | 40.1 | 1.7 | 76 | 32.7 | 0.8 |
6 | 12 | 32.2 | 2.3 | 19 | 50.9 | 2.8 | 79 | 39.9 | 1.0 |
7 | 10 | 31.8 | 3.5 | 19 | 47.7 | 3.1 | 57 | 36.9 | 1.2 |
8 | 20 | 61.1 | 3.2 | 41 | 78.7 | 2.0 | 126 | 55.6 | 0.7 |
9 | 13 | 54.3 | 4.5 | 18 | 62.4 | 3.7 | 55 | 34.5 | 1.1 |
10 | 21 | 54.2 | 2.7 | 32 | 43.6 | 1.4 | 71 | 39.9 | 0.8 |
11 | 11 | 50.5 | 3.1 | 19 | 35.5 | 2.0 | 62 | 31.7 | 0.9 |
Total | 193 | 560.2 | 3.4 | 313 | 648.6 | 2.4 | 625 | 471.8 | 0.9 |
Trait | Pop * 1 | Chr | QTL Name (Effect) * 2 | Nearest Marker | cM * 3 | Position * 4 | Flanking Marker | Genetic Position (cM) * 5 | Physical Position (bp) * 6 | LOD | AE * 7 | DE * 8 | PVE * 9 (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | End | Start | End | Start | End | |||||||||||
Days to Wilt (DtW) | A | 1 | qDtW1-1(riu+) | CEDG242 | 87.5 | 60,079,393 | CEDG032 | CEDG262 | 84.4 | 90.6 | 56,014,121 | 61,236,791 | 7.9 | 1.0 | 0.8 | 15.0 |
2 | qDtW2-1(riu+) | CEDG261 | 40.4 | 15,586,067 | CEDG100a | CEDG237 | 37.3 | 45.4 | 14,608,533 | 31,635,569 | 3.9 | 0.8 | −0.4 | 7.2 | ||
8 | qDtW8-1(riu−) | PV-atcc001 | 5.0 | 5,178,308 | CEDG082 | CEDG230 | 2.1 | 22.3 | 3,163,061 | 11,545,276 | 6.4 | −1.0 | 1.2 | 12.0 | ||
B | 4 | qDtW4-1(nak+) | CEDC0131 | 33.3 | 30,554,067 | CEDG084 | BM146b | 29.3 | 39.0 | 24,427,507 | 36,066,076 | 3.0 | 0.8 | 2.0 | 9.6 | |
5 | qDtW5-1(nak+) | CEDG159b | 37.0 | 14,493,626 | CEDG008 | BMd-12 | 31.1 | 38.3 | 11,712,796 | 16,853,225 | 4.7 | 1.4 | 1.3 | 15.8 | ||
7 | qDtW7-1(nak+) | CEDG279 | 35.5 | 35,335,774 | CEDG273 | CEDG279 | 30.6 | 35.5 | 34,238,882 | 35,335,774 | 3.0 | 1.2 | −0.3 | 9.8 | ||
C | 4 | qDtW4-2 (riu+) | 4_36004406 | 34.2 | 36,004,406 | 4_33167677 | 4_39320776 | 29.3 | 39.6 | 33,167,677 | 39,320,776 | 8.7 | 3.6 | 5.2 | 11.8 | |
5 | qDtW5-2(riu+) | 5_15717934 | 30.8 | 15,717,934 | 5_12972702 | 5_21478497 | 25.7 | 32.1 | 12,972,702 | 21,478,497 | 4.0 | 2.5 | 2.7 | 5.2 | ||
11 | qDtW11-1(riu+) | 11_1337709 | 1.3 | 1,337,709 | 11_483319 | 11_6994697 | 0.0 | 6.7 | 483,319 | 6,994,697 | 3.0 | 2.4 | 3.6 | 3.8 | ||
Percentage of Wilt Leaves (PWL) | A | 1 | qPWL1-1(riu+) | BM181 | 85.0 | 55,004,523 | CEDG057 | CEDG229 | 76.0 | 86.3 | 50,637,355 | 60,742,976 | 9.5 | −0.7 | −0.8 | 19.1 |
2 | qPWL2-1(riu+) | CEDG261 | 40.4 | 15,586,067 | CEDG100a | CEDG237 | 37.3 | 45.4 | 10,787,607 | 31,635,668 | 4.4 | −1.1 | −0.2 | 8.2 | ||
8 | qPWL8-1(riu−) | PV-atcc001 | 5.0 | 5,178,308 | CEDG082 | CEDG230 | 2.1 | 22.3 | 3,163,061 | 11,545,276 | 8.1 | 0.8 | −0.6 | 15.9 | ||
B | 4 | qPWL4-1(nak+) | CEDG292 | 63.9 | 43,496,022 | CEDG062 | CEDG036 | 58.4 | 66.1 | 41,709,579 | 48,786,346 | 3.5 | −1.4 | −1.1 | 11.1 | |
5 | qPWL5-1(nak+) | CEDG159b | 37.0 | 14,493,626 | CEDG008 | BMd-12 | 31.1 | 38.3 | 11,712,796 | 16,853,062 | 6.9 | −1.4 | −1.1 | 17.5 | ||
7 | qPWL7-1(nak+) | CEDG203 | 42.0 | 25,558,505 | CEDG258 | CEDG085 | 29.6 | 47.7 | 8,383,454 | 30,376,496 | 5.9 | −1.2 | −0.7 | 20.1 | ||
C | 4 | qPWL4-2(riu+) | 4_36004406 | 34.2 | 36,004,406 | 4_33167677 | 4_39320776 | 29.3 | 39.6 | 33,167,677 | 39,320,776 | 7.5 | −1.0 | −1.3 | 10.8 | |
11 | qPWL11-1(riu+) | 11_35006063 | 24.7 | 29,906,300 | 11_32017713 | 11_36707994 | 19.8 | 31.7 | 32,017,713 | 36,707,994 | 3.0 | −0.6 | 0.8 | 4.2 | ||
Na+ concentration (Na) *10 | C | 2 | qNa2-1(riu−) | 2_9439413 | 25.0 | 9,439,413 | 2_8179808 | 2_12077785 | 20.9 | 30.7 | 8,179,808 | 12,077,785 | 8.1 | −94.4 | −9.3 | 11.1 |
8 | qNa8-1(riu+) | 8_4742809 | 7.5 | 4,742,809 | 8_4300670 | 8_7708714 | 6.2 | 11.1 | 4,300,670 | 7,708,714 | 4.6 | 74.0 | −74.9 | 6.1 | ||
8 | qNa8-2(riu−) | 8_23203914 | 37.2 | 23,203,914 | 8_22256774 | 8_35392038 | 36.8 | 39.4 | 22,256,774 | 35,392,038 | 7.1 | −53.5 | −47.6 | 9.7 | ||
11 | qNa11-1(riu+) | 11_35676919 | 27.1 | 35,676,919 | 11_35339431 | 11_36707994 | 25.7 | 31.7 | 35,339,431 | 36,707,994 | 5.2 | 81.1 | 43.4 | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogiso-Tanaka, E.; Chankaew, S.; Yoshida, Y.; Isemura, T.; Marubodee, R.; Kongjaimun, A.; Baba-Kasai, A.; Okuno, K.; Ehara, H.; Tomooka, N. Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na+ Includer) and V. nakashimae (Na+ Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean (V. angularis) Cultivars. Plants 2023, 12, 1680. https://doi.org/10.3390/plants12081680
Ogiso-Tanaka E, Chankaew S, Yoshida Y, Isemura T, Marubodee R, Kongjaimun A, Baba-Kasai A, Okuno K, Ehara H, Tomooka N. Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na+ Includer) and V. nakashimae (Na+ Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean (V. angularis) Cultivars. Plants. 2023; 12(8):1680. https://doi.org/10.3390/plants12081680
Chicago/Turabian StyleOgiso-Tanaka, Eri, Sompong Chankaew, Yutaro Yoshida, Takehisa Isemura, Rusama Marubodee, Alisa Kongjaimun, Akiko Baba-Kasai, Kazutoshi Okuno, Hiroshi Ehara, and Norihiko Tomooka. 2023. "Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na+ Includer) and V. nakashimae (Na+ Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean (V. angularis) Cultivars" Plants 12, no. 8: 1680. https://doi.org/10.3390/plants12081680
APA StyleOgiso-Tanaka, E., Chankaew, S., Yoshida, Y., Isemura, T., Marubodee, R., Kongjaimun, A., Baba-Kasai, A., Okuno, K., Ehara, H., & Tomooka, N. (2023). Unique Salt-Tolerance-Related QTLs, Evolved in Vigna riukiuensis (Na+ Includer) and V. nakashimae (Na+ Excluder), Shed Light on the Development of Super-Salt-Tolerant Azuki Bean (V. angularis) Cultivars. Plants, 12(8), 1680. https://doi.org/10.3390/plants12081680