Silene uniflora Extracts for Strawberry Postharvest Protection
Abstract
:1. Introduction
2. Results
2.1. Vibrational Characterization
2.2. GC-MS Characterization
2.3. In Vitro Growth Inhibition Tests
2.4. Ex Situ Growth Inhibition Tests
3. Discussion
3.1. On the Phytochemical Profile
3.2. On the Antimicrobial Activity
3.2.1. Activity of Other Silene spp. Extracts
3.2.2. Comparison with Synthetic Antimicrobials
3.2.3. Comparison with Chitosan-Based Coatings for Postharvest Strawberry Protection
Pathogen | Chitosan Complex | Storage Conditions | Disease Severity (0–5) | Ref. | |
---|---|---|---|---|---|
B. cinerea | Chitosan + Silene uniflora (3750 μg·mL−1) | 7 days at 4 °C, followed by 3 days at 20 °C | 1.3 | This work | |
Chitosan acetate (1% w/v) | 4 days at 20 ± 1 °C, 95–98% RH | 3.1 | [40] | ||
Chitosan chloride (1% w/v) | 3.2 | ||||
Chitosan formate (1% w/v) | 3.4 | ||||
Chitosan glutamate (1% w/v) | 3.4 | ||||
Commercial chitosan (1% w/v) | 3.5 | ||||
Chitosan (1% w/v) | 7 days at 0 ± 1 °C, 95–98% RH, followed by 3 days of shelf life at 20 ± 1 °C, 95–98% RH | 2.7 | |||
Chitosan NP (1500 μg·mL−1) | 7 days at 4 °C, followed by 2 days at 20 °C | 2.6 | [41] | ||
Chitosan NP + Zataria multiflora (1500 μg·mL−1) | 1.5 | ||||
Chitosan + Cinnamomum zeylanicum (1500 μg·mL−1) | 2.4 | [43] | |||
Chitosan + Z. multiflora (1500 μg·mL−1) | 1.5 | ||||
COS + Uncaria tomentosa (100 μg·mL−1) | 7 days at 4 °C, followed by 3 days at 20 °C | 3.5 | [44] | ||
COS + U. tomentosa (500 μg·mL−1) | 1.7 | ||||
COS + U. tomentosa (1000 μg·mL−1) | 0.5 | ||||
Colletotrichum spp. | C. nymphaeae | Chitosan + S. uniflora (5000 μg·mL−1) | 7 days at 4 °C, followed by 3 days at 20 °C | 2.3 | This work |
C. gloeosporioides | Chitosan (7500 μg·mL−1) | 7 days at 2 ± 2.0 °C, followed by 3 days at 25 ± 2.0 °C | 2 | [42] | |
Chitosan (10,000 μg·mL−1) | 1.2 | ||||
Chitosan (15,000 μg·mL−1) | 1 | ||||
C. acutatum | Chitosan (7500 μg·mL−1) | 7 days at 2 ± 2.0 °C, followed by 3 days at 25 ± 2.0 °C | 2 | ||
Chitosan (10,000 μg·mL−1) | 1.8 | ||||
Chitosan (15,000 μg·mL−1) | 1 | ||||
C. fragariae | Chitosan + cinnamon EO + aqueous extract of Roselle calyces | Stored at two different temperatures (5 and 20 °C) for 10 d | 1 at 5 °C | [45] | |
5 at 20 °C |
3.2.4. Mechanism of Action
4. Materials and Methods
4.1. Plant Material and Chemicals
4.2. Fungal Isolates
4.3. Preparation of S. uniflora Extract, Chitosan Oligomers, and Their Conjugate Complex
4.4. Characterization Procedures
4.5. Antifungal Activity Assessment
4.5.1. In Vitro Tests of Mycelial Growth Inhibition
4.5.2. Ex Situ Tests of Mycelial Growth Inhibition
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouguet-Bonnet, S.; Rochd, M.; Mutzenhardt, P.; Henry, M. Total assignment of 1H and 13C NMR spectra of three triterpene saponins from roots of Silene vulgaris (Moench) Garcke. Magn. Reson. Chem. 2002, 40, 618–621. [Google Scholar] [CrossRef]
- Glensk, M.; Wray, V.; Nimtz, M.; Schöpke, T. Silenosides A−C, triterpenoid saponins from Silene vulgaris. J. Nat. Prod. 1999, 62, 717–721. [Google Scholar] [CrossRef]
- Ovodova, R.; Bushneva, O.; Shashkov, A.; Chizhov, A.; Ovodov, Y.S. Structural studies on pectin from marsh cinquefoil Comarum palustre L. Biochemistry 2005, 70, 867–877. [Google Scholar] [CrossRef]
- Alarcón, R.; Ortiz, L.T.; García, P. Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. Int. J. Food Sci. Technol. 2006, 41, 1239–1242. [Google Scholar] [CrossRef]
- Kucukboyaci, N.; Ozcelik, B.; Adiguzel, N.; Goren, A.C. Fatty-acid compositions of Silene vulgaris and S. cserei subsp. aeoniopsis seeds and their antimicrobial activities. Chem. Nat. Compd. 2010, 46, 88–91. [Google Scholar] [CrossRef]
- Rezaeieh, K.A.P.; Yildirim, B.; Kumlay, A.M. Chemical composition of bioactive volatile oils from Silene vulgaris L. Ponte 2016, 72, 213–220. [Google Scholar] [CrossRef]
- Smahane, B.; Dalila, B.; El Mansouri Latifa, N.A.; El Youbi, H.; Amal, D.A. Phytochemical studies, antioxidant activity and protective effect on DNA damage and deoxyribose of Silene vulgaris extract from Morocco. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 1172–1178. [Google Scholar]
- Gatto, M.A.; Ippolito, A.; Sergio, L.; Di Venere, D. Extracts from wild edible herbs for controlling postharvest rots of fruit and vegetables. Acta Hortic. 2016, 1144, 349–354. [Google Scholar] [CrossRef]
- Sidana, J.; Devi, R.; Kumar, P.; Singh, B.; Sharma, O.P. Phytoecdysteroid profiling of Silene vulgaris by UPLC-ESI-MS. Curr. Sci. 2017, 113, 1986–1992. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z. Phytoecdysteroids from Silene plants: Distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities. Bol. Latinoam. Caribe Plantas Med. Aromat. 2012, 11, 474–497. [Google Scholar]
- Mamadalieva, N.Z.; Egamberdieva, D.; Tiezzi, A. In vitro biological activities of the components from Silene wallichiana. Med. Aromat. Plant Sci. Biotechnol 2013, 7, 1–6. [Google Scholar]
- Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Zaid, A.; Cavò, E.; Miceli, N. Silene vulgaris subsp. macrocarpa leaves and roots from Morocco: Assessment of the efficiency of different extraction techniques and solvents on their antioxidant capacity, brine shrimp toxicity and phenolic characterization. Plant Biosyst. 2019, 154, 692–699. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Yilmaz, M.A.; Picot-Allain, C.M.N.; Ćirić, A.; Glamočlija, J.; et al. Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Biosci. 2018, 23, 75–82. [Google Scholar] [CrossRef]
- Hoffmann, J.J.; Timmermann, B.N.; McLaughlin, S.P.; Punnapayak, H. Potential antimicrobial activity of plants from the Southwestern United States. Int. J. Pharmacogn. 2008, 31, 101–115. [Google Scholar] [CrossRef]
- Boukhira, S.; Balouiri, M.; Mansouri, L.; Yoibi, A.; Bouarfa, M.; Lebtar, S.; Ouhammou, A.; Bousta, D. Development of natural preservative from Silene vulgaris extract in topical formulation under a challenge test and its stability stud. J. Appl. Pharm. Sci. 2017, 7, 142–148. [Google Scholar]
- Thakur, A.; Singh, S.; Puri, S. Nutritional evaluation, phytochemicals, antioxidant and antibacterial activity of Stellaria monosperma Buch.-Ham. Ex D. Don and Silene vulgaris (Moench) Garcke: Wild edible plants of Western Himalayas. Jordan J. Biol. Sci. 2021, 14, 83–90. [Google Scholar]
- Keskin, D.; Guvensen, N.C.; Yildiz, K. Antimicrobial activity of Silene cariensis subsp cariensis and Silene pungens from Turkey. Adv. Environ. Biol. 2016, 10, 167–173. [Google Scholar]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Ji, Y.; Li, X.; Gao, Q.-H.; Geng, C.; Duan, K. Colletotrichum species pathogenic to strawberry: Discovery history, global diversity, prevalence in China, and the host range of top two species. Phytopathol. Res. 2022, 4, 42. [Google Scholar] [CrossRef]
- Michell, A.J. Hydrogen bonding in crystalline β-d-glucopyranose and methyl β-d-xylopyranoside. Carbohydr. Res. 1967, 5, 229–232. [Google Scholar] [CrossRef]
- Arora, S.; Saini, M. Gas chromatography mass spectrometry profiling in methanolic and ethyl-acetate root and stem extract of Corbichonia decumbens (Forssk.) Exell from Thar Desert of Rajasthan, India. Pharmacogn. Res. 2017, 9, S48–S52. [Google Scholar] [CrossRef]
- Neda, G.; Rabeta, M.S.; Ong, M.T. Chemical composition and anti-proliferative properties of flowers of Clitoria ternatea. Int. Food Res. J. 2013, 20, 1229–1234. [Google Scholar]
- Sogan, N.; Kala, S.; Kapoor, N.; Nagpal, B.N. Phytochemical analysis of Spergula arvensis and evaluation of its larvicidal activity against malarial vector An. culicfiacies. S. Afr. J. Bot. 2021, 137, 351–358. [Google Scholar] [CrossRef]
- Jantapaso, H.; Mittraparp-arthorn, P. Phytochemical composition and bioactivities of aqueous extract of rambutan (Nephelium lappaceum L. cv. Rong Rian) peel. Antioxidants 2022, 11, 956. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Vasudeva, N.; Sharma, S. Chemical composition of ethanol extract of Macrotyloma uniflorum (Lam.) Verdc. using GC-MS spectroscopy. Org. Med. Chem. Lett. 2014, 4, 13. [Google Scholar] [CrossRef]
- Ramya, K.; Kanimathi, P.; Radha, A. GC–MS analysis and antimicrobial activity of various solvent extracts from Simarouba glauca leaves. J. Pharmacogn. Phytochem. 2019, 8, 166–171. [Google Scholar]
- Shukla, A.; Tyagi, S.; Gupta, V.; Jain, P.; Kanai, T.; Tripathi, R. FT-IR, GC-MS, and HPLC profiling of the bioactive constituents of ethyl acetate fraction of Eichhornia crassipes as a hepatoprotectant. Lett. Appl. NanoBioSci. 2022, 12, 96. [Google Scholar] [CrossRef]
- Sujatha, S.; Sara, S.C.; Gayathiri, M.; Roselin, I.R.; Ruby, R.G.D. Analysis of bioactive compounds present in methanolic extract of Phymatosorus scolopendria (Burm. F.) Pic. Serm. through gas chromatography and mass spectroscopy. Int. J. Pharmacol. Sci. Res. 2020, 11, 3294–3299. [Google Scholar]
- Yuan, W.; Lee, H.W.; Yuk, H.-G. Antimicrobial efficacy of Cinnamomum javanicum plant extract against Listeria monocytogenes and its application potential with smoked salmon. Int. J. Food Microbiol. 2017, 260, 42–50. [Google Scholar] [CrossRef]
- Adesanya, E.O.; Oyesiku, O.O.; Adesanya, O.O.; Ogunlakin, A.D.; Odugbemi, A.I.; Egieyeh, S.A. Phytochemical components and GC–MS analysis of Petiveria alliaceae L. fractions and volatile oils. Phys. Sci. Rev. 2023. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Andrés-Juan, C.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Physicochemical characterization of Crithmum maritimum L. and Daucus carota subsp. gummifer (Syme) Hook.fil. and their antimicrobial activity against apple tree and grapevine phytopathogens. Agronomy 2021, 11, 886. [Google Scholar] [CrossRef]
- Yaşar, A.; Üçüncü, O.; Güleç, C.; İnceer, H.; Ayaz, S.; Yayl, N. GC-MS analysis of chloroform extracts in flowers, stems, and roots of Tripleurospermum callosum. Pharm. Biol. 2008, 43, 108–112. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Langa-Lomba, N.; Casanova-Gascón, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Characterization and antimicrobial activity of a halophyte from the Asturian coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants 2021, 10, 1852. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, E.; González-García, V.; Correa-Guimarães, A.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profile and activity against Fusarium species of Tamarix gallica bark aqueous ammonia extract. Agronomy 2023, 13, 496. [Google Scholar] [CrossRef]
- Jaishee, N. Phytochemical analysis of some ferns with reference to their antioxidant, hypoglycemic and antimicrobial activities. Ph.D. Thesis, University of North Bengal, Raja Rammohunpur, Siliguri, India, 2016. [Google Scholar]
- Mongalo, N.; Soyingbe, O.; Makhafola, T. Antimicrobial, cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pac. J. Trop. Biomed. 2019, 9, 307. [Google Scholar] [CrossRef]
- Karuppiah Vijayamuthuramalingam, U.D.; Rajaram, R.; Kuppusamy, K.M.; Jonnalagadda, B.; Arokiasamy, S. Anti-hyperglycemic and antioxidant potential of Croton bonplandianus Bail fractions in correlation with polyphenol content. Iran. J. Basic Med. Sci. 2017, 20, 1390–1397. [Google Scholar] [CrossRef]
- Irawan, C.; Hanafi; Sulistiawaty, L.; Foliatini; Rochaeni, H.; Sukiman, M. Phytochemical screening and volatile compound analysis using GC-MS of Isem Kembang (Mangifera lampungise), indigenous fruit from Lampung, Indonesia. Rasayan J. Chem. 2021, 14, 276–287. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Shukla, S.; Kang, S.C. Chemical composition and antifungal activity of essential oil and various extract of Silene armeria L. Bioresour. Technol. 2008, 99, 8903–8908. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Santini, M.; Landi, L. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 2013, 75, 24–27. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Arceo Martínez, M.T.; Jiménez Mejías, R.; Salgado Garciglia, R.; Santoyo, G.; López Meza, J.E.; Loeza Lara, P.D. In vitro and in vivo anti-fungal effect of chitosan on post-harvest strawberry pathogens. Agrociencia 2019, 53, 1297–1311. [Google Scholar]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. The control of Botrytis fruit rot in strawberry using combined treatments of chitosan with Zataria multiflora or Cinnamomum zeylanicum essential oil. J. Food Sci. Technol. 2015, 52, 7441–7448. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Martín-Ramos, P.; Martín-Gil, J.; Santiago-Aliste, A.; Hernández-Navarro, S.; Oliveira, R.; González-García, V. Bark extract of Uncaria tomentosa L. for the control of strawberry phytopathogens. Horticulturae 2022, 8, 672. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bautista-Baños, S.; Flores-García, G.; Zavaleta-Avejar, L. Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chem. 2018, 262, 142–149. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, E.; Balduque-Gil, J.; Barriuso-Vargas, J.J.; Casanova-Gascon, J.; Gonzalez-Garcia, V.; Cuchi-Oterino, J.A.; Lorenzo-Vidal, B.; Martin-Gil, J.; Martin-Ramos, P. Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) bark aqueous ammonia extract for the control of invasive forest pathogens. Int. J. Mol. Sci. 2022, 23, 11882. [Google Scholar] [CrossRef]
- Ibnouf, E.O.; Aldawsari, M.F.; Ali Waggiallah, H. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi J. Biol. Sci. 2022, 29, 103352. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017, 176, 257–265. [Google Scholar] [CrossRef]
- Jing, H.; Xiao-hui, Z.; Chun-yu, Z.; Feng-qing, H.; Jing, H. Inhibitory effect and mechanisms of sophorolipids against Staphylococcus aureus. J. Food Sci. 2012, 33, 33–36. [Google Scholar]
- Ginsburg, I.; van Heerden, P.; Koren, E. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: A historical perspective. J. Inflamm. Res. 2017, 10, 7–15. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, P.; Xie, S.; Yuan, X.; Hou, X.; Yan, N.; Fang, Y.; Du, Y. In vitro and in vivo antifungal activity and preliminary mechanism of cembratrien-diols against Botrytis cinerea. Ind. Crops Prod. 2020, 154, 112745. [Google Scholar] [CrossRef]
- Ing, L.Y.; Zin, N.M.; Sarwar, A.; Katas, H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater. 2012, 2012, 632698. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Martín-Gil, J.; Marcos-Robles, J.L.; Fombellida-Villafruela, Á.; Pérez-Lebeña, E.; Martín-Ramos, P. Antifungal activity of chitosan oligomers–amino acid conjugate complexes against Fusarium culmorum in spelt (Triticum spelta L.). Agronomy 2020, 10, 1427. [Google Scholar] [CrossRef]
- Agudelo-Romero, P.; Erban, A.; Rego, C.; Carbonell-Bejerano, P.; Nascimento, T.; Sousa, L.; Martínez-Zapater, J.M.; Kopka, J.; Fortes, A.M. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J. Exp. Bot. 2015, 66, 1769–1785. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F.; Ballesteros, A.; Morales, J.; Kidibule, P.; Fernandez-Lobato, M. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal. Biotransform. 2018, 36, 57–67. [Google Scholar] [CrossRef]
- Ruano-Rosa, D.; Sánchez-Hernández, E.; Baquero-Foz, R.; Martín-Ramos, P.; Martín-Gil, J.; Torres-Sánchez, S.; Casanova-Gascón, J. Chitosan-based bioactive formulations for the control of powdery mildew in viticulture. Agronomy 2022, 12, 495. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W.; EUCAST-AFST. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef]
- Subhashini, S.; Begum, S.M.; Rajesh, G. Antimicrobial characterisation combining spectrophotometric analysis of different oak species. Int. J. Herb. Med. 2016, 4, 32–35. [Google Scholar]
- Levy, Y.; Benderly, M.; Cohen, Y.; Gisi, U.; Bassand, D. The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bullet. 1986, 16, 651–657. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Almenar, E.; Valle, V.D.; Velez, D.; Gavara, R. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chem. 2008, 110, 428–435. [Google Scholar] [CrossRef]
Petals | Fruit | Leaves | Assignment |
---|---|---|---|
3366 | 3335 | 3366 | OH group in phenolic compounds/hydrogen bonding in pyranosides |
2955 | 2954 | Symmetric C–H stretching (CH3 symmetric stretching) | |
2916 | 2918 | 2915 | O–H stretching/C–H stretching |
2848 | 2848 | CH2 symmetric stretching | |
1733 | 1733 | C=O stretching, alkyl ester/carboxylic acid (monomeric form) | |
1706 | 1706 | C=O stretching of carboxylic acid (dimeric form) | |
1636 | 1636 | 1636 | Skeletal vibration due to aromatic C=C ring stretching |
1472 | 1472 | CH2 scissors | |
1463 | 1443 | 1463 | Symmetric aromatic ring stretching vibration (C=C ring) |
1417 | 1418 | 1417 | C–H vibration of the methyl group |
1378 | 1371 | 1378 | C–H symmetric bending in CH3 |
1307 | 1316 | 1327 | CH2 wagging, C–O stretching |
1243 | 1244 | 1243 | CH in-plane bending |
1146 | 1146 | 1147 | C–O–C asymmetric stretching |
1101 | 1101 | In-plane =C–H bending/C=C stretching | |
1075 | C–O stretching/O–H out plane bending | ||
1018 | 1019 | 1020 | C–H bending |
729 | 729 | CH2 rocking | |
719 | 719 | CH2 rocking |
RT (min) | Area (%) | Assignment | Qual |
---|---|---|---|
4.6803 | 0.6939 | Pyrrolidine | 47 |
4.7633 | 0.9593 | 2-Cyclopenten-1-one, 2-hydroxy- | 87 |
5.7249 | 0.6416 | Succindialdehyde | 33 |
7.3333 | 0.8584 | 2(3H)-Furanone, dihydro-4-hydroxy- | 38 |
10.5562 | 1.1535 | 2-Methoxy-4-vinylphenol | 90 |
12.3131 | 0.7600 | 1-Butanol, 4-butoxy- | 32 |
12.7760 | 0.9863 | 3,4-Altrosan | 83 |
16.2164 | 52.5366 | 4-O-Methyl-myo-inositol (mome inositol) | 93 |
17.9160 | 0.5355 | n-Hexadecanoic acid | 99 |
25.0918 | 1.1509 | Squalene | 99 |
25.5310 | 3.6950 | Cyclotetracosane | 98 |
26.8367 | 8.6716 | Myristic acid vinyl ester/Palmitic acid vinyl ester | 41 |
26.9614 | 0.7022 | 1-Nonadecene/1-heptacosazol | 95/93 |
28.5936 | 0.9617 | Hexadecanoic acid, 4-nitrophenyl ester | 51 |
29.2168 | 0.6771 | 1H-Indole, 5-methyl-2-phenyl- | 41 |
Effective Concentration | B. cinerea | C. nymphaeae | ||||||
---|---|---|---|---|---|---|---|---|
COS | S. uniflora | COS-S. uniflora | SF | COS | S. uniflora | COS-S. uniflora | SF | |
EC50 | 248 | 438 | 236 | 1.34 | 674 | 668 | 644 | 1.04 |
EC90 | 1426 | 983 | 746 | 1.56 | 721 | 1420 | 991 | 1.46 |
Commercial Fungicide | Pathogen | Radial Growth of Mycelium (mm) | Inhibition (%) | |||
---|---|---|---|---|---|---|
Control | Rd/10 | Rd * | Rd/10 | Rd * | ||
Azoxystrobin | B. cinerea | 75 | 51 | 12 | 32 | 84 |
C. nymphaeae | 75 | 45 | 40 | 40 | 47 | |
Mancozeb | B. cinerea | 75 | 0 | 0 | 100 | 100 |
C. nymphaeae | 75 | 0 | 0 | 100 | 100 | |
Fosetyl-Al | B. cinerea | 75 | 38 | 0 | 49.3 | 100 |
C. nymphaeae | 75 | 63 | 0 | 16 | 100 |
Time (Days) | B. cinerea | C.nymphaeae | ||||
---|---|---|---|---|---|---|
Negative Control | Positive Control | COS-S. uniflora | Negative Control | Positive Control | COS-S. uniflora | |
1 | 0 ± 0 a | 0 ± 0 a | 0 ± 0 a | 0 ± 0 a | 0 ± 0 a | 0 ± 0 a |
7 | 0 ± 0 a | 2.7 ± 0.9 b | 0.6 ± 0.2 b | 0 ± 0 a | 3.3 ± 0.7 b | 1.2 ± 0.3 b |
10 | 0 ± 0 a | 5 ± 0 c | 1.3 ± 0.5 c | 0 ± 0 a | 5 ± 0 b | 2.3 ± 0.8 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzón-Durán, L.; Sánchez-Hernández, E.; Martín-Ramos, P.; Navas-Gracia, L.M.; García-González, M.C.; Oliveira, R.; Martín-Gil, J. Silene uniflora Extracts for Strawberry Postharvest Protection. Plants 2023, 12, 1846. https://doi.org/10.3390/plants12091846
Buzón-Durán L, Sánchez-Hernández E, Martín-Ramos P, Navas-Gracia LM, García-González MC, Oliveira R, Martín-Gil J. Silene uniflora Extracts for Strawberry Postharvest Protection. Plants. 2023; 12(9):1846. https://doi.org/10.3390/plants12091846
Chicago/Turabian StyleBuzón-Durán, Laura, Eva Sánchez-Hernández, Pablo Martín-Ramos, Luis Manuel Navas-Gracia, Mari Cruz García-González, Rui Oliveira, and Jesús Martín-Gil. 2023. "Silene uniflora Extracts for Strawberry Postharvest Protection" Plants 12, no. 9: 1846. https://doi.org/10.3390/plants12091846
APA StyleBuzón-Durán, L., Sánchez-Hernández, E., Martín-Ramos, P., Navas-Gracia, L. M., García-González, M. C., Oliveira, R., & Martín-Gil, J. (2023). Silene uniflora Extracts for Strawberry Postharvest Protection. Plants, 12(9), 1846. https://doi.org/10.3390/plants12091846