Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenotypic Evaluation and Gas Exchange of Vigna unguiculata in Response to M. incognita and a Water Deficit
2.2. Protein Profile of Vigna unguiculata in Response to Combined Stress
2.2.1. Defense Proteins Orchestrate Cowpea Adaptation Mechanisms to Cross-Stress
2.2.2. Antioxidant System Drives Plant Adaptation to Combined Stress
2.2.3. Defense Responses Mediated by Hormonal Signaling in Cowpea
2.2.4. Other Proteins’ Important in the Process of Adaptation to Drought and Multiple Stresses
2.2.5. Reduction of Photosynthetic Proteins in Response to Combined Stress in Cowpea
3. Material and Methods
3.1. Plant Material and Growing Conditions
3.2. Plant-Nematode Interaction Assay (N)
3.3. Water Deficit Assay (D)
3.4. Cross-Stress Assay (Nematode and Drought; ND)
3.5. Evaluation of Gas Exchange
3.6. Statistical Analysis
3.7. Protein Extraction, Digestion, and Desalting
3.8. Chromatography and Mass Spectrometry Analysis
3.9. Quantitative and Qualitative Analysis of Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Boukar, O.; Massawe, F.; Muranaka, S.; Franco, J.; Maziya-Dixon, B.; Singh, B.; Fatokun, C. Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet. Resour. 2011, 9, 515–522. [Google Scholar] [CrossRef]
- Moens, M.; Perry, R.N.; Starr, J.L. Meloidogyne species—A diverse group of novel and important plant parasites. Root-Knot Nematodes 2009, 1, 483. [Google Scholar]
- Shao, H.-B.; Chu, L.-Y.; Jaleel, C.A.; Manivannan, P.; Panneerselvam, R.; Shao, M.-A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 2009, 29, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Kissoudis, C.; Sunarti, S.; Van De Wiel, C.; Visser, R.G.F.; van der Linden, C.G.; Bai, Y. Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J. Exp. Bot. 2016, 67, 5119–5132. [Google Scholar] [CrossRef] [PubMed]
- Ramegowda, V.; Senthil-Kumar, M. The interactive effects of simultaneous biotic and abiotic stresses on plants: Mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 2015, 176, 47–54. [Google Scholar] [CrossRef]
- Zhang, H.; Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 2017, 90, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.-S.; Sintaha, M.; Cheung, M.-Y.; Lam, H.-M. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci. 2018, 19, 3206. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Gupta, P.; Bagri, J.; Singh, D.; Dewi, A.K.; Tao, L.; Islam, M.; Sarsu, F.; Singla-Pareek, S.L.; Pareek, A. Forward and reverse genetics approaches for combined stress tolerance in rice. Indian J. Plant Physiol. 2018, 23, 630–646. [Google Scholar] [CrossRef]
- Bai, Y.; Kissoudis, C.; Yan, Z.; Visser, R.G.F.; van der Linden, G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018, 93, 781–793. [Google Scholar] [CrossRef]
- Muthusamy, S.K.; Lenka, S.K.; Katiyar, A.; Chinnusamy, V.; Singh, A.K.; Bansal, K.C. Genome-wide identification and analysis of biotic and abiotic stress regulation of C4 photosynthetic pathway genes in rice. Appl. Biochem. Biotechnol. 2019, 187, 221–238. [Google Scholar] [CrossRef]
- Silva, R.G.G.; Vasconcelos, I.M.; Martins, T.F.; Varela, A.L.N.; Souza, P.F.N.; Lobo, A.K.M.; Silva, F.D.A.; Silveira, J.A.G.; Oliveira, J.T.A. Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection. Plant Physiol. Biochem. 2016, 109, 91–102. [Google Scholar] [CrossRef]
- Oliveira, J.T.A.; Andrade, N.C.; Martins-Miranda, A.S.; Soares, A.A.; Gondim, D.M.F.; Araújo-Filho, J.H.; Freire-Filho, F.R.; Vasconcelos, I.M. Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol. Biochem. 2012, 51, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Huynh, B.-L.; Matthews, W.C.; Ehlers, J.D.; Lucas, M.R.; Santos, J.R.P.; Ndeve, A.; Close, T.J.; Roberts, P.A. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.). Theor. Appl. Genet. 2016, 129, 87–95. [Google Scholar] [CrossRef]
- Roberts, P.A.; Matthews, W.C.; Ehlers, J.D. New resistance to virulent root-knot nematodes linked to the Rk locus of cowpea. Crop Sci. 1996, 36, 889–894. [Google Scholar] [CrossRef]
- D’Arcy-Lameta, A.; Ferrari-Iliou, R.; Contour-Ansel, D.; Pham-Thi, A.-T.; Zuily-Fodil, Y. Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann. Bot. 2006, 97, 133–140. [Google Scholar] [CrossRef]
- Contour-Ansel, D.; Torres-Franklin, M.L.; Cruz De Carvalho, M.H.; D’Arcy-Lameta, A.; Zuily-Fodil, Y. Glutathione reductase in leaves of cowpea: Cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann. Bot. 2006, 98, 1279–1287. [Google Scholar] [CrossRef]
- El-Maarouf, H.; d’Arcy-Lameta, A.; Gareil, M.; Zuily-Fodil, Y.; Pham-Thi, A.-T. Cloning and expression under drought of cDNAscoding for two PI-PLCs in cowpea leaves. Plant Physiol. Biochem. 2001, 39, 167–172. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Villeth, G.R.C.; Carmo, L.S.T.; Silva, L.P.; Fontes, W.; Grynberg, P.; Saraiva, M.; Brasileiro, A.; Carneiro, R.; Oliveira, J.T.A.; Grossi-de-Sá, M.F. Cowpea–Meloidogyne incognita interaction: Root proteomic analysis during early stages of nematode infection. Proteomics 2015, 15, 1746–1759. [Google Scholar] [CrossRef]
- Ribeiro, D.G.; Mota, A.P.Z.; Santos, I.R.; Arraes, F.B.M.; Grynberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M.V.; Lisei-de-Sá, M.E.; Grossi-de-Sá, M.F. NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. J. Proteom. 2022, 261, 104575. [Google Scholar] [CrossRef]
- Carvalho, M.; Castro, I.; Moutinho-Pereira, J.; Correia, C.; Egea-Cortines, M.; Matos, M.; Rosa, E.; Carnide, V.; Lino-Neto, T. Evaluating stress responses in cowpea under drought stress. J. Plant Physiol. 2019, 241, 153001. [Google Scholar] [CrossRef] [PubMed]
- Mofokeng, M.A.; Mashingaidze, K. Breeding and genetic management of drought in cowpea: Progress and technologies. Aust. J. Crop Sci. 2019, 13, 1920–1926. [Google Scholar] [CrossRef]
- Thuy, T.T.T.; Yen, N.T.; Tuyet, N.T.A.; Te, L.L.; De Waele, D. Plant-parasitic nematodes and yellowing of leaves associated with black pepper plants in Vietnam. Arch. Phytopathol. Plant Prot. 2012, 45, 1183–1200. [Google Scholar] [CrossRef]
- Yigezu Wendimu, G. Biology, Taxonomy, and Management of the Root-Knot Nematode (Meloidogyne incognita) in Sweet Potato. Adv. Agric. 2021, 2021, 8820211. [Google Scholar] [CrossRef]
- Else, M.A.; Janowiak, F.; Atkinson, C.J.; Jackson, M.B. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 2009, 103, 313–323. [Google Scholar] [CrossRef]
- Singh, S.K.; Raja Reddy, K. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. J. Photochem. Photobiol. B 2011, 105, 40–50. [Google Scholar] [CrossRef]
- Mayek-PÉrez, N.; GarcÍa-Espinosa, R.; LÓpez-CastaÑeda, C.; Acosta-Gallegos, J.A.; Simpson, J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol. Mol. Plant Pathol. 2002, 60, 185–195. [Google Scholar] [CrossRef]
- Xu, P.; Chen, F.; Mannas, J.P.; Feldman, T.; Sumner, L.W.; Roossinck, M.J. Virus infection improves drought tolerance. New Phytol. 2008, 180, 911–921. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Reza, Z.G.; Mostafa, Y.Z.; Mehdi, K. Effects of Cucumber Mosaic Virus infection and drought tolerance of tomato plants under greenhouse conditions: Preliminary results. J. Berry Res. 2018, 8, 129–136. [Google Scholar] [CrossRef]
- Vieira, E.A.; das Graças Silva, M.; Moro, C.F.; Laura, V.A. Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiol. Biochem. 2017, 115, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.; Singh, K. Role of NBS-LRR proteins in plant defense. In Molecular Aspects of Plant-Pathogen Interaction; Springer: Berlin/Heidelberg, Germany, 2018; pp. 115–138. [Google Scholar]
- Elmore, J.M.; Lin, Z.-J.D.; Coaker, G. Plant NB-LRR signaling: Upstreams and downstreams. Curr. Opin. Plant Biol. 2011, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Akbudak, M.A.; Yildiz, S.; Filiz, E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress. Genomics 2020, 112, 4089–4099. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Hegde, C.; Bhattacharyya, M.K. Cold Tolerance is Governed by Diverse Genetic Mechanisms Including Those Regulated by NB-LRR-type Receptor Proteins in Arabidopsis. bioRxiv 2022. [Google Scholar] [CrossRef]
- Sinha, R.K.; Verma, S.S.; Rastogi, A. Role of Pathogen-Related Protein 10 (PR 10) under abiotic and biotic stresses in plants. Phyton (B Aires) 2020, 89, 167. [Google Scholar] [CrossRef]
- Kissoudis, C.; Seifi, A.; Yan, Z.; Islam, A.T.M.; Van der Schoot, H.; van de Wiel, C.; Visser, R.G.F.; Van Der Linden, C.G.; Bai, Y. Ethylene and abscisic acid signaling pathways differentially influence tomato resistance to combined powdery mildew and salt stress. Front. Plant Sci. 2017, 7, 2009. [Google Scholar] [CrossRef]
- Mota, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.d.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F.; Guimaraes, P.M. Defining the combined stress response in wild Arachis. Sci. Rep. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Agbicodo, E.M.; Fatokun, C.A.; Muranaka, S.; Visser, R.G.F. Breeding drought tolerant cowpea: Constraints, accomplishments, and future prospects. Euphytica 2009, 167, 353–370. [Google Scholar] [CrossRef]
- Diouf, D. Recent advances in cowpea [Vigna unguiculata (L.) Walp.] “omics” research for genetic improvement. Afr. J. Biotechnol. 2011, 10, 2803–2810. [Google Scholar]
- Riyazuddin, R.; Nisha, N.; Singh, K.; Verma, R.; Gupta, R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Rep. 2021, 41, 519–533. [Google Scholar] [CrossRef]
- Tiwari, P.; Indoliya, Y.; Singh, P.K.; Singh, P.C.; Chauhan, P.S.; Pande, V.; Chakrabarty, D. Role of dehydrin-FK506-binding protein complex in enhancing drought tolerance through the ABA-mediated signaling pathway. Environ. Exp. Bot. 2019, 158, 136–149. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Anjum, N.A.; Panda, B.B.; Pareek, A.; Talukdar, D.; Pandey, P.; Singh, J.; Mohan, V.; Achary, M.; Reddy, M.K. Redox homeostasis via gene families of ascorbate-glutathione pathway. Front. Environ. Sci. 2015, 3, 25. [Google Scholar]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.J. The role of the plant antioxidant system in drought tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Easwar Rao, D.; Viswanatha Chaitanya, K. Changes in the antioxidant intensities of seven different soybean (Glycine max (L.) Merr.) cultivars during drought. J. Food Biochem. 2020, 44, e13118. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Chen, T.T.; Zhao, X.H.; Zhang, S.P.; Liu, S.D.; Dong, H.L.; Feng, L.; Yu, S.X. Effect of drought stress on lipid peroxidation and proline content in cotton roots. JAPS J. Anim. Plant Sci. 2014, 24, 1729–1736. [Google Scholar]
- Demirevska, K.; Simova-Stoilova, L.; Fedina, I.; Georgieva, K.; Kunert, K. Response of oryzacystatin I transformed tobacco plants to drought, heat and light stress. J. Agron. Crop Sci. 2010, 196, 90–99. [Google Scholar] [CrossRef]
- Sekmen, A.H.; Ozgur, R.; Uzilday, B.; Turkan, I. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ. Exp. Bot. 2014, 99, 141–149. [Google Scholar] [CrossRef]
- Kissoudis, C.; van de Wiel, C.; Visser, R.G.F.; van der Linden, G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed]
- Nostar, O.; Ozdemir, F.; Bor, M.; Turkan, I.; Tosun, N. Combined effects of salt stress and cucurbit downy mildew (Pseudoperospora cubensis Berk. and Curt. Rostov.) infection on growth, physiological traits and antioxidant activity in cucumber (Cucumis sativus L.) seedlings. Physiol. Mol. Plant Pathol. 2013, 83, 84–92. [Google Scholar] [CrossRef]
- Ali, S.; Hayat, K.; Iqbal, A.; Xie, L. Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 2020, 10, 1323. [Google Scholar] [CrossRef]
- Dong, T.; Park, Y.; Hwang, I. Abscisic acid: Biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 2015, 58, 29–48. [Google Scholar]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef]
- Danquah, A.; de Zelicourt, A.; Colcombet, J.; Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef]
- de Ollas, C.; Hernando, B.; Arbona, V.; Gómez-Cadenas, A. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol. Plantarum. 2013, 147, 296–306. [Google Scholar] [CrossRef]
- Balbi, V.; Devoto, A. Review Summary Tansley review Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol. 2008, 177, 301–318. [Google Scholar] [CrossRef]
- Davila Olivas, N.H.; Kruijer, W.; Gort, G.; Wijnen, C.L.; van Loon, J.J.A.; Dicke, M. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. New Phytol. 2017, 213, 838–851. [Google Scholar] [CrossRef]
- Kiba, A.; Nakano, M.; Hosokawa, M.; Galis, I.; Nakatani, H.; Shinya, T.; Ohnishi, K.; Hikichi, Y. Phosphatidylinositol-phospholipase C2 regulates pattern-triggered immunity in Nicotiana benthamiana. J. Exp. Bot. 2020, 71, 5027–5038. [Google Scholar] [CrossRef]
- Rodas-Junco, B.A.; Nic-Can, G.I.; Muñoz-Sánchez, A.; Teresa Hernández-Sotomayor, S.M. Phospholipid signaling is a component of the salicylic acid response in plant cell suspension cultures. Int. J. Mol. Sci. 2020, 21, 5285. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, B.; Singh, A.P. Nematodes: A threat to sustainability of agriculture. Procedia Environ. Sci. 2015, 29, 215–216. [Google Scholar] [CrossRef]
- González-Mendoza, V.M.; Sánchez-Sandoval, M.E.; Castro-Concha, L.A.; Teresa Hernández-Sotomayor, S.M. Phospholipases c and d and their role in biotic and abiotic stresses. Plants 2021, 10, 921. [Google Scholar] [CrossRef]
- Johansson, O.N.; Fahlberg, P.; Karimi, E.; Nilsson, A.K.; Ellerström, M.; Andersson, M.X. Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana. Front. Plant Sci. 2014, 5, 639. [Google Scholar] [CrossRef]
- Zhao, J.; Devaiah, S.P.; Wang, C.; Li, M.; Welti, R.; Wang, X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol. 2013, 199, 228–240. [Google Scholar] [CrossRef]
- Zhang, Q.; Van Wijk, R.; Shahbaz, M.; Roels, W.; Van Schooten, B.; Vermeer, J.E.M.; Zarza, X.; Guardia, A.; Scuffi, D.; García-Mata, C.; et al. Arabidopsis phospholipase C3 is involved in lateral root initiation and ABA responses in seed germination and stomatal closure. Plant Cell Physiol. 2018, 59, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Georges, F.; Das, S.; Ray, H.; Bock, C.; Nokhrina, K.; Kolla, V.A.; Keller, W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ. 2009, 32, 1664–1681. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Y.; Li, H.; Liu, R.; Wang, W.; Wu, W.; Yang, N.; Wang, S. Osmotic stress-triggered stomatal closure requires Phospholipase Dδ and hydrogen sulfide in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2021, 534, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Faizi, S.; Fayyaz, S.; Bano, S.; Yawar Iqbal, E.; Siddiqi, H.; Naz, A. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure–activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. J. Agric. Food Chem. 2011, 59, 9080–9093. [Google Scholar] [CrossRef]
- Wuyts, N.; Swennen, R.; De Waele, D. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 2006, 8, 89–101. [Google Scholar] [CrossRef]
- Ma, D.; Sun, D.; Wang, C.; Li, Y.; Guo, T. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol. Biochem. 2014, 80, 60–66. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; Wu, C.; Chen, S.; Wang, Z.; Yang, Z.; Qin, S.; Huang, L. Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS ONE 2012, 7, e42946. [Google Scholar] [CrossRef]
- Ibrahim, W.; Zhu, Y.; Chen, Y.; Qiu, C.; Zhu, S.; Wu, F. Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiol. Plant 2019, 165, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.; Tohge, T.; Winkler, J.B.; Albert, A.; Schäffner, A.R.; Fernie, A.R.; Zuther, E.; Hincha, D.K. Natural variation among Arabidopsis accessions in the regulation of flavonoid metabolism and stress gene expression by combined UV radiation and cold. Plant Cell Physiol. 2021, 62, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Rani, T.S.; Chandran, U.S.; Ghosh, R.; Chobe, D.R.; Sharma, M. Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front. Plant Sci. 2018, 9, 1154. [Google Scholar] [CrossRef]
- Morales, F.; Ancín, M.; Fakhet, D.; González-Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef]
- Vass, I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Haldrup, A.; Simpson, D.J.; Scheller, H.V. Down-regulation of the PSI-F subunit of photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function. J. Biol. Chem. 2000, 275, 31211–31218. [Google Scholar] [CrossRef] [PubMed]
- Schöttler, M.A.; Albus, C.A.; Bock, R. Photosystem I: Its biogenesis and function in higher plants. J. Plant Physiol. 2011, 168, 1452–1461. [Google Scholar] [CrossRef]
- Jansson, S. The light-harvesting chlorophyll ab-binding proteins. Biochim. Biophys. Acta (BBA)-Bioenerg. 1994, 1184, 1–19. [Google Scholar] [CrossRef]
- Crafts-Brandner, S.J.; Salvucci, M.E. Sensitivity of Photosynthesis in a C4 Plant, Maize, to Heat Stress. Plant Physiol. 2002, 129, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, D.D.; Zavala, J.A.; Zhu, J.; Clough, S.J.; Ort, D.R.; Delucia, E.H. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 2010, 33, 1597–1613. [Google Scholar] [CrossRef] [PubMed]
- Osei-Bonsu, I.; McClain, A.M.; Walker, B.J.; Sharkey, T.D.; Kramer, D.M. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. In Plant Cell and Environment; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2021; Volume 44, pp. 2290–2307. [Google Scholar]
- Taylor, A.L.; Sasser, J.N. Biology, Identification and Control of Root-Knot Nematodes; North Carolina State University Graphics: Raleigh, NC, USA, 1978; 111p. [Google Scholar]
- Sasser, J.N.; Carter, C.C.; Hartman, K.M. Standardization of Host Suitability Studies and Reporting of Resistance to Root-Knot Nematodes; North Carolina State University Graphics: Raleigh, NC, USA, 1984. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; Circular 347; California Agricultural Experiment Station: Berkeley, CA, USA, 1950. [Google Scholar]
- Hussey, R.S. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 1973, 57, 1025–1028. [Google Scholar]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.G.; de Almeida, R.F.; Fontes, W.; de Souza Castro, M.; de Sousa, M.V.; Ricart, C.A.O.; da Cunha, R.N.V.; Lopes, R.; Scherwinski-Pereira, J.E.; Mehta, A. Stress and cell cycle regulation during somatic embryogenesis plays a key role in oil palm callus development. J. Proteom. 2019, 192, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kalli, A.; Smith, G.T.; Sweredoski, M.J.; Hess, S. Evaluation and Optimization of Mass Spectrometric Settings during Data-dependent Acquisition Mode: Focus on LTQ-Orbitrap Mass Analyzers. J. Proteome Res. 2013, 12, 3071–3086. [Google Scholar] [CrossRef]
- Hawkridge, A.M. Practical considerations and current limitations in quantitative mass spectrometry-based proteomics. In Quantitative Proteomics; Eyers, C.E., Gaskell, S., Eds.; Royal Society of Chemistry: Cambridge, UK, 2014; pp. 3–25. [Google Scholar]
Biological Process | Protein ID (UniProt) | Description | Score | Anova (p ≤ 0.05) | Log2FC | Cross/Control | Drought/Control | Nematode/Control |
---|---|---|---|---|---|---|---|---|
Defense response | A0A4D6LDE6 | LRR receptor-like serine/threonine-protein kinase FLS2 | 188.44 | 0.001 | - | Exclusive | ||
A0A4D6LDX5 | LRR receptor-like serine/threonine-protein kinase FLS2 | 36.16 | 0.023 | - | Exclusive | |||
A0A4D6M0M0 | Chitinase | 68.29 | 0.008 | 6.29 | Increased | |||
A0A4D6KNF4 | Pathogenesis-related protein 1 | 350.07 | 9.42 × 10−5 | 5.58 | Increased | |||
Dehydration response | Q9AYM8 | CPRD2 protein | 119.93 | 0.001 | 3.22 | Increased | ||
P93700 | CPRD14 protein | 1000.73 | 0.002 | 1.7 | Increased | |||
Q9FS23 | CPRD86 protein (Fragment) | 121.7 | 0.025 | 6.11 | Increased | |||
Oxidative stress | A0A4D6LCC8 | Glutathione S-transferase | 50.39 | 0.017 | 9.43 | Increased | ||
Q9M7R2 | Superoxide dismutase | 510.36 | 0.001 | 3.74 | Increased | |||
A0A4D6MLJ0 | Glutathione peroxidase | 221.88 | 0.003 | 2.15 | Increased | |||
Jasmonic acid biosynthetic process | A0A4D6MNE8 | Lipoxygenase | 132.89 | 1.36 × 10−6 | 3.72 | Increased | ||
A0A4D6MNU1 | Lipoxygenase | 84.89 | 0.003 | 3.53 | Increased | |||
Response to abscisic acid | A0A4D6LN47 | Bet_v_1 domain-containing protein | 284.53 | 0.019 | 3.61 | Increased | ||
A0A4D6LBT9 | Bet_v_1 domain-containing protein | 29.69 | 0.019 | 6.73 | Increased | |||
Lipid metabolic process | A0A4D6N7S0 | Phospholipase D | 1345.21 | 0.031 | 1.11 | Increased | ||
O04865 | Phospholipase D alpha 1 | 424.29 | 0.013 | 1.06 | Increased | |||
A0A4D6MIW6 | Phosphoinositide phospholipase C | 51.84 | 0.009 | 5.77 | Increased | |||
Flavonoid biosynthetic process | A0A4D6NPD2 | Chalcone synthase | 90.18 | 0.000 | 2.31 | Increased | ||
A0A4D6NRT4 | Isoflavone reductase | 840.96 | 0.006 | 0.77 | Increased | |||
A0A4D6NPC3 | Flavonol 3-O-methyltransferase | 407.45 | 0.002 | 3.86 | Increased |
Biological Process | Protein ID (UniProt) | Description | Score | Anova (p ≤ 0.05) | Log2FC | Cross/Control | Drought/Control | Nematode/Control |
---|---|---|---|---|---|---|---|---|
Defense response | A0A4D6M0I2 | LRR receptor-like serine/threonine-protein kinase FLS2 | 26.99 | 7.07 × 10−5 | 12.52 | Increased | ||
A0A4D6LBY3 | Chitinase | 247.88 | 0.005 | 2.14 | Increased | |||
A0A4D6LT51 | Thaumatin | 120.72 | 7.80 × 10−4 | 3.62 | Increased | |||
Dehydration response | P93700 | CPRD14 protein | 566.23 | 1.98 × 10−4 | 1.64 | Increased | ||
A0A4D6NTQ2 | Dehydrin | 327.31 | 0.03 | 1.95 | Increased | |||
Oxidative stress | A0A4D6MLG9 | Glutathione transferase | 320.25 | 2.174 × 10−5 | 2.94 | Increased | ||
A0A4D6LKZ9 | Glutathione S-transferase | 41.73 | 0.001 | 2.25 | Increased | |||
Q41712 | L-ascorbate peroxidase | 623.75 | 0.02 | 1.24 | Increased | |||
Q5QIA9 | L-ascorbate peroxidase | 221.68 | 0.001 | 2.01 | Increased | |||
A0A4D6N707 | Superoxide dismutase | 329.21 | 0.041 | 1.20 | Increased | |||
Jasmonic acid biosynthetic process | A0A4D6MNU1 | Lipoxygenase | 86.99 | 0.039 | 2.72 | Increased | ||
A0A4D6MNL5 | Lipoxygenase | 406.25 | 1.88 × 10−4 | 3.81 | Increased | |||
Response to abscisic acid | A0A4D6LBT9 | Bet_v_1 domain-containing protein | 29.09 | 0.049 | 2.55 | Increased | ||
A0A4D6LB15 | Annexin | 1459.33 | 1.87 × 10−5 | 1.83 | Increased | |||
Lipid metabolic process | A0A4D6N7S0 | Phospholipase D | 1182.19 | 5.98 × 10−6 | 1.68 | Increased | ||
A0A4D6MCA1 | Phospholipase A1 | 67.94 | 0.017 | 2.87 | Increased | |||
Photosynthesis | A0A4D6L6M3 | Chlorophyll a-b binding protein, chloroplastic | 288.64 | 0.008 | 1.32 | Increased | ||
A0A4D6LJ91 | Photosystem II stability/assembly factor | 730.69 | 0.014 | 1.86 | Increased | |||
A0A4D6L8F7 | Photosystem I subunit PsaN | 82.18 | 0.02 | 1.80 | Decreased | |||
A0A4D6M6X8 | Magnesium-protoporphyrin IX monomethyl ester (oxidative) cyclase | 50.37 | 1.49 × 10−2 | 2.72 | Decreased | |||
A0A4D6L976 | Magnesium-protoporphyrin O-methyltransferase | 252.45 | 5.47 × 10−4 | 2.26 | Decreased | |||
A0A4D6N7U7 | NADPH-protochlorophyllide oxidoreductase | 281.88 | 1.81 × 10−5 | 2.45 | Decreased | |||
A0A4D6KW86 | Geranylgeranyl reductase | 58.53 | 4.78 × 10−4 | 3.34 | Decreased | |||
A0A4D6MNX0 | Chlorophyll a-b binding protein, chloroplastic | 703.79 | 1.40 × 10−4 | 3.21 | Decreased | |||
A0A4D6NHQ4 | Chlorophyll a-b binding protein, chloroplastic | 95.34 | 0.04 | 3.32 | Decreased | |||
A0A4D6N658 | Photosystem II oxygen-evolving enhancer protein 2 | 118.02 | 4.66 × 10−3 | 2.26 | Decreased | |||
A0A4D6NAD0 | Photosystem II oxygen-evolving enhancer protein 3 | 232.75 | 0.03 | 1.27 | Decreased | |||
A0A4D6L0K2 | Photosystem II oxygen-evolving enhancer protein 1 | 54.41 | 0.05 | 2.47 | Decreased | |||
A0A4D6M3U4 | Photosystem I P700 chlorophyll a apoprotein A1 | 1060.97 | 1.40 × 10−2 | 1.51 | Decreased | |||
I2E2T7 | Photosystem I iron-sulfur center | 322.98 | 5.73 × 10−4 | 1.87 | Decreased | |||
J7EX90 | Cytochrome b6 | 806.96 | 3.33 × 10−3 | 1.54 | Decreased | |||
I2E2Q5 | Cytochrome f | 341.3 | 5.15 × 10−5 | 1.79 | Decreased | |||
A0A4D6LQE0 | Ferredoxin--NADP reductase, chloroplastic | 2375.03 | 2.84 × 10−5 | 1.13 | Decreased | |||
I2E2P9 | ATP synthase subunit alpha | 3858.04 | 2.73 × 10−3 | 0.97 | Decreased | |||
I2E2M7 | ATP synthase subunit beta | 388.27 | 2.78 × 10−6 | 2.04 | Decreased | |||
A0A4D6MKZ9 | Photosystem I subunit VI | 637.47 | 5.69 × 10−3 | 1.42 | Decreased | |||
A6H596 | Putative rubisco activase (Fragment) | 38.23 | 5.76 × 10−5 | 4.47 | Decreased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, D.G.; Bezerra, A.C.M.; Santos, I.R.; Grynberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M.V.; Lisei-de-Sá, M.E.; Grossi-de-Sá, M.F.; Franco, O.L.; et al. Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses. Plants 2023, 12, 1900. https://doi.org/10.3390/plants12091900
Ribeiro DG, Bezerra ACM, Santos IR, Grynberg P, Fontes W, de Souza Castro M, de Sousa MV, Lisei-de-Sá ME, Grossi-de-Sá MF, Franco OL, et al. Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses. Plants. 2023; 12(9):1900. https://doi.org/10.3390/plants12091900
Chicago/Turabian StyleRibeiro, Daiane Gonzaga, Ana Carolina Mendes Bezerra, Ivonaldo Reis Santos, Priscila Grynberg, Wagner Fontes, Mariana de Souza Castro, Marcelo Valle de Sousa, Maria Eugênia Lisei-de-Sá, Maria Fatima Grossi-de-Sá, Octávio Luiz Franco, and et al. 2023. "Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses" Plants 12, no. 9: 1900. https://doi.org/10.3390/plants12091900
APA StyleRibeiro, D. G., Bezerra, A. C. M., Santos, I. R., Grynberg, P., Fontes, W., de Souza Castro, M., de Sousa, M. V., Lisei-de-Sá, M. E., Grossi-de-Sá, M. F., Franco, O. L., & Mehta, A. (2023). Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses. Plants, 12(9), 1900. https://doi.org/10.3390/plants12091900